A Cauchy Type Problem for Causal Functional Inclusions in Banach Spaces

Authors

  • Garik Petrosyan Voronezh State University, Voronezh, Russia
  • Maria Soroka Voronezh State University, Voronezh, Russia

DOI:

https://doi.org/10.25728/assa.2024.24.1.1531

Keywords:

causal operator, functional inclusion, Cauchy type problem, differential inclusion, fractional derivative, measure of non-compactness, fixed point, topological degree, condensing multioperator

Abstract

In this paper, we study a Cauchy type problem in Banach spaces for various classes of functional inclusions with causal multioperators. Based on the topological degree theory for condensing multimaps, we prove a global theorem on the existence of trajectories for systems governed by functional inclusions. As an application, we obtain generalizations of existence theorems for a Cauchy type problem for semilinear second order differential inclusions of this type and semilinear differential inclusions of the fractional order 1<q<2.

Downloads

Download data is not yet available.

Downloads

Published

2024-04-02

How to Cite

Petrosyan, G., & Soroka, M. (2024). A Cauchy Type Problem for Causal Functional Inclusions in Banach Spaces. Advances in Systems Science and Applications, 24(1), 40–57. https://doi.org/10.25728/assa.2024.24.1.1531