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Abstract: The article considers a classic fork-join queueing system with a Poisson input flow and
exponential service times on homogeneous servers. When entering the system, tasks are divided
into smaller components (subtasks), the number of which is equal to the number of subsystems.
Then the subtasks are sent for service to the corresponding subsystems, consisting of a storage
device of unlimited capacity and one server. The described functioning mechanism allows, using
fork-join systems, to simulate processes occurring in many different real physical systems where
tasks are parallelized. The article studies the dependence between the sojourn times of subtasks
in subsystems, which is at the same time the main reason for the complexity of analyzing such
systems. An approach is proposed for determining the quantiles of the response time distribution,
while most works in the field of analysis of fork-join systems are concentrated on obtaining
approximations only for the mathematical expectation of the response time. In addition, the
approximation of the copula of sojourn times of subtasks (parts of one task) by the Gumbel
copula and a new Kendall’s correlation coefficient estimation are obtained.

Keywords: fork-join queueing system, response time, distribution quantiles, correlation
coefficients, Gumbel copula, diagonal section, simulation modeling.

1. INTRODUCTION

This paper examines a classic fork-join queueing system (QS) with a Poisson input flow and
exponential service times. Fork-join QS is a mathematical model for many real-life systems
in which tasks are parallelized. When entering the system, the task is divided (fork point)
into a number of subtasks equal to the number of subsystems K ≥ 2. All subsystems are
actually independent queueing systems with an infinite queue and a single server. Each of the
subtasks after entering one of the subsystems is serviced there, and then enters a conditional
synchronization buffer (join point), where it awaits servicing of the remaining parts of the
task. After servicing of all subtasks is completed, the entire task is instantly assembled and
can leave the system.

Previously, such systems were studied by the authors in the works [10, 11, 14]. This
work continues the article [11], where a study began on the dependence of the sojourn
times of subtasks (parts of one task). The analysis of this system, but with a more complex
architecture, can be found, for example, in one of the latest work [12].

The first publications aimed at studying the performance characteristics of mathematical
models of fork-join QS and similar systems began to appear in the second half of the
20th century. Then research activity decreased somewhat. However, currently there is a
new round of interest in the analysis of fork-join such systems, especially in the field of
modeling information systems and the processes occurring in them. One of the reasons

∗Corresponding author: avgorbunova@list.ru



2 A.V. GORBUNOVA, A.V. LEBEDEV

for this situation is the growing popularity of data-intensive applications. Among the basic
principles of the functioning of high-performance computing environments the parallel data
processing, i.e. the simultaneous execution of several operations, commands or actions, is
distinguished. For example, one of the main Big Data technologies from Google is called
MapReduce, the essence of which is to divide information flows into parts, process them in
parallel and further combine the results obtained. This allows you to significantly increase the
performance of relevant applications and at the same time reduce the time spent on processing
big data, the volume of which continues to increase and, according to IDC (International Data
Corporation) forecasts, and can reach 175 zettabytes by 2025 [25, 30, 31, 34].

Of course, the scope of application of fork-join models is not limited only to information
and computing systems. Issues of optimizing processes in production systems (for example,
assembling orders in warehouse systems, manufacturing multi-component products) or
improving the efficiency of organizing the process of patient stay in medical institutions(and
etc.) continue to be in demand to this day [1–3, 9, 18, 22, 32].

Another reason for the actualization of research on fork-join systems is the emergence of
new methods and approaches to the analysis of complex queueing systems, in particular, an
approach based on the use of machine learning methods and its various modifications [4–7,
19,27,28,35]. In this case, we are talking about the further development of this approach and
the inclusion of graphical analysis and optimization methods in its composition.

Despite the apparent simplicity of operation, the study of fork-join QS is one of the most
difficult problems to solve. The main reason for the complexity lies in the commonality of
the moments of appearance of subtasks in the subsystems, which makes their sojourn times
dependent random variables. This is the main difference between a fork-join system and
simply parallel operating QSs of the same type as the fork-join QS subsystems. Therefore,
accurate results were obtained only for the average response time in the case of two
subsystems with a Poisson input flow and exponential service times [24]. For other variants
of fork-join QS architectures, which imply, for example, an increase in the number of
subsystems or servers in them, limited storage capacity, or other types of distributions for
input and service flows, only approximations of the mathematical expectation of response
time were obtained in various ways.

As for assessing other performance characteristics of a fork-join system, there is much
less research in this direction. For example, the variance and standard deviation of response
time was analyzed in the papers [8, 14]. In the work [11] you can find analytical expressions
(exact or their estimates) for the correlation coefficients between the sojourn times of subtasks
in subsystems

However, in addition to the first or second moments of the response time random variable,
the quantiles of its distribution are of interest. In [15], by using computer simulation, quantiles
of response times were found in a system with K = 3 at various load values. In [29],
using vector-matrix techniques and phase distributions, theoretical estimates of the tail and
quantiles of high levels are obtained. In [26] estimates were obtained for high-level quantiles
under conditions of high system load for several types of distributions and fork-join QS
architectures.

This paper proposes an approach for finding response time quantiles of various levels for a
wider range of loads, which allows us to get a complete picture of the behavior of the random
variable under study. Despite the fact that the object of study of the article is the classic
fork-join QS, the approach proposed in the article can be extended to other architectures of
fork-join systems and beyond.

Our approach to constructing an estimation of response time quantiles is based on working
with copulas and their diagonal sections. Copulas are multivariate distribution functions
on a unit cube with uniform marginal distributions. According to Sklar’s theorem, any
multidimensional distribution can be decomposed into marginal distributions and a copula.
Thus, copula exhaustively describes the dependence of random variables in its pure form. The
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modern mathematical apparatus of copula theory has been actively developed and applied in
recent decades, but it is still poorly represented in queueing theory.

For example, in [33] a system with dependent service times for subtasks in two
parallel queues was considered. A task is considered served if at least one subtask is
serviced. Marginal distributions of service times are assumed to be shifted exponential or
hypoexponential, and their dependence is described by an artificially introduced copula.

In our works we study copulas that arise naturally during the functioning of the system. In
this regard, we note the article by the authors of [13], where copulas of maximum remaining
service times in infinite-server fork-join systems were found.

The article is organized as follows. Section 2 presents a description of the system under
consideration and provides some new results for the correlation coefficients between the
sojourn times of subtasks in subsystems, Section 3 gives the necessary elements of the theory
of copulas, Section 4 describes the approach to determining the approximation of the diagonal
section of the copula and the quantiles of the response time distribution, in Section 5 presents
the results of approximating the copula of sojourn times of subtasks by the Gumbel copula,
Section 6 compares it with previously known results, and the Conclusion summarizes some
results.

2. MATHEMATICAL MODEL OF FORK-JOIN QS
AND CORRELATION COEFFICIENTS

Let us describe in more detail the process of functioning of the fork-join system. We will
consider the special case of two subsystems (K = 2), however, note that the number of
subsystems does not in any way affect the dependence in any pair of sojourn times of subtasks
of one task (Fig. 2.1). The system receives a Poisson flow of tasks with rate λ > 0. At the
moment the task is received into the system, it is instantly divided into 2 subtasks, each
of which falls into the corresponding subsystem, which has a storage device of unlimited
capacity and one server. All servers are homogeneous, the service time has an exponential
distribution with parameter µ > 0. Thus, the subsystems represent two identical QSs of type

.

.

.

Fork

point
Join

point

...

...

...

λ 

λ 

λ 

λ 

µ 

µ 

µ 
 

Fig. 2.1. Fork-join model of a queue ing system with subsystems of type Mλ|Mµ|1.

M |M |1. Since a task is considered to be serviced only after the completion of servicing of
both of its subtasks, the random sojourn time of the task in the QS (response time) R is the
maximum of two random sojourn times of subtasks ξi, i = 1, 2, in each from two subsystems:

R = max{ξ1, ξ2}. (2.1)

Random variables ξ1 and ξ2 are correlated due to the fact that all subtasks (parts of one
task) arrive at the subsystems at the same time. In the work [11] you can familiarize yourself
in detail with the analysis of this dependence, as well as with the derivation of analytical
expressions for various correlation coefficients between any pair of sojourn times of subtasks
in subsystems. Since this article is a logical continuation of the research begun in [11], in
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order to understand the whole picture we present the exact analytical formulas obtained for
the Pearson and Spearman correlation coefficients

rp =
ρ(4− ρ)

8
, (2.2)

rs =
12
√
2
√
2− ρ

8− 3ρ
− 3. (2.3)

as well as an approximate expression for the Kendall correlation coefficient

rk ≈ ρ(0.25134 + 0.02517ρ), (2.4)

where ρ = λ/µ is the system load factor.
In what follows, for simplicity, we assume λ = 1, µ = 1/ρ. Such parameters were used

in the simulation [10, 14].
Note that various correlation coefficients, in the general case, only partially reflect the

dependence. Just copulas fully reflect the dependence.

3. ELEMENTS OF COPULA THEORY

A copulaC is a multivariate distribution function on [0, 1]d, d ≥ 2, if all marginal distributions
are uniform on [0, 1]. According to the famous Sklar theorem, any multivariate distribution
function in Rd can be represented in the form

F (x1, . . . xd) = C(F1(x1), . . . Fd(xd)),

where Fi, 1 ≤ i ≤ d, are functions of private distributions. Thus, every multidimensional
distribution can be associated with its copula. If marginal distributions are continuous, then
such a representation is unique.

As a classic textbook on copulas we point out [23].
In what follows, we restrict ourselves to the case of two-dimensional copulas (d = 2).
The diagonal section of a (two-dimensional) copula is the function δ(u) = C(u, u),

u ∈ [0, 1]. It has the following (necessary and sufficient) properties:

max{2u− 1, 0} ≤ δ(u) ≤ u; 0 ≤ δ(u2)− δ(u1) ≤ 2(u2 − u1), 0 ≤ u1 ≤ u2 ≤ 1.
(3.5)

The point of studying diagonal sections, for example, is as follows. If random variables
X1 and X2 are given with identical marginal distributions F1 = F2 = F and joint distribution
copula C, then their maximum is Xmax = max{X1, X2} has a distribution function

Fmax(x) = P (X1 < x,X2 < x) = C(F (x), F (x)) = δ(F (x)), (3.6)

so to calculate it we need to know only the diagonal section, and not the entire copula.
It is easy to see that the conditions (3.5) are satisfied by the power function

δ(u) = uα, 1 ≤ α ≤ 2,

then the case α = 1 corresponds to a perfect positive dependence (comonotonicity), and the
case α = 2 corresponds to independence of random variables.

A classic example of an absolutely continuous (having density) copula with a power-law
diagonal section is the Gumbel copula

C(u1, u2) = exp{−((− lnu1)
θ + (− lnu2)

θ)1/θ}, θ ≥ 1, u1, u2 ∈ [0, 1],
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then
δ(u) = u2

1/θ

.

More precisely, a Gumbel copula belongs to the class of extreme value copulas, which
always have power-law diagonal sections. You can read about such copulas in [23, §
3.3.4], [16], etc.

Authors’ works related to copulas can be listed as [13, 20, 21].

4. APPROXIMATIONS OF THE DIAGONAL SECTION
AND RESPONSE TIME QUANTILES

Determining the quantiles of the response time distribution is no less important than finding
the average response time, and sometimes even more important. Understanding how a system
behaves under high load and what maximum response time delays are possible is of great
value.

Despite the fact that in this work we consider fork-join QS with M |M |1 subsystems,
the results of estimating the upper quantiles can be used to initially predict the behavior of
models that clearly do not have heavy-tailed distributions, for example, these can be various
options for small warehouse or production systems, modeling the process of admission, stay
and discharge of patients from medical institutions or the process of reviewing a client’s loan
application in a financial institution and, possibly, even some private computing systems with
the implementation of distributed or parallel computing, operated by employees of a small
company.

To approximate the quantiles of the distribution of the random variable response time
R = max{ξ1, ξ2} we will use elements of copula theory. We will consider a two-dimensional
copula C(u1, u2) of random vectors of sojourn times in subsystems (ξ1, ξ2). Each component
of the random vector has an exponential distribution with the distribution function F (x) =
1− e−(µ−λ)x, x ⩾ 0. Then, in accordance with Sklar’s theorem, a representation using the
copula of the joint distribution (ξ1, ξ2) exists and is unique

Fξ1,ξ2(x1, x2) = P (ξ1 < x1, ξ2 < x2) = C(F (x1), F (x2)).

Due to (3.6) we obtain
FR(x) = C(F (x), F (x)) = δ(F (x)), (4.7)

where δ(u) = C(u, u) is the diagonal section of the copula, which gives us the equation for
the quantile level p of the response time distribution

FR(xp) = δ(F (xp)) = p,

so
xp = F−1

R (p) = F−1(δ−1(p)). (4.8)
Taking into account the inverse transformation method for generating random variables with
a given distribution function, consider

Ui = 1− e−(µ−λ)ξi , i = 1, 2,

These random variables will have a uniform distribution on the interval [0, 1], i.e. Ui ∼
R[0, 1]. Then

V = max{U1, U2} = 1− e−(µ−λ)·max{ξ1,ξ2} = 1− e−(µ−λ)R. (4.9)

Figure 4.2 shows the set of points (U1, U2) at ρ = 0.9 for a fork-join system with two
subsystems M |M |1 and for the case of two independent parallel operating QSs M |M |1 with

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)



6 A.V. GORBUNOVA, A.V. LEBEDEV

the same parameters. The number of pairs of dots is 200 thousand; increasing their number
overloads the illustration. As you can see, in Figure 4.2 b) the points are distributed uniformly
inside the unit square, which is typical for the case of independent random variables. In 4.2 a)
such uniformity in the distribution of points is no longer observed, even though the value
of the Pearson correlation coefficient between ξ1 and ξ2 is small (rp = 0.34875), and visual
analysis is somewhat difficult, however, the relationship betweenU1 = F (ξ1) andU2 = F (ξ2)
in this case is obviously traceable.

a) b)

Fig. 4.2. Illustration of the presence/absence of dependence between U1 and U2 at ρ = 0.9 in the case of
a) fork-join QS with two subsystems M |M |1; b) two parallel functioning QS M |M |1.

The diagonal section of the copula can be estimated as follows. We have

δ(u) = C(u, u) = P (U1 < u,U2 < u) = P (max(U1, U2) < u) = P (V < u) = p,

i. e.
δ(up) = P (V < up) = p,

where up is the quantile of the distribution of the random variable V . Using realizations
Vi of the random variable V , obtained through simulation of the values of random stay
times in the fork-join QS Ri and further substituting them into the formula (4.9), we
construct an estimate of the diagonal section δ(u), but in fact, probabilities p. In other
words, we construct an empirical estimation of the diagonal section using quantiles of
the V distribution. To do this, we order the values V obtained through simulation: V(1),
V(2),..., V(N), where V(k) — this is the k-th order statistic, k = 1, ..., N , and from the points
(V(k), k/(N + 1)) we determine the estimates (up, p) for probability values from the interval
of interest to us p ∈ {0.2, 0.25, 0.30, ..., 0.90}, for a specific fixed value of the load factor
ρ ∈ {0.10, 0.15, 0.20, ..., 0.90}. The choice of p values is due to the fact that, as a rule,
quantiles of higher levels are of greater interest, so we begin to consider p values from 0.2.
Next, based on the available data, we will build a forecast of probabilities p depending on the
quantiles up and the load factor ρ.

p ≈ p̂ = δ̂(up, ρ).
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Fig. 4.3. Dependence of ln p on lnup.

Fig. 4.4. Dependence of (ln p/ lnup) on ρ.
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Now, to determine the type of functional dependence, we will conduct a graphical analysis
of the obtained data. First of all, it was noticed that the dependence of p on up is well described
by a power function, which corresponds to a linear dependence for logarithms (see Fig. 4.3).
The dependence of the exponent α on ρ also turned out to be close to linear (see Fig. 4.4). Note
that for ρ→ 0 the sojourn times of subtasks are asymptotically independent, hence α → 2.
As can be seen from Figure 4.4, the dependence graph resembles a bunch of close straight
lines passing through the point (0, 2), so it is natural to assume (as a first approximation) that

ln p

lnup
≈ 2− C · ρ,

and hence
p = δ(up, ρ) ≈ u2−C·ρ

p . (4.10)

All that remains is to calculate the value of the coefficient C. Similar to the situation
with the Kendall correlation coefficient [11], we will minimize the module of the relative
approximation error relative to the simulation data using the Nelder-Mead method, as a result
of which we obtain the value

C ≈ 0.370608. (4.11)

Thus we have
p = δ(up, ρ) ≈ u2−0.370608·ρ

p . (4.12)

Figure 4.5 shows the results of simulation modeling of the probabilities or levels of p
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Fig. 4.5. Comparison of analytical results of the formula (4.12) with simulation of the values p of quantiles up

of the random variable V = F (R) for values ρ ∈ {0.10, 0.15, 0.20, ..., 0.90}.

quantiles up of the random variable V = F (R) in comparison with the results of calculations
using the analytical formula (4.12) in the range [0.20, 0.95] with increments of 0.05. Each
point shown on the graph is actually a set of 17 points based on the number of load factor
values ρ ∈ {0.10, 0.15, 0.20, ..., 0.90}, which overlap each other and practically merge, which
should be the case with a good level of approximation of the probabilities p. A slight
stratification (deviation within 2%) is observed with increasing values of p. For clarity,
table 4.1 shows the absolute values of the relative approximation errors for 272 calculated
p values.

Now, taking into account (4.8), we can write

δ−1(p) = F (xp), (4.13)
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Table 4.1. Errors in approximations of probability values p calculated using the analytical formula (4.12) in
comparison with the results of simulation modeling

Evaluated Types of errors
characteristic Max APE, % Min APE, % MAPE, %

Probability p from the formula (4.12) 1.679144 0.002731 0.438597

moreover, from (4.10) it follows that δ−1(p) ≈ p
1

2−C·ρ . We substitute the estimate δ−1(p)
into (4.13) and get the relation

p
1

2−C·ρ = 1− e−(µ−λ)xp

from which it follows that the quantile level p of the distribution of the random variable
fork-join response time QS R is determined by expression

xp ≈ − ln(1− p
1

2−C·ρ )

µ− λ
. (4.14)

Next, we evaluate the quality of approximation of the resulting expression on the following
data set: ρ ∈ {0.10, 0.15, ..., 0.90}, p ∈ {0.20, 0.25, ..., 0.90}, i.e., we get a total of 272 values,
for which we will estimate the approximation error using the formula 4.14. In the table 4.2 in
the first row for the value C ≈ 0.370608 the relative errors of approximation are presented,
and the modulus of the maximum approximation error (Max APE) is about 3%, and the
average value of the modulus of the relative error does not exceed 1%. However, if we again
use the Nelder-Mead optimization method, but this time to minimize the quantile error xp
from the formula (4.14), then the result will be the value C ≈ 0.348284. In this case, the
result will improve somewhat, however, as further research shows, the value of the coefficient
C ≈ 0.37 turns out to be more justified in other aspects.

Table 4.2. Errors in approximations of the response time quantile for two variants of the values of the coefficient
C in the formula (4.14)

Evaluated Types of errors
characteristic Max APE, % Min APE, % MAPE, %

Quantile xp, C ≈ 0.370608 3.123971 0.002328 0.734956
Quantile xp, C ≈ 0.348284 2.819299 0.007276 0.699130

The figure 4.6 clearly demonstrates the quality of approximation of response time
quantiles. As follows from the graphs, large errors arise for large values of the system load
factor ρ, but do not exceed 3%, which is an acceptable result.

For the sake of clarifying the approximation of quantiles, returning to Fig. 4.4, we can
note the dependence of the slope of the lines on p. This suggests that instead of the constant
C in (4.14) we need to use expressions of the form C1 − C2p or C1 − C2p

2. The selection of
constants by the Nelder-Mead method and a comparative analysis of the accuracy show that
the second option is better, namely, the approximation

xp ≈ − ln(1− p
1

2−(C1−C2p
2)ρ )

µ− λ
, (4.15)

where
C1 ≈ 0.390327, C2 ≈ 0.237842,

moreover, the error is only 0.62%, which is 4.6 times less than before. The obtained results
in more detail are presented in the table 4.3.
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Table 4.3. Errors in response time quantile approximations calculated by using the analytical formula (4.15)
compared to simulation results

Evaluated Types of errors
characteristic Max APE, % Min APE, % MAPE, %
Quantile xp 0.617316 0.004912 0.304632

Unfortunately, this approach does not provide an explicit expression or convenient
approximation for the diagonal section, so we will return to the formula (4.10) and move
from there to copulas.

5. APPROXIMATION OF THE COPULA OF SOJOURN TIMES
OF SUBTASKS BY THE GUMBEL COPULA

In the previous section, the estimate for the diagonal section of the copula δ(u) was obtained.
In this section, we will present an analytical expression that evaluates the copula C(u1, u2)
itself. This will require empirical data, after analyzing which it will be possible to conclude
that the copula under study is close to one of the known families.

The algorithm for constructing an empirical copula will be as follows:

1) the simulation modeling of a set of pairs (ξk1 , ξ
k
2 ) of random variables of sojourn times in

subsystems M |M |1 fork-join QS, where k is the serial number of the simulated pair of
values, k = 1, ..., N , N is the sample size (total number of pairs of random variables);

2) the transformation of random variables with exponential distribution ξi ∼ Exp(µ− λ)
by the inverse function method into random variables with uniform distribution on the
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interval [0, 1], Ui ∼ R[0, 1] , i = 1, 2

(Uk
1 , U

k
2 ) = (F (ξk1 ), F (ξ

k
2 )) = (1− e−(µ−λ)ξk1 , 1− e−(µ−λ)ξk2 );

3) the division of the unit square into smaller squares (grid) with sides of length h = 1/m,
where, for example, m = 20 and the determination of the number of points (Uk

1 , U
k
2 )

falling into each of squares whose vertices are the points (0, 0), (ih, 0), (0, jh), (ih, jh),
i, j = 1, ...,m, and normalization of the resulting value, i. e.

Cij = C(ih, jh) ≈ Ĉij =
1

N

N∑
k=1

1{Uk
1 < ih, Uk

2 < jh},

where 1{·} is an indicator function for the event {·}.

Figure 5.7 shows a graph of an empirical copula or, what is the same, a joint distribution
function of a random vector (U1, U2), constructed in accordance with the algorithm presented
above.

We will also construct the density of the copula using the following algorithm:

1. by using the results of steps 1 and 2 from the previous algorithm, we obtain a set of pairs
of random variables (Uk

1 , U
k
2 ), k = 1, ..., N ;

2. we divide the unit square into smaller squares (grid) with sides of length h = 1/m,
where, for example, m = 20 and determine the number of points (Uk

1 , U
k
2 ) falling

into each of squares whose vertices are the points ((i− 1)h, (j − 1)h), (ih, (j − 1)h),
((i− 1)h, jh), (ih, jh), i, j = 1, ...,m, and normalize the obtained values, i. e.

cij = c(ih, jh) ≈ ĉij =
1

Nh2

N∑
k=1

1{(i− 1)h < Uk
1 < ih, (j − 1)h < Uk

2 < jh}.

a) b)

Fig. 5.7. a) Empirical copula Ĉ(u1, u2), ρ = 0.9; b) empirical copula density ĉ(u1, u2), ρ = 0.9.

Based on the appearance of the obtained empirical functions in Figures 5.7 a) and b), and
also taking into account that the diagonal section of the copula under consideration was
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approximated in Section 4 by an expression of the form

δ(u) ≈ uα, α = 2− Cρ, (5.16)

we will approximate the desired copula C(u1, u2) Gumbel copula, which has the form

Cg(u1, u2) = exp{−[(− lnu1)
θ + (− lnu2)

θ]
1
θ }, (5.17)

where θ ∈ [1,+∞) is the copula parameter to be estimated. The density of a Gumbel copula is
determined by taking the second-order mixed partial derivative of the copula function (5.17)

cg(u1, u2) =
∂2Cg(u1, u2)

∂u1∂u2
=

=
Cg(u1, u2)(− lnu1)

θ(− lnu2)
θ[θ + [(− lnu1)

θ + (− lnu2)
θ]

1
θ − 1]

u1u2 lnu1 lnu2[(− lnu1)θ + (− lnu2)θ]
2θ−1

θ

.

(5.18)

Since for the Gumbel copula the diagonal section has the following form

δg(u) = Cg(u, u) = u2
1/θ

,

taking into account (5.16) we obtain that

θ ≈ ln 2

lnα
=

ln 2

ln(2− Cρ)
. (5.19)

Next, we will again use the Nelder–Mead optimization method to minimize the modulus
of the relative error of approximation of the Gumbel copula function (5.17), taking into
account that the parameter θ is determined by the expression (5.19), when compared with
“true” values of the Gumbel copula function obtained by simulation for various load factors
ρ ∈ {0.10, 0.15, 0.20, ..., 0.90}. As before, we will not consider low-level quantiles, i.e., let
u1, u2 ∈ {0.20, 0.25, ..., 0.90}. As a result, we obtain the following value of the required
coefficient

C ≈ 0.369250, (5.20)
therefore

C(u1, u2) ≈ exp{−((− lnu1)
ln 2

ln(2−0.36925ρ) + (− lnu2)
ln 2

ln(2−0.36925ρ) )
ln(2−0.36925ρ)

ln 2 }. (5.21)

As can be seen, from (4.11) and (5.20) the coefficient values are very close and actually
agree with each other, which confirms the quality of the obtained approximations. As for the
approximation error of the formula (5.21), the table 5.4 presents the values of the maximum
(Max APE), minimum (Min APE) and average relative approximation error (MAPE), the first
of which does not exceed 5%, on a data set of 4913 triples (ρ, u1, u2). Figure 5.8 a) also shows
graphs of the empirical copula function and the copula defined by the expression (5.21) on a
given range of values 0.2 ⩽ u1, u2 ⩽ 0.9.

Table 5.4. Errors in approximation of the Gumbel copula function C(u1, u2)
by the formula (5.21) and the Gumbel copula density by the formula (5.18)

Evaluated Types of errors
characteristic Max APE, % Min APE, % MAPE, %
C(u1, u2) 4.966424 0.000000 0.411003
c(u1, u2) 11.164042 0.000805 1.634484
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a) b)

Fig. 5.8. Comparison of empirical and analytical values at ρ = 0.9 for:
a) copula function C(u1, u2) (formula (5.21)); b) copula distribution density c(u1, u2) (formula (5.18)).

Note also that if we estimate the parameter θ using the classical maximum likelihood
method (the corresponding Python function for the Gumbel copula), then the resulting values,
the number of which in this case will correspond to the number of values of the correlation
coefficient ρ ∈ [0.1, 0.9] with a step of 0.05 (i. e. there will be only 17 of them) on the same
4913 triples of values (ρ, u1, u2) the Gumbel copula approximation shows large errors. In this
case, Max APE ≈ 12.385819%, Min APE ≈ 0.000000% and MAPE ≈ 1.037800%.

As for the copula density (5.18), here the result of comparison with empirical data
(simulation modeling data) is somewhat worse, but remains acceptable. Table 5.4 presents
the values of relative approximation errors for ρ ∈ {0.10, 0.15, 0.20, ..., 0.90}, u1, u2 ∈
{0.225, 0.250, ..., 0.875}, i. e. the total number of triplets (ρ, u1, u2) for which the calculation
was carried out is 3332. Some narrowing of the range of values u1, u2 is explained by the
peculiarities of the calculation of the empirical density of the copula in this particular case.
Moreover, despite the fact that the maximum relative error is about 11%, in the total set of
values considered, the number of relative errors exceeding the threshold of 10% is only 2.
The number of approximation errors exceeding 5% is only approximately 1.95% of the total
amount of data, which is confirmed by the MAPE indicator, which is approximately equal
to 1.63%. Note that the error in approximating the copula density increases with increasing
values of u1 and u2, however, the resulting estimates will be upper estimates; in addition,
this phenomenon can be explained by the insufficient number of tests in the region of upper
quantiles and high values of the load factor. As mentioned above, increasing the accuracy of
simulation estimates in the range of ρ values, as well as quantiles close to unity, requires a
significant increase in the duration of the simulation [10].

6. COMPARISON OF THE GUMBEL COPULA APPROXIMATION
WITH PREVIOUSLY KNOWN RESULTS

Next, let’s check how much the obtained result agrees with the exact formula for the
mathematical expectation of the response time obtained in [24], since it must be true

E[R] =

+∞∫
0

[1− FR(x)]dx =

+∞∫
0

[1− δ(F (x))]dx =

+∞∫
0

[1− δ(1− e−(µ−λ)x)]dx, (6.22)
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where the estimate of the diagonal section (based on the copula selected in Section 5) has the
form

δ(u) ≈ u2−Cρ, C ≈ 0.369250. (6.23)

According to [24], the average response time of a fork-join QS with two subsystemsMλ|Mµ|1
is

E[R] =
12− ρ

8
· 1

µ− λ
.

Taking into account the fact that in the case under consideration we assume for simplicity
λ = 1 and, accordingly, µ = 1/ρ, we can rewrite this expression as follows:

E[R] =
(12− ρ)ρ

8(1− ρ)
. (6.24)
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Fig. 6.9. Comparison of the results of calculating the average response time of the fork-join QS E[R] using the
exact formula (6.24) and using the Gumbel copula approximation (5.21) in accordance with the equality (6.27)

From [17] it is known that a random variable X with a standard generalized exponential
distribution with a function and distribution density of the form

Fη(x) = (1− e−x)α, fη(x) = α(1− e−x)α−1e−x, x ⩾ 0, α > 0,

has the mathematical expectation

E[X] = ψ(α + 1)− ψ(1) (6.25)

and the variation
V ar[X] = ψ′(1)− ψ′(α + 1), (6.26)

where ψ(·) is the digamma function, which is defined as the logarithmic derivative of the
gamma function [36].

In fact, based on the power-law diagonal section, we obtain an approximation for the
response time distribution by a generalized exponential distribution of the general form

FR(x) ≈ (1− e−x/β)α, x ⩾ 0, α, β > 0.

This approximation was previously postulated in [26], but we derived it naturally, with
empirical and theoretical justification.
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Due to the assumption (6.23), taking into account (6.25)), the integral (6.22) is
transformed as follows

E[R] =
+∞∫
0

[1− δ(1− e−( 1
ρ
−1)x)]dx ≈

≈
+∞∫
0

[1− (1− e−( 1
ρ
−1)x)2−Cρ]dx = [ψ(3− Cρ)− ψ(1)]

ρ

1− ρ
.

(6.27)

In the figure 6.9 you can compare the approximations of the integral from (6.27)
with the true values of the average response time (6.24) according to [24] for values of
ρ in{0.10, 0.15, ..., 0.90}. In addition, table 6.5 shows the results of calculations of the
mathematical expectation of the response time, from which it follows that the modulus of
the maximum relative error of approximation by the Gumbel copula does not exceed ρ from
the specified range 2.03%, which implies good consistency of the obtained approximations.
Note that if instead of C ≈ 0.369250 we take C ≈ 0.370608 from (4.11), then the result
differs very little.

Table 6.5. Error in approximation of the average response time by the Gumbel copula
in accordance with the formula (6.27)

No. ρ E[R]NT E[R]G Error, %
1 0.10 0.16527778 0.16503456 0.14716
2 0.15 0.26139706 0.26080338 0.22712
3 0.20 0.36875000 0.36760144 0.31148
4 0.25 0.48958333 0.48762334 0.40034
5 0.30 0.62678571 0.62369050 0.49382
6 0.35 0.78413462 0.77949216 0.59205
7 0.40 0.96666667 0.95994706 0.69513
8 0.45 1.18125000 1.17176220 0.80320
9 0.50 1.43750000 1.42432705 0.91638
10 0.55 1.74930556 1.73120372 1.03480
11 0.60 2.13750000 2.11273490 1.15860
12 0.65 2.63482143 2.60088709 1.28792
13 0.70 3.29583333 3.24893708 1.42290
14 0.75 4.21875000 4.15278226 1.56368
15 0.80 5.60000000 5.50421629 1.71042
16 0.85 7.89791667 7.75075620 1.86328
17 0.90 12.48750000 12.23495071 2.02242

Since the average response time for K = 2 is known exactly, the example discussed is
illustrative, but this approach may be useful for K > 2.

Let us now apply the copula method to estimate the Kendall correlation coefficient, which,
unlike the Pearson and Spearman coefficients, is not calculated exactly, and was previously
estimated by the formula (2.4). According to [23, p. 164], for the Gumbel copula (5.17) the
Kendall correlation coefficient is

rk = 1− 1

θ
,

from which, taking into account the formula (5.19), we obtain the approximation

rk ≈ 1− ln(2− Cρ)

ln 2
. (6.28)
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Let us analyze the quality of the approximation taking into account the simulation results
from [11].

Unfortunately, at C = 0.37 (which corresponds to the values obtained when estimating
the diagonal section and copula), the formula gives overestimated values with an error from
5.19 to 7.46%. However, if we optimize (6.28) over C using the Nelder-Mead method based
on simulation results (as we did earlier), then at the optimal value C ≈ 0.349237 (which
is close to the value of C ≈ 0.348284 obtained by estimating response time quantiles) we
obtain an error of only 1.04%, which is close in quality to the empirical approximation by
the quadratic function (2.4), previously obtained by the authors in [11]. The latter option
therefore represents an alternative approximation of the Kendall correlation coefficient.

Thus, copula approximations should not always be taken literally. They may suggest
convenient analytical expressions for some characteristics, while the parameters of these
expressions may require refinement through additional optimization based on actual data.

Let us also note the interesting fact that the formula (6.28) allows us to re-estimate
the limiting value of the Kendall correlation coefficient at ρ→ 1. In [11], based on
the (2.4) approximation, an estimate of rk ≈ 0.276 was found, now we obtain a value that
coincides with the previous one with an accuracy of three digits, which indicates a good
correspondence.

As it turned out during further research, the resulting approximation (copula and diagonal
section), unfortunately, does not work for estimating the variation (and therefore the standard
deviation). Taking into account (6.26), the variation of the normalized response time should
decrease with increasing load, just like the mathematical expectation, but in fact it increases,
according to the simulation results [10, 14], and no C > 0 here fits. This once again shows
that the same approximation can be good for some purposes and bad for others, so you should
be careful with this in applications.

7. CONCLUSION

This work continues the author’s series devoted to the study of the characteristics of fork-
join systems with a Poisson input flow and exponential service times. Despite the simplicity
of the systems and the long history of their research (since the 1980s), there is still a lot
of uncertainty in this area. There are few accurate results here, and many estimates need
improvement. There are issues that few or no one has dealt with. Research mainly focuses on
average response time, while variance, quantiles, etc. are also of interest.

The key problem is the presence of a relationship between the sojourn times of subtasks
(parts of one task), due to the commonality of the input flow into the subsystems. This
dependence, although not very strong, has a significant impact on the characteristics, and it is
far from being described by classical models (for example, multivariate normal distribution,
linear regression, etc.). Therefore, the authors in recent works have focused on studying this
dependence. The case of two subsystems was considered on the basis that for any number
of subsystems, for any pair of subsystems, the sojourn times of subtasks will have the
same joint distribution. Previous work found the exact values of the Pearson and Spearman
correlation coefficients, as well as an estimate of the Kendall correlation coefficient. In this
paper, approximations of the joint distribution of subtask sojourn times were studied using
copula theory. Good agreement with the data for power-law diagonal sections and the Gumbel
copula is obtained. Based on the estimates of diagonal sections, estimates of response time
quantiles are derived over a wide range of levels and loads. A new estimate of the Kendall
correlation coefficient was also obtained.

The developed approach, based on copula theory, can be attempted to be generalized to
systems with a large number of subsystems or the case of more complex subsystems (for
example, with heavy tails of service time distributions).
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