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1. INTRODUCTION

Regarding prostate cancer progression and development testosterone and its role in the
biological mechanisms of epithelial prostate cells are of particular interest for developing
therapy strategies. Therefore the main steps of testosterone procession are now outlined
briefly.

After entering the cells testosterone is either able to bind to androgen receptors (AR)
straight away or it is first converted to dihydrotestosterone (DHT). In contrast to testosterone,
DHT and AR form a more stable complex. After being phosphorylated and dimerized that
complex binds to the DNA, where it causes a higher transcription rate of with proliferation,
survival and differentiation associated genes [11]- [10].

Consequently, there are several points in the mechanism where the therapy can intervene,
for example through inhibiting the testosterone production or blocking androgen receptors
[2].

After some time prostate cancer cells are able to grow even in the absence of androgen.
Due to the following therapy resistance an intermittent androgen therapy can be applied
[9, 19].

It is important that healthy and cancer cells both produce prostate-specific antigene (PSA).
In noncancerous cells only a limited amount of PSA enters into the bloodstream due to natural
barriers. In the presence of cancer these barriers break down and more PSA leaks into the
blood. The PSA-level in the blood serum therefore acts as an indicator for the stadium and
the presence of prostate cancer [11].

Due to the complex mechanisms of cancer the cooperation of different scientific areas
is necessary and mentioned in [3] and [6]. Since the last fifty years the application of
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mathematical approaches in order to analyze the dynamics of cancer is therefore common
and discussed in [3]. Furthermore mathematical models and methods for the analysis of the
dynamics of tumor-immune interaction are considered to evolve research perspectives [4].

However, not only the competition between cancer and healthy cells, but also the toxicity
of the therapy, which damages healthy cells, are negative side effects. These are essential for
developing effective medicine and therapy strategies. Consequently, the mathematical theory
of optimal control processes is needed to develop successful therapy protocols [17]- [22].

Due to the adverse effects caused by the ablation of androgen, for example the decrease
of quality of life [5], it is convenient to introduce a limitation of the healthy epithelial prostate
cells during androgen ablation therapy.

In the present work three approaches – an alternative, suboptimal and optimal one – in the
mathematical model for prostate cancer progression in response to androgen ablation therapy
are introduced. In all three approaches the side effects of the androgen ablation therapy are
considered as a second order pure state constraint on the amount of the healthy epithelial
prostate cells. The goal is to minimize the amount of cancer cells while keeping the amount
of healthy cells above a given critical limit. The resistance of prostate cancer cells during the
androgen ablation therapy is also taken into account. In the following a brief description of
each therapy strategy is given.

The alternative therapy strategy is based on the dynamical analysis of the system and its
critical points. This approach circumvents the classical optimal control theory. In combination
with a numerical improvement algorithm it provides feasible results which are similar to the
optimal one.

Pontraygin’s maximum principle without state constraints is used to develop a therapy
protocol at which the conditions of the states on the constraint boundary are analyzed. The
considered approach always guarantees a feasible therapy process if there exists such possible
one. The results are used to obtain the so called suboptimal therapy strategy.

An analytical determination of an optimal therapy strategy in the presence of state
constraints of order two is considered by means of analytical and numerical techniques.
Therefore the software tool BOCOP is used.

The results of the presented approaches are compared and discussed.

2. MATHEMATICAL MODEL OF PROSTATE CANCER

In this article a mathematical model of prostate cancer based on [11] is considered.
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dE(t)

dt
= µEE(t)

(
1− E(t)

ηE

)
− εE(t)(M(t) +N(t))

ηE
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dt
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η
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− δNN(t)
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(
1− N(t) +M(t)

η

)
− δMM(t)

dR(t)

dt
= αR − λRR(t)− kDf R(t)D(t) + kDr A(t)− kTf R(t)T (t) + kTr A(t)

dD(t)

dt
= βT

T (t)

kT + T (t)
− λDD(t)− kDf R(t)D(t) + kDr A(t)

dT (t)

dt
= f(Ts)− λTT (t)− βT (t)

T (t)

kT + T (t)
− kTf R(t)T (t) + kTr At(t)

dA(t)

dt
= −λAA(t) + kDf R(t)D(t)− kDr A(t)

dAt(t)

dt
= −λAtAt(t) + kTf R(t)T (t)− kTr At(t)

dP (t)

dt
= βp(A(t) + At(t) + ϕ)− αPP (t)Efrac − γpP (t)

(M(t) +N(t))2

kP + (M(t) +N(t))
− λPP (t)

t ∈ [0, T ], E(0), N(0), M(0), R(0), D(0), T (0), A(0), At(0), P (0) ∈ R+,

(2.1)
where

Efrac = vc
E

PV ol
, PV ol =

αvt
dv

bdvv + tdv
.

In (2.1) it is assumed that the healthy cells E have the proliferation rate µE , the death
rate δE and a limit ηE . The magnitude of the competition between healthy and cancer cells is
modelled by means of the parameter ε.

The androgen-dependent cancer cells N proliferate at rate µN , decease with rate δN and
have the limit ηN . With the probability αm ∈ (0, 1) cancer cells N mutate to castration-
resistant cancer cells M where the parameters µM and δM represent the proliferation and
dead rate respectively.

Because of the character of this article the remaining state variables of the dynamic
system (2.1) which represent specific hormone levels in the organism are only mentioned:
T - testosterone concentration, P - tissue PSA concentration, R - free androgen receptor
concentration, D - dihydrotestosterone concentration, A - dihydrotestosterone-activated
androgen receptor concentration,At - testosterone-activated androgen receptor concentration.

In this article all cell types are estimated in billions. Detailed information, the biological
background of the variables and the associated parameters are given in [?].

Assuming µN = µM = µ, δN = δM = δ, N(t) and M(t) can be substituted in order to
represent the total number of the prostate cancer cells. From the addition
N(t) +M(t) = Z(t) follows

dZ(t)

dt
= µZ(t)

(
1− Z(t)

η

)
− δZ(t). (2.2)

The following figures illustrate the behaviour of healthy and cancer cells as well as the
PSA-level in the absence of therapy. The parameters of the model which were used in this
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86 M.-C. LITZINGER, Y. TODOROV, M. FÖLLER-NORD, M.K. CHAUDHARY, A.S. BRATUS

article describe a scenario in which the amount of healthy cells is not strongly influenced by
cancer cells. The set of parameters and their description is given (see A.1).
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Fig. 2.1. Time response of healthy E(t) and cancer cells Z(t)
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Fig. 2.2. Time response of the PSA function P (t)
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As mentioned before intermittent therapy is one way to slow down the development of
therapy resistance. The following figures show the dynamics of the system when such therapy
is applied.
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Fig. 2.3. Amount of the administered drug u(t)
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Fig. 2.4. Time response of healthy E(t) and cancer cells Z(t)
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Fig. 2.5. Time response of the PSA function P (t)

In the following sections different therapy strategies are determined and used to minimize
cancer cells without violating the constraint boundary on healthy cells.

3. AN ALTERNATIVE THERAPY STRATEGY

Consider the optimal control problem after the substitution (2.2)

min
u
J =

∫ T

0

Z(t)dt→ min (3.3)
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dE(t)

dt
= µEE(t)

(
1− E(t)

ηE

)
− εE(t)(M(t) +N(t))

ηE
− δEE(t)

dZ(t)

dt
= µ(h)Z(t)

(
1− Z(t)

η

)
− δZ(t)

dR(t)

dt
= αR − λRR(t)− kDf R(t)D(t) + kDr A(t)− kTf R(t)T (t) + kTr A(t)

dD(t)

dt
= βT

T (t)

kT + T (t)
− λDD(t)− kDf R(t)D(t) + kDr A(t)

dT (t)

dt
= f(Ts)− λTT (t)− βT (t)

T (t)

kT + T (t)
− kTf R(t)T (t) + kTr At(t)

dA(t)

dt
= −λAA(t) + kDf R(t)D(t)− kDr A(t)

dAt(t)

dt
= −λAtAt(t) + kTf R(t)T (t)− kTr At(t)

dP (t)

dt
= βp(A(t) + At(t) + ϕ)− αPP (t)Efrac − γpP (t)

(M(t) +N(t))2

kP + (M(t) +N(t))
− λPP (t)

dh(t)

dt
= −γh(t) + u(t)

0 ≤ u(t) ≤ umax, t ∈ [0, T ], T -fixed
E(0), Z(0), R(0), D(0), T (0), A(0), At(0), P (0), h(0) ∈ R+,

(3.4)
and the state constraint on the amount of healthy cells

g(t) = E(t)− EC ≥ 0 ∀t ∈ [0, T ]. (3.5)
The last equation in (3.4) describes the pharmacokinetic and the functions

µ(h) = µ0

(
1− kh

h+ 1

)
and µE(h) = µ0

(
1− kEh

h+ 1

)
the pharamcodynamic of the administered medicine. The parameters γ, k, kE, µ0, µ0

E ∈
R+, where γ stands for the dissipation rate of the administered drug respectively, k and kE
describe the effect of the drug on cancer and healthy cells and µ0 and µ0

E are the replication
rates of the two cell populations.
The equation (3.5) has to guarantee that the amount of the healthy cells does not undercut a
given critical limit Ec during the therapy process.
Because of the mathematical complexity of the optimal control problem (3.3)-(3.5) an
alternative approach, which will further be called alternative therapy strategy, is considered
at first.
In order to analyze whether small changes of the initial conditions of the considered system
lead to a different behaviour of the corresponding trajectories its critical points are analyzed
(see A.2).
Due to the practical irrelevance of the trivial critical point (Ē, Z̄, h̄) = (0, 0) only

Z̄ =

(
1− δ

µ(h)

)
η, Ē = ηE −

ε(µ(h)− δ)η
µE(h)µ(h)

− δEηE
µE(h)

, h̄ =
u

γ
(3.6)

is taken into account. From the dynamical analysis of the considered system (see A.3) it is
obvious, that for realistic parameters of the model the critical point (3.6) is a stable node.
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Assuming now that u is a constant parameter such that 0 ≤ u ≤ umax we consider the
objective function

J̃(u) := J̃(Ē, Z̄) = Z̄ + κ(Ē − Ec)2 → min, (3.7)
where with the scale of the weighting factor κ ∈ R+ the state constraint on the amount of
healthy cells is taken into account.
It follows from the implicit function theorem that Ē and Z̄ can be considered as functions
of u and consequently the minimization of the functional (3.7) can be approached as a
mathematical programming problem. Due to the theorem of Weierstrass a solution of this
problem always exists.

Assuming that u = ū ∈ [0, umax] is the value for which the minimum of the functional
(3.7) is achieved.
Now consider the function u(t) = umax, 0 ≤ t ≤ t̂. Here umax and t̂ are two constants such
that the solution of the last equation in (3.4) with initial condition h(0) = 0 reaches the value
h = ū

γ
at the moment t = t̂.

Since
h(t) =

umax
γh

(1− e−γt) (3.8)

the condition h(t̂) = ū
γ

is fulfilled iff

t̂ =
1

γ
ln

(
1− ū

umax

)
. (3.9)

The last equality provides the required time of the function h(t) to reach the value of ū
γ

if the
control function u(t) = umax in the time interval 0 ≤ t ≤ t̂ , which is called intensive therapy
time. In the remaining time interval t̂ < t ≤ T the control function u(t) has to keep the value
ū
γ

which minimizes the objective function J̃(u). This therapy interval time is called relaxation
therapy time.
The determined strategy is called alternative therapy strategy and can be defined as

u(t) =

umax, 0 ≤ t ≤ t̂,
ū

γ
, t̂ < t ≤ T.

(3.10)

According to the considerations above the alternative control strategy consists out of two
stages: the stage of the intensive therapy and the stage of relaxation.
In order to avoid disadvantages in the approach considered above, the following modification,
presented in [22], will be used. This requires the introduction of the shifting variable s ∈ R+

in the penalty term of the objective function (3.7)

J̃(u) := J̃(Ē, Z̄) = Z̄ + κ(Ē − (Ec + s))2 → min. (3.11)

In the numerical procedure some iterations are usually necessary to obtain a good result and
the new value of the shifting variable after every iteration has to be calculated as follows:

s(q+1) = s(q) + max{Ec − E(t)| E(t) < Ec, t ∈ (0, T )},
where q is the number of the last iteration. If the maximal number of iteration qmax or the
desired accuracy θ ≥ |s(q) − s(q−1)| is reached the procedure has to be terminated.
The following numerical results illustrate the time response of healthy and cancer cells as
well as the PSA-level and the control function using the alternative therapy strategy.
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Fig. 3.6. Time response of healthy cells E(t) using the alternative therapy strategy
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Fig. 3.7. Time response of cancer cells Z(t) using the alternative therapy strategy

Cancer and healthy cells decrease (Fig. 3.6), (Fig. 3.7). Healthy cells reach the constraint
boundary without violating it.
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Fig. 3.8. Amount of the administered drug u(t) using the alternative therapy strategy
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Fig. 3.9. Time response of the PSA function P (t) using the alternative therapy strategy

The maximal dose of therapy is used for a short amount of time and then a constant
amount is administered (Fig. 3.8). Due to the reduction of cancer cells less PSA is produced
in the tissue and can consequently be found in the blood serum (Fig. 3.9).
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4. SUBOPTIMAL THERAPY STRATEGY

In this section a suboptimal therapy strategy for the problem (3.3)-(3.5) is introduced. In
order to minimize the objective function (3.3) it is natural to apply the maximal admissible
amount of the drug so long as possible. However, it has to be guaranteed that the amount
of healthy cells does not violate the constraint (3.5). I.e. that the time derivation Ė on the
constraint boundary has to be non negative.

From Ė(tj) ≥ 0 follows

µE(h)Ec

(
1− Ec

ηE

)
− εEcZ(tj)

ηE
− δEEc ≥ 0

⇒ µ0
E

(
1− kEh(tj)

h(tj) + 1

)
≥ εZ(tj) + δEηE

ηE − Ec

⇒ kEh(tj) ≤
(

1− εZ(tj) + δEηE
(ηE − Ec)µ0

E

)
(h(tj) + 1) (4.12)

⇒ h(tj)

(
kE −

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

))
≤
(

1− εZ(tj) + δEηE
(ηE − Ec)µ0

E

)

⇒ h(tj) ≤

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

)
kE −

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

) ,

where tj := {t ∈ (0, T )| E(t) = Ec}.
Due to the continuity of E the strong inequality in the last expression can not appear.

The last expression in (4.12) gives the necessary condition for h on the constraint boundary,
which guarantees an admissible process. Therefore the following analysis is needed.

From the last equation of the system (3.4) holds for u(t) = umax

h(tj) = e−γtj
∫ tj

0

eγtumaxdt =
umax
γ

(
1− e−γtj

)
. (4.13)

Thus if the maximal amount of the drug, u(t) = umax, t ∈ [0, tj), is administered until
the critical boundary of the healthy cells is reached, the following relation has to be fulfilled

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

)
kE −

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

) =
umax
γ

(1− e−γtj). (4.14)

Note, that this is a special case which can only appear with a given set of parameters of
the model and initial conditions. In this case the therapy strategy can be changed when the
amount of the healthy cells reaches the critical value without violating the therapy process.

The therapy strategy stated below is in this case optimal (see A.4).
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u(t) =



umax, 0 ≤ t ≤ tj,

γ

1−
εZ(t) + δEηE
(ηE − Ec)µ0

E


kE−

1−
εZ(t) + δEηE
(ηE − Ec)µ0

E

 , tj < t ≤ T.
(4.15)

In general the change of the administered amount of the drug can not induce the change
of the slope of the development of the healthy cells immediately. This is caused by the inertia
of the dynamic system. Therefore investigations of the more realistic cases have to be done.

The case in which the maximal admissible amount of the drug has to be changed before
the critical boundary of the healthy cells is reached, is considered. I.e.,(

1− εZ(tj) + δEηE
(ηE − Ec)µ0

E

)
kE −

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

) <
umax
γ

(1− e−γtj). (4.16)

The admissible process can be guaranteed if the maximal admissible amount of the drug
is reduced at the point of time t′ < tj so that

h(t′) =

(
1− εZ(tj(umax)) + δEηE

(ηE − Ec)µ0
e

)
kE −

(
1− εZ(tj(umax)) + δEηE

(ηE − Ec)µ0
E

) holds,

where Z(tj(umax)) is the amount of the cancer cells on the constraint boundary using the
maximal dose of medicine (u(t) = umax, t ∈ [0, tj]).

Thus the suboptimal therapy strategy can be given by

u(t) =



umax, 0 ≤ t ≤ t′,

γ

1−
εZ(tj(umax)) + δEηE

(ηE − E(t))µ0
E


kE−

1−
εZ(tj(umax)) + δEηE

(ηE − E(t))µ0
E

 , t′ < t ≤ T.
(4.17)

The following figures present the results of the suboptimal control approach.
Cancer and healthy cells decrease and the healthy cells do not reach the constraint

boundary (Fig. 4.10), (Fig. 4.11). Since cancer cells are decreasing continuously the quantity
of PSA in the tissue and therefore in the blood serum also decreases (Fig. 4.13).

5. OPTIMAL THERAPY STRATEGY

In this section the therapy strategy related to the optimal control problem (3.3)-(3.5) is
investigated with Pontryagin’s maximum principle, which is the necessary condition for an
optimal process. The restriction on the minimal admissible amount of healthy cells (3.5) has
to be interpreted as a second order state constraint. Because of the high complexity of optimal
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Fig. 4.10. Time response of healthy cells E(t) using the suboptimal therapy strategy
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Fig. 4.11. Time response of cancer cells Z(t) using the suboptimal therapy strategy

control problems with higher order state constraints the introduced approach is a composition
of analytical investigations and numerical results.
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Fig. 4.12. Time response of the quantity of the u(t) using the suboptimal therapy strategy
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Fig. 4.13. Time response of the PSA function P (t) using the suboptimal therapy strategy

Because of the nature of the maximum principle it is essential to primarily investigate the
optimal therapy strategy without state constraints. The optimality of this process till the state
variable E reaches the constraint boundary is determined.
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The investigations given in A.3 prove the following theorem.

Theorem 5.1:
The optimal therapy strategy in the absence of the state constraint (3.5) is given as u∗(t) =
umax ∀t ∈ [0, T ].

From the practical point of view this result is equivalent to the situation in which the test
results of a patient are acceptable during the therapy. Therefore the therapy has to be executed
with the maximal admissible amount of the drug in order to eradicate the cancer cells.

In the opposite case the amount of healthy cells E reaches the critical value Ec. Because
of the complexity the strict mathematical investigation of the constraint problem is not
considered. Instead of that numerical results using the software tool BOCOP are presented.

The numerical results show the development of healthy cells, cancer cells and the optimal
control.
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Fig. 5.14. Time response of healthy cells E(t) using the optimal therapy strategy

Healthy and cancer cells decrease (Fig. 5.14), (Fig. 5.15). Healthy cellsE(t) then progress
along the boundary.

After a period where the maximal amount of drug is administered follows a short
relaxation phase. Then the maximal admissible amount of medicine which minimizes the
objective function is applied.

The following table presents the values of the objective function, the healthy cells and
cancer cells at the end of the therapy process (T = 150).

Note that in the results achieved by the alternative therapy strategy the modification (3.11)
is used. Therefore the results of the alternative strategy are better than the ones obtained with
the suboptimal one.

Copyright c© 2020 ASSA. Adv Syst Sci Appl (2020)



98 M.-C. LITZINGER, Y. TODOROV, M. FÖLLER-NORD, M.K. CHAUDHARY, A.S. BRATUS

0 50 100 150

non-dimensional time

100

110

120

130

140

150

160

Fig. 5.15. Time response of the cancer cells Z(t) using the optimal therapy strategy
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Fig. 5.16. Amount of the administered drug u(t) using the optimal therapy strategy

6. SUMMARY

A simplified mathematical model for the therapy of prostate cancer regarding androgen
ablation is considered. The effect of the therapy on cancer and healthy cells is assumed to
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Therapy strategy J(T ) E(T ) Z(T )
Alternative therapy strategy 1.988 · 104 46.222 117.88
Suboptimal therapy strategy 2.029 · 104 47.414 123.14

Optimal therapy strategy 1.195 · 104 46.000 114.98
Table 5.1. Comparison of the terminal values of the three considered approaches

reduce the birth rate of the populations of the considered cell types. An optimization problem
with a constraint on the amount of healthy cells during the therapy process is introduced.
Three therapy strategy approaches of the problem are illustrated and solved by combinating
analytical and numerical procedures. The presented results of the therapy strategies using
the suboptimal and alternative control demonstrate that the mathematical challenges of
the classical optimal control problem with state constraints can be circumvented and the
approaches can be used for medicine.

Moreover the suggested mathematical model produces possibilities for further
investigations regarding the physical condition of a patient which can be modelled by means
of different parameters of the model. From the mathematical point of view the considered
problem covers theoretical investigations on the necessary and sufficient conditions of
optimal control problems with state constraints.
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A. APPENDIXES

A.1. Model parameter values
The following values were used for the model parameters (taken from [11]).

Parameter Value Parameter Value Parameter Value
ηE 110.24 δE 0.0081 δ 0.00405
γ 0.1 µE0 0.22 µ0 0.1
kE 0.889 k 0.99 aTs 1.00
bTs 22.23 cTs 0.23 kTf 0.14
kTr 0.07 αP 0.001515 ε 0.009

λD
log(2)

9
λP

log(2)

12.3
λAt

log(2)

3
βM 0.003 βN 0.002 βT 4.569
pN 10 pM 10 KP 7

γP
0.6
104

kDf 0.018 kDr
0.053

100

KT 0.104 AEt 1.62 λR
log(2)

3

λA
log(2)

3
λT

log(2)

3
aV 18.397

bV 67.753 cV 28.4 dV 12
Vc

5.56
106

r0
E 90 0.002622 β

Table A.2. Parameters of the model

More detailed information is given in [11].

A.2. Dynamical Analysis
The motivation for the construction of the alternative control strategy rests upon the

asymptotically behaviour of the considered system (3.4). A relocation of an asymptotic
stable critical point in order to minimize the functional (3.3) provides the alternative therapy
strategy.

Therefore the type of the nontrivial critical point given in (3.6) is analyzed.

Define the Jacobian

J =
∂f

∂x
=


∂E(t)

∂E

∂E(t)

∂Z
∂Z(t)

∂E

∂Z(t)

∂Z

 =

µE(h)− 2EµE(h)

ηE
− εZ

ηE
− δE −εE

ηE

0 µ(h)− 2Zµ(h)

η
− δ


At the considered critical point (3.6) holds

J |(Ē,Z̄) =

−µE(h̄) +
ĒµE(h̄)

ηE
+ δE −εĒ

ηE
0 −µ(h̄) + δ

 .
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In order to analyze the behaviour of the considered critical point it is necessary to analyze
the sign of the eigenvalues of the Jacobian. I.e., to find the roots of the polynomial defined by

det(J − λĒ) =
(
− µE(h̄) +

ĒµE(h̄)

ηE
+ δE − λ

)(
− µ(h̄) + δ − λ

)
.

The eigenvalues λ1, λ2 of J are

λ1 = −µ(h̄) + δ < 0 and λ2 = −µE(h̄) +
ĒµE(h̄)

ηE
+ δE.

For the given set of parameters (see A.1) the critical point (Ē, Z̄) is always stable.

A.3. Optimal Control without state constraint
Constructing the Pontryagin-Hamilton function [16] to the problem (3), (4)

H := H(E,Z,R,D, T,A,At, P, h, ψ0, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8, ψ9, u) =

+ ψ0(Z) + ψ1

(
µEE

(
1− E

ηE

)
− εEZ

ηE
− δEE

)
+ ψ2

(
µZ(t)

(
1− Z(t)

η

)
− δZ(t)

)
+

+ ψ3

(
αR − λRR− kDf RD + kDr A− kTf RT + kTr A

)
+

+ ψ4

(
βT

T

kT + T
− λDD − kDf RD + kDr A

)
+

+ ψ5

(
f(Ts)− λTT − βT

T

kT + T
− kTf RT + kTr At

)
+

+ ψ6

(
− λAA+ kDf RD − kDr A) + ψ7(−λtAt + kTf RT − kTr At

)
+

+ ψ7

(
−λAtAt(t) + kTf R(t)T (t)− kTr At(t)

)
+

+ ψ8

(
βp(A+ At + ϕ)− αPPEfrac − γpP

(N +M)2

kP +N +M
− λPP

)
+ ψ9

(
− γh+ u

)
the optimal control law is given as

u∗(t) =

umax, ψ9(t) > 0,
0, ψ9(t) < 0,
us ∈ (0, umax), ψ9(t) = 0 ∀t ∈ (t1, t2), (t1, t2) ⊂ [0, T ],

where ψ9(t) is the so called switching function. Note, that the optimal control function u∗(t)
maximizes H in all points t ∈ [0, T ].
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From Pontryagin’s maximum principle the system of adjoint variables is given by

ψ̇1(t) = −∂H
∂E

= −ψ1

(
+µE(h(t))− 2E(t)µE(h(t))

ηE
− εZ(t)

ηE
− δE

)
, (A.18)

ψ̇2(t) = −∂H
∂Z

= −ψ0 + ψ1
E(t)ε

ηE
+ ψ2

(
−µ(h(t)) +

2µZ(t)

η
+ δ

)
, (A.19)

ψ̇9(t) = −∂H
∂h

= −ψ1
dµE(h(t))

dh(t)
E(t)

(
1− E(t)

ηE

)
− ψ2

dµ(h(t))

dh(t)
µZ(t)

(
1− Z(t)

η

)
+

+ψ9γ, ψ1(T ) = ψ2(T ) = ψ9(T ) = 0.

Lemma A.1:
In the optimal control problem (3.4) holds ψ0 = −1.

Proof
From ψi(T ) = 0, 1 ≤ i ≤ 9, and the condition (ψ0, ψ1, ..., ψ9) 6= 0 follows that ψ0 = −1.

From Lemma A.1 follows

ψ1(t) = 0 ∀t ∈ [0, T ],

ψ2(t) = ew2(t)

(∫ t

0

e−w2(s)ds−
∫ T

0

e−w2(t)dt

)
,

ψ9(t) = eγt[−
∫ t

0

e−γsψ2(s)
dµ(h(s))

dh(s)
Z(s)

(
1− Z(s)

η

)
ds+

+

∫ T

0

e−γtψ2(t)
dµ(h(t))

dh(t)
Z(t)

(
1− Z(t)

η

)
dt],

where w2(t) =

∫ t

0

(
−µ(h(s)) +

2µ(h(s))Z(s)

η
+ δ

)
ds.

ψ9(t) depends on ψ2(t) and therefore this function is analysed for the mathematical solution
of this problem.

Note, that ψ9(t) also depends on ψ1(t) but as shown before ψ1(t) ≡ 0.

Proof of theorem 5.1

Lemma A.2:
ψ2(t) is a negative monotone increasing function on [0, T ].

Proof
In order to analyse the behaviour of ψ2(t) the auxiliary function ψ̃2 = e−w2(t)ψ2(t) which
has the same sign and zeros as ψ2(t) is used. It holds ψ̃2(t) < 0, t ∈ [0, T ) due to
T∫
0

e−w2(t)dt >
t∫

0

e−w2(s)ds ∀t ∈ [0, T ) and ψ̃2(T ) = 0.
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Because
t∫

0

ew2(s)ds is a strictly increasing function ψ̃2(t) has no zeros on [0, T ) and

therefore ψ2(t) is a negative monotone increasing function with ψ2(t) ≤ 0 ∀t ∈ [0, T ].

Lemma A.3:
ψ9(t) is a positive decreasing function on [0, T ].

Proof
From

ψ9(t) = eγt
(
ψ90 −

∫ t

0

e−γsψ2(s)
µ(h(s))

dh(s)
Z(s)

(
1− Z(s)

η

)
ds

)
and ψ9(T ) = 0

ψ90 =

∫ T

0

e−γtψ2(t)
µ(h(t))

dh(t)
Z(t)

(
1− Z(t)

η

)
dt

From the definition of the given problem follows Z(t) ≥ 0 ∀t ∈ [0, T ] and(
1− Z(t)

η

)
∈ (0, 1). Moreover it holds ψ2 ≤ 0 and

dµ(h)

dh
< 0 ∀t ∈ [0, T ].

Therefore it follows∫ T

0

e−γtψ2(t)
dµ(h(t))

dh(t)
Z(t)

(
1− Z(t)

η

)
dt >

∫ t

0

e−γsψ2(s)
dµ(h(s))

dh(s)
Z(s)

(
1− Z(s)

η

)
ds

∀t ∈ [0, T ].

Thus ψ9(t) > 0 ∀t ∈ [0, T ) and u∗(t) = umax.

A.4. Proof of the statement
Proof
From Theorem 5.1 follows u∗(t) = umax for t ∈ [0, tj). Because of the minimization of the
objective function (3.3) the maximal admissible value of u on the constraint boundary has to
be chosen. The limit of this value is given by

u(t) =

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

)
kE −

(
1− εZ(tj) + δEηE

(ηE − Ec)µ0
E

) , t ∈ [tj, T ].

Copyright c© 2020 ASSA. Adv Syst Sci Appl (2020)


	Introduction
	Mathematical model of prostate cancer
	An alternative therapy strategy
	Suboptimal therapy strategy
	Optimal therapy strategy
	Summary
	Appendixes
	Model parameter values
	Dynamical Analysis
	Optimal Control without state constraint
	Proof of the statement


