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Abstract: A two-level dynamical game theoretic model "federal state - universities" in open-
loop strategies is built and investigated. A refinement of the electronic learning courses, and their 
differentiation using modern methods of information technologies made by competing a la 
Cournot universities (agents) are treated as innovative investments. The algorithms of building 
Nash (in the non-coalitional game of agents) and Stackelberg (in the hierarchical game of the 
Principal with the grand coalition of agents) equilibria are proposed and implemented. For the 
solution of the respective dynamic control problems the Pontryagin maximum principle and 
simulation modeling are used. A comprehensive analysis of the received results is given. 

Keywords: Nash equilibrium, Stackelberg equilibrium, Stackelberg differential games, 
innovations, method of qualitatively representative scenarios in simulation modeling 

1. INTRODUCTION 
A review of applications of the game theoretic models to the analysis of innovations is 
presented in [5]. The authors divide three levels of these applications: (1) intra-organizational 
level within a firm, where players are innovators, project managers, and resource 
administrators; (2) inter-organizational level where the players are competitive firms; (3) 
meta-organizational level, where players are a social planner (innovation policy maker, 
government, a social or government institution, e.g., a research foundation) and an aggregate 
innovative entrepreneur.  

A traditional approach to the building and investigation of the differential game models 
is exposed in [1,4]. An original method of solution of the Stackelberg differential games 
based on building of a mutually benefit program of actions and punishment in the case of 
deviations, is described in [9]. 

In our papers [13,16] the approach of [9] is extended for the case of several followers 
with consideration of the requirements of sustainable development of the controlled dynamic 
system [12]. Ougolnitsky and Usov [14] have proposed a method of qualitatively 
representative scenarios in simulation modeling. This method allows for a good enough 
qualitative forecast of the dynamics of a controlled system by means of few scenarios of the 
computer simulation. 

An interesting dynamic game theoretic model of the oligopolistic investment to the 
product differentiation is studied in [2, 3]. The paper [2] considers open-loop strategies, and 
the paper [3] analyzes closed-loop ones. Cellini and Lambertini [2, 3] have found that in the 
case of open-loop strategies the Nash stable volume of investments to the product 
differentiation (innovations) increases with a number of firms, i.e. the level of market 
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competition (Arrow hypothesis). In contrary, in the case of closed-loop strategies the 
dependence is inverse (Schumpeter hypothesis). The authors notice that innovation activity 
in the product differentiation can be considered as a contribution of private investors to the 
production of a public good. This fact embeds their paper to the context of public goods 
economics. Interesting models of Stackelberg oligopoly are proposed and investigated in [6-
8]. 

This paper develops the papers [2, 3] with consideration of other mentioned sources in 
the following directions. First, its problem domain is a development of the electronic 
learning courses in universities, where a modification of the courses is treated as an 
innovative activity. There is no doubt in the actuality of this problem. On March 25, 2020 the 
IT holding TalentTech and on-line universities "Netology" and EdMarket have presented the 
research results about the on-line education market†. As the authors notice, a volume of the 
Russian market of on-line education in the b2c segment was 38,5 billion rubles in the end of 
2019. In the end of the year 2023, according to that forecast, its value will be equal to 60 
billion rubles a year. The global market of on-line education up to the year 2023 tends to the 
amount $282,62 billion.  

An even higher estimate is given by the Interfax Academy. According to its report, the 
Russian market of the on-line education after 2019 equals to 45–50 billion rubles, and in 
2020 will be equal to the amount 55–60 billion rubles, the annual growth is 20–25%.  The 
global on-line education market is estimated by the value $74 billion (about 4,8 trillion 
rubles) after the year 2019, so the potential for Russia is great‡. It is evident that the growth 
of the distant forms of education due to COVID-19 pandemics will essentially enforce the 
noticed trends. 

Second, we propose a hierarchical setup of the problem with the federal state as a leader 
(Principal), and competitive universities as followers (agents). A description of a university 
as active system [11] is given in [10]. The hierarchical impact of the Principal to the agents 
may be administrative (compulsion) or economic one (impulsion). In the former case the 
Principal impacts to the sets of feasible strategies of the agents, and in the latter case - to 
their payoff functionals [12]. 

Thus, the contribution of the paper has four aspects. First, we consider a combination of 
the aggregative non-cooperative oligopolistic game of the agents with the Stackelberg game 
of the type "Principal-agents". Second, the parameter of the demand function varies in time, 
and the character of this variation depends on the agents' actions (strategies) in the form of a 
differential equation. Third, the agents choose both outputs and investments, i.e. an agent's 
strategy includes a parameter of its cost function called the constant cost. Fourth, the 
following approach is used. From the point of view of the agents, their interaction is modeled 
as a game in normal form where the Nash equilibrium is built. From the point of view of the 
Principal it is supposed that the agents form the grand coalition, and respectively a 
Stackelberg two-person game "Principal - coalition of agents" arises. This permits to avoid a 
challenging question about what should be considered as a best response of several agents to 
the Principal's strategy. 

The rest of the paper is organized as follows. In the Section 1 the setup of a dynamic 
problem of hierarchical control is given. In the Section 2 the Nash equilibrium for two 
symmetrical agents with administrative and economic impact of the Principal in open-loop 
strategies is built. Algorithms of building the Stackelberg equilibrium by means of the 
method of qualitatively representative scenarios in simulation modeling are presented. The 
Section 4 describes a numerical simulation in the problem of building the Stackelberg 
equilibrium. The Section 5 contains a comparative analysis of the received results, and the 
conclusions are formulated. 

                                                
†http://neorusedu.ru/news/rossijskij-rynok-onlajn-obrazovaniya-ozhidaet-burnyj-rost 
‡https://www.kommersant.ru/doc/4275439  
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2. THE PROBLEM SETUP 
Let us consider the following hierarchical modification of the model proposed by Cellini and 
Lambertini [2, 3]. Several universities (agents) competing a la Cournot develop electronic 
learning courses for sale. A refinement of the courses, and its differentiation using modern 
methods of learning and information technologies are treated as innovative investments. The 
differentiation of the courses may be considered as a public good, and the respective 
investments - as a private production of the public good [3]. On the higher (relative to the 
agents) control level a Principal (federal state or its authorized bodies) is situated. The 
Principal tends to increase a public good (with possible additional consideration of its own 
interests) by means of administrative or economic control methods. In the case of 
administrative impact (compulsion) the Principal bounds from below the contributions of the 
agents to the innovative development (production of the public good) that incurs control cost. 
In the case of economic impact (impulsion) the Principal grants the agents on the base of an 
available budget. In both cases the Principal and the agents use open-loop strategies. The 
game is played on a finite interval of time  

In the case of compulsion the model for n agents has the form: 
- the Principal's payoff functional 

                                      (2.1)

 
- the Principal's control constraints

 

                                                ;                                                           (2.2) 
- the agents' payoff functionals 

                                                                  (2.3) 

- the agents' control constraints 
                                      ; ;                                 (2.4) 

- the equation of system dynamics [9, 10] 

                                              (2.5)
 

- the current payoff function of the i-th agent 
                                                                                           (2.6) 

In the Principal's payoff function the profit πi reflects an approximate estimate of the 
positive externality from the universities' activity, namely, the GNP growth due to increasing 
of the educational level of the society; 
- the inverse demand function [2,3]; 

                                                                                (2.7)
 

- the payoffs of the Principal and the agents in the moment of time T respectively 
 

 
 - the total payoff functionals of the Principal and the agents;  - a 

symmetrical degree of substitutability between any pair of courses. If  then the 
courses are completely homogeneous. If  then the courses are unique and each agent 
is a monopolist [2,3]; - an output level of the i-th agent at constant returns to scale, then 
total operative cost per period are ; - individual investment of 

].,0[ T

max)()())()(( 0
0 1 1

0 ®+ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ--= ò å å
= =

- TGdttyZtsteJ
T n

i

n

i
iii

t pr

max)(0 Ktyi ££

;max)())()((
0
ò ®++= -
T

iii
t

i TGdttsteJ pr

max)()( Ktkty ii ££ max)(0 Qtqi ££

);(
)(1
)( tD
tK
tK

dt
dD

+
-= ;)0();()(

1
BDtktK

n

i
i ==å

=

)()(])([)( tktqctpt iiiii --=p

å
¹

--=
ij
jii tqtDtBqAtp )()()()(

;,...,2,1),(])()()([)( niTqcTqTDTBqATG ii
ij
jii =---= å

¹

.)(])()()([)()(
11

0 å åå
= ¹=

---==
n

i
ii

ij
ji

n

i
i TqcTqTDTBqATGTG

iJJ ,0 ],0[)( BtD Î
BtD =)(

0)( =tD
)(tqi

),0(),()( iiiii ActqctC Î= )(tki



                                 A DIFFERENTIAL STACKELBERG GAME THEORETIC MODEL…  169 

Copyright ©2020 ASSA.                                                                                    Adv. in Systems Science and Appl. (2020) 
 

the i-th agent to the innovative development, - the overall industry expenditure, 
 - an upper bound for any ;  - an upper bound for any ; 

functions are the Principal's grants to the i-th agent (in the case of compulsion they are 
given); T – the length of the game. Then,  are the Principal's lower bounds established 
for - a discount factor; - demand parameters; - a convex 
increasing administrative control cost function,  the function  is supposed to be 
linear The equation of dynamics (5) is treated as a production function 
with the output created by the input . This technology can be shown to 
exhibit decreasing returns to scale w.r.t. . Thus  is non-increasing function of time 
which tends to zero when  [3].  

In the case of impulsion the model has the form: 
- the Principal's payoff functional 

                                                               (2.8)

 - the Principal's control constraints 

                                                ;                                                   (2.9) 

- the agents' payoff functionals 

                                                             (2.10) 

- the agents' control constraints 
                                             ;  .                                    (2.11) 
Here  are the Principal's control to be determined; is a total volume of the Principal's 
grants (with consideration of possible savings). 

All input functions of the model are supposed to be continuous, and the controls of the 
agents and the Principal belong to the class of piecewise continuous functions.  We 
investigate the model (2.1)–(2.7) for compulsion and (2.5)-(2.11) for impulsion from the 
point of view of different control agents. From the point of view of the agents there is a non-
cooperative n person game which solution is supposed to be a Nash equilibrium. From the 
point of view of the Principal there is a Stackelberg game. Let us assume in this case that the 
agents cooperate (create the grand coalition) and have the summary payoff functional in the 
form 

                                                  (2.12) 

Other model relations do not change. Thus, we have a Stackelberg game between the 
Principal and the grand coalition of agents. This game has the following information 
structure: 

1. The Principal chooses its open-loop strategies  for impulsion or  
for compulsion, . 

2. Given these strategies  for impulsion or  for compulsion, the 
agents within the grand coalition choose their open-loop strategies 

, using (2.12). As an integrand function in (2.12) 
depends continuously on its arguments, and the domains of feasible controls of the agents 
(2.4) or (2.11) are non-empty closed sets, the problem of determination of the agents' best 
response to any Principal's strategy is resolvable.  
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3. The Principal maximizes its payoff functional  (2.1) or (2.8) for the worst best 
response of the coalition of agents to its strategy  or . 

4. The received set of strategies  for impulsion or 

 for compulsion is the Stackelberg equilibrium. 

3. BUILDING THE NASH EQUILIBRIUM 
Let us first investigate the model from the point of view of the agents when they use open-
loop strategies. The Principal's strategies are supposed to be given. This interpretation 
corresponds to the case of an indifferent Principal without its own objectives. Then we 
receive a differential n-person game (2.3)-(2.7) in the case of compulsion and (2.5) – (2.7), 
(2.10), (2.11) in the case of impulsion. Its solution is assumed to be a Nash equilibrium. To 
build it we use the Pontryagin maximum principle [15]. The Hamilton function of the -th 
agent both for compulsion and impulsion has the form: 

where  is a conjugate variable (as function of time). From the necessary condition of 

extremum 

  

in the case of symmetrical agents  

( )  
we receive the system of equation for determination of their control variables 

                                (3.1) 

Thus 

                                 .                                 (3.2) 

Besides, we have the system of differential equations 

        (3.3)
 

 

From (3.1) we receive 

 

Therefore, the following proposition is proved. 
Proposition (3.1):  
The formulas (3.2), (3.3) determine the point of maximum of the Hamilton function for some 
value  if the system (3.2), (3.3) has a solution and the values (3.2) belong to the domains of 
feasible controls (2.4) for compulsion or (2.11) for impulsion.  

If these conditions are not satisfied for some t then the Hamilton function attains its 
maximum for this  at one of the bounds of the segments (2.4) or (2.11).  
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An analytical investigation of the system of equations (3.3) is impossible due to the form 
of the equation of dynamics (2.5) and presence of the third summand in (2.7) that is principal 
for the considered problem setup. Thus the system (3.3) was analyzed numerically by the 
method of shooting. The system of equations (3.3) has a solution not for all values of the 
model input parameters. The Picard theorem of existence and uniqueness of solution of the 
system of differential equations is not satisfied, the right hand sides are defined only for the 
negative values of λ(t)D(t). Besides, in the neighborhood of zero the Lipschitz conditions on 
λ and D are not satisfied. Therefore, the range of input model parameters for which the 
system (3.3) has the unique solution was determined numerically.  

A numerical identification of the model has a testing character and provides a reasonable 
relation of the model parameters and variables that allows for acceptable qualitative 
conclusions about the comparative analysis of the results of numerical modeling.  Thus, the 
professors of Southern Federal University develop annually about 100 new learning courses, 
therefore the maximal possible value is taken   An average cost of the 
development is equal to 50-80 thousand rubles, so  (thousand 
rubles per year). The value of parameter B varied in the range (thousand rubles per 
year). We divided the cases of small investment of the Principal ( ), middle 
investment ( ), and considerable investment ( ), as well as different 
cases of the agents' control by the Principal: namely, the value of Z varied from 2 thousand 
rubles per year (soft control) till 10 thousand rubles per year (hard control). The discount 
factor was estimated as  according to the annual inflation rate. The period of 
modeling was equal to 3 years, i.e. days for two universities ( ). Other 
parameters were evaluated by the experts (Table 3.1). 

Table 3.1. Test values of the model parameters 
Parameter         

Value 100 50 900 5 3000 0.04 600 2 
Dimension - thousand 

rubles 
per year 

thousand 
rubles 

per year 

thousand 
rubles 

per year 

thousand 
rubles 

per year 

- thousand 
rubles 

per year 

- 

 
For determination of the range of model parameters in which the system (3.3) has the 

only solution we have implemented about 80 numerical simulations with variation of the 
values:  (thousand rubles per year);  n  from 2 
till 100. 

As a result it was established that for any input data there is a moment of time 
exists a solution of (3.3): . The moment  

belongs to the range from 950 till 1000 days and depends not essentially on the parameters 
. Its value slightly increases with n or B, decreases with A, and does not depend on 

c. Some of the results are presented in Table 3.2.  

 

Table 3.2. Dependence of the moment of time  on model parameters 
     

2 110 100 10 997 
2 110 100 1 999 
2 110 100 25 989 
2 110 100 250 980 
2 200 100 10 999 
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2 1000 100 10 1000 
2 300 10 10 1000 
2 300 200 10 1000 
2 210 200 10 995 
10 200 100 10 999 
10 110 100 25 1000 
100 110 100 25 953 

 
Analysis of compulsion from the point of view of the agents is reduced to (3.2), (3.3) in 

the case when the functions  , are identically equal to zero. 
Example 3.1.  
For the values from Table 3.1 for impulsion and : (thousand rubles), i=1,2. 
For the values from Table 3.1 and  (thousand rubles per year)  and  
(thousand rubles) respectively.  

For the values from Table 3.1 and  (thousand rubles per year) we receive 
 and (thousand rubles), and in the case  (thousand rubles per year) the 

payoffs are  and  thousand rubles respectively. The growth of the total operative 
cost (value c) or demand parameter (B) implies decreasing of the agents payoffs and value of 
output (q), and it is profitable for the agents to develop homogeneous non-unique courses. In 
the majority of investigated numerical examples the agents' investment to the development of 
new courses (k) is absent. Increasing of the Principal's grants tends expectably to the increase 
of the agents' payoffs (not very big), and their strategies practically not change. 

For compulsion with the data from Table 3.1 consider the case of soft 
( ) and hard ( ) control of the 
agents' investment by the Principal. Here the agents are obliged to invest in the development 
of new courses but this only diminish their payoffs. Thus, the values of data from Table 3.1 
give the payoffs thousand rubles for the soft control, and 

thousand rubles for the hard control respectively.  
In the case of an indifferent Principal and absence of its control of the agents they do not 

invest for a broad class of model parameters. Thus, farther we consider the case of an 
interested Principal. Suppose that the agents form the grand coalition that have the summary 
payoff functional (2.12). It is difficult to find analytically the Stackelberg equilibrium in the 
game of the Principal with the grand coalition of agents. So, we have calculated it 
numerically by means of the method of qualitatively representative scenarios in simulation 
modeling [14].  

4. BUILDING THE STACKELBERG EQUILIBRIUM IN THE CASE OF GRAND 
COALITION OF AGENTS 
Here we consider a model (2.1), (2.2), (2.4) – (2.7), (2.12) for compulsion and (2.5)-(2.9), 
(2.11), (2.12) for impulsion. Its solution is the Stackelberg equilibrium given that the agents 
form the grand coalition. We use the QRS method in simulation modeling. Let 

  be the set of possible outcomes of the Stackelberg game with 
n agents where  are sets of the feasible strategies of the Principal and the 
agents respectively. In this case 
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and . 
Denote  

 
An empirical QRS method is based on the hypothesis 

that , where the sets contain qualitatively 
representative strategies of the -th agent and of the Principal in relation to the -th agent. It 
is supposed that the cardinality of the sets  is 

small: where numbers  are small. Then 

 is the QRS set of the game, and its cardinality is 

equal to
 

.  

Definition 4.1 [8]:  
A set  is called the QRS set of a difference Stackelberg 
game with precision  if: 
(a) for any two elements  it is true that ;                                                                                        

(b) for any element  there is an element  such 
that .     

Here  are the Principal's payoffs; 

, .  
The reason of the QRS set is that the strategies from it imply essential difference 

between the Principal's payoffs, while this difference between any other scenario and one of 
the scenarios from QRS set is not essential. Thus, instead of deliberately impossible 
complete enumeration or even enumeration of many scenarios it is sufficient to consider a 
few scenarios from QRS set. Evidently, the constant  should be small enough, say, not 
greater than 10% of the typical values of payoffs. For the evaluation we use an 

indicator .  

Because the QRS method is empirical, it is important to choose appropriate initial 
scenarios as candidates to the QRS set. Let us choose the following scenarios.  

In the case of compulsion the Principal bounds from below the values of investment of 
the agents to the innovative development. Suppose that the Principal's strategies do not vary 

with time, and . The case  corresponds to the absence of 

control;  describes a soft control, and  describes a hard control of the 

agents by the Principal. In the case of impulsion the Principal determines the grants allocated 
to the agents, and the total amount of all grants cannot exceed the whole budget . The 

Principal's strategies  are taken so that . The 

case  corresponds to the absence of grants, the case  describes a middle level 

of granting, and the case  reflects a considerable amount of the grants. The strategies 

of the agents describe the outputs  and the investments 
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. For simplicity it is assumed that the strategies do not vary with time. 

Then we receive  For small values  the computer simulations are quite 
implementable. 

With consideration of the proposed strategies from QRS set the state variable is found 

analytically as 
 

5. NUMERICAL CALCULATION OF THE STACKELBERG EQUILIBRIUM 
The computer simulations were implemented on personal computer with microprocessor A10 
Intel Pentium G4620 with operative memory 4 Gb using an object oriented programming 
language C# according to the proposed algorithm. An average time of one simulation for the 
construction a QRS set was less than three seconds. The received results were analyzed by 
the following criteria: 
(a) summary discounted payoff of the Principal  calculated by formulas (2.1) or (2.8); 

(b) index of system compatibility [12]: , where 

  is the Principal's payoff in the Stackelberg 

equilibrium.  
This index demonstrates how necessary is Principal's presence in a control system. The 

closer is the value of to one, the more the system is compatible, and the less is a need in 
the hierarchical control by the Principal. 

For an initial QRS set the conditions (a) and (b) from the Definition 1 are checked. The 
value of  is selected so that a difference between the Principal's payoffs for two any 
strategies from the initial QRS set does not exceed 10%. Then given the model parameters 
the second condition from the Definition 1 is checked. If necessary, the initial QRS set is 
extended or narrowed. In the case of extension the initial QRS set is added by new strategies. 
They correspond to the values situated between the previous ones (the strategies are 
supposed to be constant in time). Then the computer simulations are implemented. We have 
realized about 150 numerical calculations for three agents that form the grand coalition. The 
model parameters varied in the following range:   

 for compulsion; 
for impulsion. 

In all cases the index of system compatibility is equal to one, and the system is 
completely compatible. Besides, in the case of impulsion on a short period of modeling (up 
to 4 years) both for the Principal and for the agents it is not profitable to invest to the 
development of innovative technologies (learning courses).  

Below the results of computer simulations for several sets of input data are presented. 
Let the grand coalition includes three agents, and days (4 years).  
Example 5.1: 
The values of model parameters are 

(thousand rubles per year).  
We varied the values  The results for impulsion in the case 

are given in Table 5.1. In the majority of calculations . 

Table 5.1. Results of numerical simulations (Example 2) for impulsion 
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For small values of the parameter B (less than 17 thousand rubles per year) it is 

profitable for the agents to develop new non-unique courses. When the value of parameter B 
decreases (it is less than 1 thousand rubles per year), the number of developed courses is 
growing up to the maximal value . When the value of parameter B increases, the agents 
stop the development. For a broad class of model parameters the payoff of the grand 
coalition of agents coincide with the Principal's payoff. To create an incentive for 
development of new unique courses it is necessary to increase the considered period of time 
or introduce additional requirements of sustainable development of the system controlled by 
the Principal. 

The condition of sustainable development is taken in the form  where is 

a given constant that determines a minimal acceptable level of investment.  
In the case of compulsion the calculations considered (a) middle ( thousand 

rubles per year) and (b) considerable ( thousand rubles per year) Principal's grants 
allocated to the agents, Notice that in this setup the interests of the Principal and the 
agents coincide. For all studied examples , and the results are similar to the 
case of impulsion. The only essential distinction is a difference between the payoffs of the 
players that is determined by the Principal's grants allocated to the agents. As the interests of 
the Principal and the agents coincide, the Principal does not constraint the agents' investment 
from below. 

6. CONCLUSION 
A two-level control system of innovation in the universities is investigated. The Nash 
equilibrium in the game of agents in normal form is built analytically for a specific class of 
input functions by means of the Pontryagin maximum principle. An algorithm of building the 
Stackelberg equilibrium in the game of the Principal with the grand coalition of agents is 
proposed and implemented numerically by means of the method of qualitatively 
representative scenarios in simulation modeling. The following conclusions are received. 
1. A demand parameter B in this model characterizes a degree of substitutability between two 
different courses in the initial moment of time. For the considered period of time (4 years) it 
is not profitable for the agents to develop new courses for big values of the parameter B. 
2. For the chosen form of payoff functionals a need in control of the agents by the Principal 
is absent. The interests of the Principal and the agent coincide, and any compulsion is not 
required. 
3. For successful promotion of the innovative learning courses in the universities it is 
necessary to formulate a condition of sustainable development as an obligatory one for the 
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Principal. After that, the interests of the Principal and the agents cease to coincide, and the 
Principal should provide the conditions of innovations.  

The setup of dynamic problem of hierarchical conflict control in open-loop strategies is 
quite complicated, and many research directions stay to be open for further deep 
investigation. First of all, it concerns a theoretical substantiation of the existence of Nash 
equilibrium. It is also useful to study the solution's behavior on the bound of the domain of 
feasible controls where the switching points are possible. The situation is complicated by the 
game theoretic setup due to which the mentioned peculiarities could differ for different 
players, and the right hand sides of their optimal control problems can be discontinuous. At 
last, other forms of the inverse demand function can be used. 

The main research tool, especially in a Stackelberg game, was the method of 
qualitatively representative scenarios in simulation modeling. Its idea is to receive a 
qualitatively acceptable description of the dynamics of a controlled system by means of the 
enumeration of a few impact scenarios found from reasonable considerations. In a 
Stackelberg game a set of scenarios is considered to be qualitatively representative if the 
Principal's payoffs for these scenarios differ essentially (more than a constant ), and for 
any other scenario exists a scenario from this set such the difference of the respective payoffs 
is less than  (i.e. the difference is not essential). These conditions are based on the well 
known notions of internal and external stability of a set and seem to be natural. However, 
any objective estimates of the value of  are still absent. From engineering and physical 
analogies it seems sufficient that the value of  does not exceed 5-10% from the typical 
values of payoffs received in numerical simulations. Certainly, this hypothesis needs to be 
refined and substantiated. 
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