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Abstract: Distribution mixture models are widely used in cluster analysis. Particularly, a mixture
of Student t-distributions is mostly applied for robust data clustering. In this paper, we introduce
EM algorithm for a mixture of Student distributions, where at the E-step, we apply variational
Bayesian inference for parameters estimation. Based on the mixture of Student distributions,
we construct a machine learning method that allows to solve regression problems for any set
of features, clustering, and anomaly detection within one model. Each of these problems can be
solved by the model even if there are missing values in the data. The proposed method was tested
on real data describing the PVT properties of reservoir fluids. The results obtained by the model
do not contradict the basic physical properties. In majority of conducted experiments our model
gives more accurate results than well-known machine learning methods in terms of MAPE and
RMSPE metrics.
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1. INTRODUCTION

Normal distributions often occur in various data analysis problems and they are fairly well
studied. However, their disadvantage for evaluating parameters is their light distribution tails.
In the presence of outliers, as it usually occurs in real problems, the parameter estimates are
strongly biased towards outliers. To eliminate this disadvantage, the Student distribution (or
T-distribution) is often considered, because its properties are similar to those of the normal
distribution, but it has heavy tails. Thus, the Student distribution has a certain degree of
stability to emissions.

The properties of the Student distribution were first studied by William Gossett. The
author has published his first results on that under the pseudonym Student. Gosset noted that
the distribution of the standardized (centered and scaled) normal sample average where the
unknown variance is replaced with its estimation is different from the normal one [1]. There
are many other theoretical properties of the Student distribution. All the most important of
them used in the paper are given in Section 2.

Mixtures of normal distributions are often used to describe data. Parameters of such a
mixture are usually estimated using the EM algorithm [6]. For a description of the EM
algorithm and some theoretical properties of a mixture of distributions, see Section 3. If there
are outliers in data, it is natural to consider a mixture of Student distributions. Some ideas
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for the parameters estimation of the Student mixture were described in [7], [8], [9] and [12].
In particular, [7] describes a conditional EM algorithm. In this paper, Section 4 provides a
complete derivation of the parameter estimation method using a similar variation of the EM
algorithm, which optimizes the variational Bayesian inference at the E-step (see [6]).

This probabilistic model for data description has many practical applications, which allow
it to be flexibly configured and conduct extensive data analytics. Let us list the applications
discussed in detail in Section 5:

1. Clustering with a predefined number of clusters.
2. Detecting anomalies.
3. Regression to predict any set of real features using any other set of features.
4. Filling missing values.

This large number of applications is due to the fact that the mixture model is generative,
since it describes the joint distribution of all features. This distribution also allows to create
artificial data.

The model of a mixture of distributions can be recommended to solve problems with
expected continuous dependence of features between each other, for example, physical
problems. In Sections 6 and 7, we apply our model to PVT properties of reservoir fluids,
where it shows high quality relative to widely known machine learning models. It should
be remarked that, the obtained experimental results do not contradict physical laws, unlike
outcomes of many machine learning methods, in particular those based on decision trees.

2. DISTRIBUTIONS AND THEIR PROPERTIES

This section provides definitions and some basic properties of the normal and Student
distributions that are in the basis of the developed model. The properties of the gamma
distribution are also given as they are to represent Student random vector in a convenient
form. All statements in this section can be found, for example, in the literature [1], [2], [3],
[4], [5], [6].

2.1. Normal distribution
The density of the multidimensional normal distribution centered at a point µ ∈ Rd and a
symmetric positive definite covariance matrix Σ equals

q(x|µ,Σ) =
1

(2π)d/2
√

det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where detΣ means the determinant of matrix Σ.
We will use this notation for the normal distribution density throughout.
Let matrix B be the root of the matrix Σ that is satisfying the condition BBT = Σ. Then,

if ξ has distribution N (0, Id), where Id is identity matrix of dimension d, then η = µ+Bξ
has distribution N (µ,Σ).

2.2. Gamma distribution
The gamma distribution density Γ(α, β) is

γ(x|α, β) =
αβ

Γ(β)
xβ−1e−αxI{x > 0}.

We will use this notation for the density of gamma distribution throughout.
Let ξ ∼ Γ(α, β). It is not difficult to make sure that Eξ = β/α [1], E ln ξ = ψ(β)− lnα,

where ψ(x) = d ln Γ(x)
dx

is digamma function. If β > 1 we also get Eξ−1 = α
β−1

.
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2.3. Student distribution
The Student distribution has parameter ν indicating the number of degrees of freedom. The
less the number of degrees of freedom, the heavier Student distribution tails, and the more
resistant it is to outliers. Moreover, the Student distribution converges in distribution to the
normal distribution when the nu converges to infinity.

We denote multidimensional Student distribution with ν > 0 degrees of freedom, with
mean vector µ ∈ Rd and symmetric positive semi-definite and non-degenerate scale matrix Σ
by Tν(µ,Σ). The density of this distribution in x ∈ Rd equals

p(x|µ,Σ, ν) =
Γ
(
ν+d

2

)
Γ(ν/2)νd/2πd/2|Σ|1/2

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]− ν+d
2

.

The mathematical expectation and the covariance matrix of the distribution Tν(µ,Σ) equal
EX = µ if ν > 1 and VarX = ν

ν−2
Σ if ν > 2 respectively.

Claim 2.1:
[5] Let random vector ξ and random variable η be independent and have distributions
N (0,Σ) and Γ(ν/2, ν/2) respectively. Let µ ∈ Rd be a fixed vector. Than random vector
X = µ+ ξ/

√
η has Student distribution with ν degrees of freedom, mean vector µ and scale

matrix Σ.
The Student distribution density can be represented in an integral form

p(x|µ,Σ, ν) =

+∞∫
0

q(x|µ,Σ/y)γ(y|ν/2, ν/2)dy.

2.4. Marginal distributions
Let a, b be disjoint sets of indexes, and a t b = {1, ..., d}. Without any loss of generality, we
set a = {1, ..., da}, b = {da + 1, ..., d}, db = d− da. Vectors and matrices are represented as
follows

X =

(
Xa

Xb

)
, µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

ΣT
ab Σbb

)
,

where Xa ∈ Rda , Xb ∈ Rdb , µa ∈ Rda , µb ∈ Rdb ,Σaa ∈ Rda×da ,Σab ∈ Rda×db ,Σbb ∈ Rdb×db .
The following property is known [10].
Claim 2.2:
Let random vector X have normal distributionN (µ,Σ). Then random vector Xa has normal
distribution N (µa,Σaa). If random vector X has Student distribution Tν(µ,Σ), then random
vector Xa has Student distribution Tν(µa,Σa).

2.5. Conditional distribution
Our model of probability distributions mixture allows to build a regression on arbitrary
features using a conditional distribution. In this section, we recall relations for parameters
of conditional distribution for a normal vector (Claim 2.3) and for a Student vector (Theorem
2.1).

Let random vectorX have normal distributionN (µ,Σ), where Σ is positive semi-definite
scale matrix. Moreover let a, b, c are disjoint sets of indexes, and a t b t c = {1, ..., d}.
Without loss of generality, set a = {1, ..., da}, b = {da + 1, ..., da + db}, c = {da + db +
1, ..., d}. Vectors and matrices are represented as follows

X =

(
Xa

Xb

Xc

)
, µ =

(
µa
µb
µc

)
, Σ =

(
Σaa Σab Σac

ΣT
ab Σbb Σbc

ΣT
ac ΣT

bc Σcc

)
.
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Denote also

Λ =

(
Λaa Λab

ΛT
ab Λbb

)
=

(
Σaa Σab

ΣT
ab Σbb

)−1

.

Claim 2.3:
Vector Xa conditioned on Xb has distribution N (µ̃, Σ̃), where

µ̃ = µa − Λ−1
aa Λab(Xb − µb), Σ̃ = Λ−1

aa .

The proof of this statement is given in [10]. It follows that the conditional distributions of
the components of a normal vector are also normal. Let us now consider the case in which
the vector X has a Student distribution Tν(µ,Σ) [5].

Theorem 2.1:
Vector Xa conditioned on Xb has distribution Tν̃(µ̃, Σ̃), for where

ν̃ = ν + db, µ̃ = µa − Λ−1
aa Λab(Xb − µb), Σ̃ =

ν + ϕ(Xb)

ν + db
Λ−1
aa ,

ϕ(x) = (x− µb)T
(
Λbb − ΛT

abΛ
−1
aa Λab

)
(x− µb).

Remark. Function ϕ(x) is non-negative since all angular minors of the matrix Λbb −
ΛT
abΛ
−1
aa Λab are positive. The latter fact follows from the block matrix determinant formula

[11] and positive definiteness of the scale matrix.

3. MIXTURE MODEL

In this section, we formalize the concept of a mixture of probability distributions and
give its properties that appear helpful for solving machine learning problems mentioned in
Introduction. In addition, iterative methods for estimating parameters of a mixture of normal
distributions and a mixture of Student distributions are provided.

3.1. Properties of a mixture model
Consider a mixture of probability distributions

P =
k∑
j=1

wjPj,

where Pj is a ”simple” probability distribution that defines the component of the mixture
and wj ∈ [0, 1] are components weights,

∑n
i=1 wj = 1. These components are often called

clusters. A random vector X obeys the model of a mixture of distributions if it is represented
as

X =
k∑
j=1

XjI{T = j},

where Xj is distributed as Pj and random variable T is equal to the cluster number, i.e.
P(T = j) = wj . Moreover, variables Xj are independent of T . Next statement can be found
in [12].

Claim 3.1:
Let EXj = µj,VarXj = Σj (their existence is assumed). Then the expectation and
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covariance matrix for a mixture of distributions are equal to

EX =
k∑
j=1

wjµj, VarX =
k∑
j=1

wjΣj +
k∑
j=1

wjµ
j(µj)T −

k∑
j,s=1

wjwsµ
j(µs)T .

Claim 3.2:
Let XT = . . .

(
XT
a , X

T
b , X

T
c

)
. Then conditional probability of the cluster j conditioned on

Xb equals

w̃j = P(T = j | Xb) =
wjp

(b)
j (Xb)∑k

j=1 wjp
(b)
j (Xb)

,

where p(b)
j is the density of the vector component Xb conditioned on Pj .

Let vector Xa has distribution P̃
(a|b)
j conditioned on Xb and I{T = j}. Then vector Xa

conditioned on Xb has a distribution of mixture of distributions P̃(a|b)
j with weights w̃j

P̃(a|b) =
k∑
j=1

w̃jP̃
(a|b)
j .

3.2. Normal mixture distribution
The density in the model of a mixture of normal distributions equals

p(x) =
k∑
j=1

wjq(x|µj,Σj).

Let X1, . . . , Xn be a sample from such a mixture of distributions. The estimation of
mixture parameters is performed by solving the problem of maximizing model likelihood
using an iterative EM algorithm [6]. This procedure consists in selecting some random initial
approximation of the parameters and then alternating two steps. For a mixture of normal
distributions they are conducted in the following way:

E-step. Compute the following auxiliary values

rij =
wjq(Xi|µj,Σj)
k∑
s=1

wsq(Xi|µs,Σs)

.

rij is the probability that the random vector Xi is obtained from the jth component of
the mixture at the current approximation of the parameters wj, µj,Σj .

M-step. Compute a new approximation of parameters

wj =
1

n

n∑
i=1

rij, µj =
n∑
i=1

rijXi

/
n∑
i=1

rij, Σj =
n∑
i=1

rij(Xi − µj)2

/
n∑
i=1

rij.

Stopping criterion. Iterations of the method are made up to the convergence of the
variational lower bound on the logarithmic likelihood function

L(w, µ,Σ, r) =
n∑
i=1

k∑
j=1

rij [lnwj + ln q(Xi|µj,Σj)]−
n∑
i=1

k∑
j=1

rij ln rij.

The procedure terminates as L changes in no more than a pre-set small number ε > 0 [6].
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3.3. Student mixture distribution
The density of a mixture of multidimensional Student distributions equals

p(x) =
k∑
j=1

wjp(x|µj,Σj, ν),

where p(x|µj,Σj, ν) is the density of multidimensional Student distribution with ν degrees
of freedom centered at µj and the scale matrix Σj . Parameter ν is a hyperparameter of the
model.

Let X = (X1, . . . , Xn) be sample vectors from that mixture distribution. The proposed
method for estimating the parameters of the mixture consists in selecting some initial
approximation of the parameters and performing the next steps at each iteration.

E-step. Perform several iterations of the next two steps:
I. Compute the following auxiliary values

rij =
wjq (Xi |µj,Σjai/bi )
k∑
s=1

wsq (Xi |µs,Σsai/bi )

,

As above, rij is the probability that the object Xi is obtained from the jth
component of the mixture at the current approximation of the parameterswj, µj,Σj .

II. Compute

ai =
ν + d

2
, bi =

ν

2
+

1

2

k∑
j=1

rij (Xi − µj)TΣ−1
j (Xi − µj), ci = bi/ai,

where d is the dimension of the feature space.
M-step. Compute a new approximation of parameters

wj =
n∑
i=1

rij

/
n,k∑
i,j=1

rij, µj =
n∑
i=1

rijci Xi

/
n∑
i=1

rijci,

Σj =
1

n

n∑
i=1

ci (Xi − µj)(Xi − µj)T .

Stopping criterion. Iterations of the method are performed up to convergence of

L(w, µ,Σ, r, a, b) =
n∑
i=1

k∑
j=1

rij

[
lnwj −

d

2
ln 2π − 1

2
ln det Σj−

− bi
2ai

[
ν + (Xi − µj)TΣ−1

j (Xi − µj)
]

+
ν

2
ln
ν

2
− Γ

(ν
2

)
+

(
ν + d

2
− 1

)
(ψ(bi)− ln ai)

]
−

−
n∑
i=1

k∑
j=1

rij ln rij −
n∑
i=1

[bi ln ai − ln Γ(bi) + (bi − 1) (ψ(bi)− ln ai)− bi] .
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Using those iterations, the method approximates a local maximum of the logarithmic
likelihood function, which makes it necessary to run the procedure several times from
different initial points. For more information about method convergence see Section 4.

The hyperparameter ν can be chosen in a usual way by performing the algorithm for
several values ν and choosing the one that maximizes L.

4. FORMULAS DERIVATION FOR ESTIMATION THE PARAMETERS OF
STUDENT MIXTURE

Let X = (X1, ..., Xn) be a sample of vectors from a mixture of Student distributions. The
likelihood equals

L(w, µ,Σ) =
n∏
i=1

k∑
j=1

wjp(Xi|µj,Σj, ν).

The family of distributions does not belong to the exponential class of distributions.
Therefore, a maximization of likelihood is not straightforward. Let us use the representation
of a Student random vector via a normal random vector and a gamma random vector. Next,
we introduce hidden (i.e. unknown) values.

1. For each Xi, introduce the cluster number as Ti = (Ti1, . . . , Tik) ∈ {0, 1}k, with∑k
j=1 Tij = 1. The value Tij = 1 if the object Xi is taken from the cluster j and Tij = 0

otherwise. Denote T = (T1, . . . , Tn).
2. Also for each Xi, we introduce a random variable Yi that has distribution Γ(ν/2, ν/2)

such that

Xi =
k∑
j=1

(
µj + ξij

/√
Yi

)
I{Tij = 1},

where the random vector ξIj has distribution N (0, σj) and is independent from Yi.
Denote Y = (Y1, . . . , Yn).

Vector Xi has the normal distribution N (µj,Σj/y) conditioned on Tij = 1 and Yi = y.
The joint distribution of vectors (X,T, Y ) has the density (the component T has discrete
density)

p(x, t, y|w, µ,Σ, ν) =
n∏
i=1

k∏
j=1

[wjq(xi|µj,Σj/yi)γ(yi|ν/2, ν/2)]tij .

Compute

ln p(x, t, y|w, µ,Σ, ν) =
n∑
i=1

k∑
j=1

tij [lnwj + ln q(xi|µj,Σj/yi) + ln γ(yi|ν/2, ν/2)] =

=
n∑
i=1

k∑
j=1

tij

[
lnwj −

d

2
ln 2π − 1

2
ln det Σj +

d

2
ln yi −

yi
2

(xij − µj)TΣ−1
j (xij − µj)+

+
ν

2
ln
ν

2
− ln Γ(ν/2) +

(ν
2
− 1
)

ln yi −
ν

2
yi

]
.

The estimation of the mixture parameters is performed by solving the problem of
maximizing the model likelihood function using EM algorithm. At the E-step the distributions
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of T and Y are estimated iteratively using variational Bayesian inference. Independence of
posteriori distributions (conditioned on X) is assumed. These results are in the following
iterative scheme.

1. Selection a random initial values wj, µj,Σj . Vectors µj can be obtained from
normal distribution N (0, Id), vectors wj — from the uniform distribution on the
simplex (Dirichlet distribution). The matrices Σj can be generated using the Wishart
distribution [13].

2. E-step:
(a) Select a random initial value for Y .
(b) Having the current distribution of Y , approximate the distribution of T .
(c) Having the current distribution of T , approximate the distribution of Y .
(d) Repeat steps b-c until convergence of L.

3. M-step.
4. Repeat E and M steps until convergence of L.

4.1. E-step, Internal step I
At this step, the distribution of T conditioned on X is approximated using the relation
ln r(t) ∝ Eγ ln p(X, t, Y |w, µ,Σ, ν), where mathematical expectation Eγ is computed under
the condition that the current distribution of Y was computed on the previous iteration of
step II.

Remark. Everywhere below symbol ∝ means equality up to a multiplicative constant for
probabilities and equality up to an additive constant for logarithms of probabilities.

Each Ti has a discrete distribution with values in a set of binary vectors that have exactly
one unit. For this distribution, density logarithm is

∑k
j=1 tij ln rij , where rij = P(Tij = 1)

and
∑k

j=1 rij = 1.

ln r(t) ∝ Eγ ln p(X, t, Y |w, µ,Σ, ν) ∝

∝
n∑
i=1

k∑
j=1

tij

[
lnwj −

1

2
ln det Σj −

EγYi
2

(Xi − µj)TΣ−1
j (Xi − µj)

]
∝

∝
n∑
i=1

k∑
j=1

tij

[
lnwj −

1

2
ln det (Σj/EγYi)−

1

2
(Xi − µj)T (Σj/EγYi)

−1 (Xi − µj)
]
∝

∝
n∑
i=1

k∑
j=1

tij [lnwj + ln q (Xi |µj,Σj/EγYi )] .

The resulting expression implies that the optimal approximation of conditional
distribution of T (provided X) is such that the values T1, . . . , Tn are independent and
rij ∝ wjq (Xi |µj,Σj/EγYi ). From the condition

∑k
j=1 rij = 1 we get

rij =
wjq (Xi |µj,Σj/EγYi )
k∑
s=1

wsq (Xi |µs,Σs/EγYi )

.

The expectation EγYi is taken of the current approximation of Yi.
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4.2. E-step, Internal step II
At this step, the distribution of Y conditioned on X is computed: ln γ(y) ∝
Er ln p(X,T, y|w, µ,Σ, ν), where the current distribution of T is assumed.

Let us write this expression up to a constant that does not depend on Y , given that∑k
j=1 rij = 1

ln γ(Y ) = Er ln p(X,T, y|w, µ,Σ, ν) ∝

=
n∑
i=1

k∑
j=1

ErTij

[
d

2
ln yi −

yi
2

(Xi − µj)TΣj(Xi − µj) +
(ν

2
− 1
)

ln yi −
ν

2
yi

]
∝

∝
n∑
i=1

k∑
j=1

rij

[(
ν + d

2
− 1

)
ln yi −

(
ν

2
+

1

2
(Xi − µj)TΣ−1

j (Xi − µj)
)
yi

]
=

∝
n∑
i=1

[(
ν + d

2
− 1

)
ln yi −

(
ν

2
+

1

2

k∑
j=1

rij(Xi − µj)TΣ−1
j (Xi − µj)

)
yi

]
.

Thus, we obtain the gamma distribution with parameters

ai =
ν

2
+

1

2

k∑
j=1

rij (Xi − µj)TΣ−1
j (Xi − µj), bi =

ν + d

2
.

The values of mathematical expectations are updated using relations EγYi = bi
ai

and
Eγ lnYi = ψ(bi)− ln ai, which are stated in Section 2. For brevity, denote ci = bi/ai.

4.3. M-step
At this step, the values of the mixture parameters are updated by maximizing
Er,γ ln p(X,T, Y |w, µ,Σ, ν) , where the current distributions of T and Y are assumed.

We leave only those summands that depend on wj, µj,Σj

FX,ν(w, µ,Σ) = Er,γ ln p(X,T, Y |w, µ,Σ, ν) ∝

∝
n∑
i=1

k∑
j=1

ErTij

[
lnwj −

1

2
ln det Σj −

1

2
(Xi − µj)TΣ−1

j (Xi − µj)EγYi
]

=

=
n∑
i=1

k∑
j=1

rij

[
lnwj −

1

2
ln det Σj −

ci
2

(Xi − µj)TΣ−1
j (Xi − µj)

]
.

Maximization by wj of FX,ν(w, µ,Σ) is equivalent to finding a solution of the problem

n∑
i=1

k∑
j=1

rij lnwj −→ max
w
,

k∑
j=1

wj = 1,

wj > 0.
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Let us forget about the restrictions of the inequality type for a while, make a Lagrange
function, and find its maximum

L =
n∑
i=1

k∑
j=1

rij lnwj − λ

(
k∑
j=1

wj − 1

)
,

∂L

∂wj
=

1

wj

n∑
i=1

rij − λ = 0,

wj =
1

λ

n∑
i=1

rij.

From the condition
∑k

j=1 wj = 1 we get

wj =
n∑
i=1

rij

/
n∑
i=1

k∑
s=1

ris.

Note that the conditions wj > 0 are met. The problem is solved due to the convexity.
To maximize by µj , we equate the derivative of FX,ν(w, µ,Σ) with respect to vector µj

to zero
∂FX,ν(w, µ,Σ)

∂µj
=

n∑
i=1

rijci Σ−1
j (Xi − µj) = 0,

n∑
i=1

rijciXi =
n∑
i=1

rijciµj,

µj =
n∑
i=1

rijci Xi

/
n∑
i=1

rijci.

To maximize by Σj , we equate the derivative of FX,ν(w, µ,Σ) with respect to matrix Σj

to zero. Note that

(Xi − µj)TΣ−1
j (Xi − µj) = tr

(
(Xi − µj)TΣ−1

j (Xi − µj)
)

= tr
(
Σ−1
j (Xi − µj)(Xi − µj)T

)
.

Using this transformation, as well as matrix derivative formulas for square matrices [14]

∂

∂X
detX = detX ·X−T ,

∂

∂X
tr
(
X−1A

)
= −

(
X−1AX−1

)T
,

get

∂FX,ν(w, µ,Σ)

∂Σj

= −1

2

n∑
i=1

k∑
j=1

rij

[
∂

∂Σj

ln det Σj + ci
∂

∂Σj

(Xi − µj)TΣ−1
j (Xi − µj)

]
=

= −1

2

n∑
i=1

rij
(
Σ−1
j − ciΣ−1

j (Xi − µj)(Xi − µj)TΣ−1
j

)
= 0.
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Multiplying both parts of the last equation by Σj we get

n∑
i=1

rijΣj =
n∑
i=1

rijci (Xi − µj)(Xi − µj)T ,

Σj =
n∑
i=1

rijci (Xi − µj)(Xi − µj)T
/

n∑
i=1

rij.

4.4. Variational lower bound and convergence of the method
Iterations of the EM algorithm continue until the convergence of the variational lower
bound [6]

L(w, µ,Σ, r, a, b) = Er,γ ln p(X,T, Y |w, µ,Σ, ν)− Er ln r(T )− Eγ ln γ(Y ).

Let us write each summand separately

Er,γ ln p(X,T, Y |w, µ,Σ, ν) =

=
n∑
i=1

k∑
j=1

ErTij

[
lnwj −

d

2
ln 2π +

d

2
Eγ lnYi −

1

2
ln det Σj−

−1

2
(Xi − µj)TΣ−1

j (Xi − µj)EγYi +
ν

2
ln
ν

2
− Γ

(ν
2

)
+
(ν

2
− 1
)
Eγ lnYi −

ν

2
EγYi

]
=

=
n∑
i=1

k∑
j=1

rij

[
lnwj −

d

2
ln 2π − 1

2
ln det Σj−

− bi
2ai

[
ν + (Xi − µj)TΣ−1

j (Xi − µj)
]

+
ν

2
ln
ν

2
− Γ

(ν
2

)
+

(
ν + d

2
− 1

)
(ψ(bi)− ln ai)

]
,

Er ln r(T ) =
n∑
i=1

k∑
j=1

rij ln rij,

Eγ ln γ(Y ) =
n∑
i=1

Eγ ln γ(Yi) =
n∑
i=1

[bi ln ai − ln Γ(bi) + (bi − 1)Eγ lnYi − aiEγYi] =

=
n∑
i=1

[bi ln ai − ln Γ(bi) + (bi − 1) (ψ(bi)− ln ai)− bi] .

Let us study the convergence of the method. The standard EM algorithm is based on the
formula (see [6])

logL(w, µ,Σ) = L(w, µ,Σ, q) +KL(q, pw,µ,Σ(t, y|x)),

where q is a distribution of the vector (T, Y ), KL is Kullback-Leibler divergence. Here, for
the variational lower bound, we use the notation L(w, µ,Σ, q) since, in general, q does not
depend on parameters. In order to maximize the likelihood function, the variational lower
bound is maximized at each step, at the E-step by q, at the M-step by the parameters w, µ,Σ.
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Thus, its values do not decrease. Maximization at the E-step is equivalent to minimizing the
divergence by q, which is equivalent to choosing q = pw,µ,Σ(t, y|x), where the divergence is
exactly zero. Thus, the variational lower bound after the E-step is equal to the logarithm of the
likelihood function logL(w, µ,Σ).Therefore the likelihood function also does not decrease
and converges to the local maximum.

For the modification of the EM algorithm under consideration, the formula takes the form

logL(w, µ,Σ) = L(w, µ,Σ, r, a, b) +KL(r × γ, pw,µ,Σ(t, y|x)).

Variational output at the E-step minimizes divergence. However in the class of distributions
under consideration, where the distributions of T and Y are conditionally independent, the
zero divergence may not be achieved. Thus, the convergence of L to the local maximum
cannot be guaranteed. In the practical problems we are considering, it is natural to assume
that the distributions T and Y are close to be conditionally independent, that should provide
a good approximation of the local maximum using the resulting estimation.

5. APPLICATIONS OF PROBABILISTIC MODEL

The model of a mixture distribution allows solving various machine learning problems listed
in the introduction and obtaining consistent results. Let us describe each of them in more
detail, assuming a mixture model with density

p(x) =
k∑
j=1

wjp(x|θj),

where θj is the parameter of the jth component distribution (for example, the mean vector
and the covariance matrix).

5.1. Clustering

The components of the mixture can be considered as overlapping clusters. Each object x ∈ Rd

can be assigned to one of the clusters with some probability. According to Claim 3.2, the
conditional probability that an object x corresponds to a cluster j is

pj(x) =
wjp(x|θj)
k∑
s=1

wsp(x|θs)
.

If ŵj, θ̂j are estimations of the parameters wj, θj respectively, then we can estimate

p̂j(x) = ŵjp(x|θ̂j)
/

k∑
s=1

ŵsp(x|θ̂s) . These probability estimation can be considered as the

confidence level of the method when assigning an object x to a cluster j, which is sufficient
to solve the following problem. Performing ”hard” clustering, where an object x must be
strictly attributed to one of the clusters, the cluster with the maximum probability p̂j(x) is
selected

j∗ = arg max
j

p̂j(x) = arg max
j

ŵjp(x|θ̂j).

5.2. Anomalies
Object x ∈ Rd is considered abnormal if density value p(x) is less than some threshold value
q. The value q is chosen as density value p(x) so that the probability of getting an object with
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a density value not exceeding q is exactly 0.05. In other words, the value q is the solution of
the equation ∫

Rd

p(x)I{p(x) 6 q}dx = 0.05.

The described procedure for determining anomalous objects is a special case of the
procedure for checking statistical hypotheses. In that case, the hypothesis that object x is
typical is tested against the alternative one about object abnormality. If the density at the point
x is less than the threshold value q, the hypothesis of object typicity is rejected in favor of an
alternative one at the significance level 0.05. This rule is a criterion for testing a hypothesis.

A probability of getting objects with a density at least p(x) can be considered as the level
of typicity of object x. This value is analogous to p-value and is computed using the integral∫

Rd

p(y)I{p(y) 6 p(x)}dy.

5.3. Missing data

Both methods discussed above work only if all values of components x ∈ Rd are known, i.e.
there are no missing values. Otherwise, the density of the object x can be estimated as the
density integral over a subspace of omitted values. Formally, let xk be a vector of known
object values, and xu are all other object values that are omitted. Then∫

Rdu

p(x)dxu,

where du is a dimension of vector xu.
For a normal or Student distribution mixture, the density is equal to the mixture of

marginal distributions obtained in Claims 2.2.

5.4. Conditional distribution and probabilistic regression on features

Let object x ∈ Rd be recognized as anomalous. Let us select elements of the vector x to trust
in and evaluate others through them. Without loss of generality we assume that xT = (xTa , x

T
b )

and the values of xb are trusted. In addition, due to missing data, some values of xa may not
be known.

According to Claim 3.2, vector xa under the condition of values xb has density

p̃(x) =
k∑
j=1

w̃jp(x|θ̃j),

where θ̃j is the parameter of the mixture distribution jth component given xb. In the case
of the normal mixture, the parameters θ̃j for each cluster are computed in accordance with
relations from Claim 2.3. In the case of the Student mixture, the parameters are computed in
accordance with relations from the Theorem 2.1.

Replacing the parameters with their estimations, we get an estimation of the conditional
distribution of vector xa, which is sufficiently informative for making various conclusions
about the vector xa in practice. In particular, it can be used to compute

• Expectation value E(xa | xb) according to Claim 3.1. This estimation solves the problem
of regression of xb features to xa features. Note that the regression problem can be solved
for different features xa and xb using only one model.
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• Variance estimation Var(xa | xb) according to Claim 3.2.
• Evaluation of conditional cluster distributions for all objects that haveXb attributes fixed

and equal to xb.
• Set of the highest density, i.e. set of values xa, for which the density of the conditional

distribution is greater than for the other values. Such a set is analogous to the confidence
domain of the minimum volume. In the one-dimensional case, this set is an interval or
set of intervals.

6. MODELING PVT PROPERTIES OF RESERVOIR FLUIDS USING A PROBA-
BILISTIC MODEL

6.1. Data description
There are several of methods for evaluating the representativeness of reservoir fluid
samples [15], such as checking the tightness of sampling chambers, comparing the
oil saturation pressure with the separation pressure at the separation temperature, etc.;
the Hoffman-Kramp-Hockot method, based on the correlation of equilibrium constants;
determining the representativeness of samples by the criterion of contamination with process
fluids used in drilling, perforation and development of wells. In conditions where only raw
data is available the above methods cannot be applied. Thus, it is reasonable to develop
algorithms for detecting potentially incorrect values from raw data.

For practical application of research on PVT-properties of fluids, a database containing
the results of studies of more than 3,200 samples of reservoir fluids was analyzed. Among the
considered features, there are the following values: reservoir pressure, reservoir temperature,
surface gas density, surface oil density, gas content, saturation pressure, reservoir oil density,
oil volume coefficient, and reservoir oil viscosity.

The problem of predicting PVT properties using machine learning methods was
previously considered in a very limited version. For example, in [16], [17], [18] the prediction
of saturation pressure through other properties using artificial neural networks (ANN) is
considered. In [18], [19] predictions of the oil volume coefficient are made in the same way.
In [20] SVM regression is used to predict the features mentioned above.

This paper offers a fundamentally different approach to solving these problems. It is based
on the introduction of a probabilistic model in the space of reservoir fluid properties, where
it is assumed that the characteristic description of the sample is obtained independently of all
other samples from a certain probability distribution.

6.2. Normal mixture model
First we use a mixture of normal distributions of four components to describe data. Since
the iterative procedure of the EM algorithm converges to the point of the local maximum of
the logarithmic likelihood function, the method was run several times from random initial
values of parameters. The final score is obtained in the iteration with the highest value of the
variational lower score.

The result of parameter estimation is shown on Figure 6.1. The diagonal shows the
densities of features for the estimated mixture. Each non-diagonal cell on Figure corresponds
to the projection of the feature space on all possible coordinate planes. Lines of the density
level of the resulting mixture of distributions are drawn above the diagonal. Below the
diagonal, ellipses of different colors indicate the relative location of clusters. Notice that a
gray semi-transparent cluster covers other two clusters, due to the presence of noise objects
in the data. The normal distribution has light tails, so the estimations of its parameters are not
stable to the presence of noise objects in the data. When constructing a model of a mixture
of normal distributions on PVT data, the EM algorithm tries to describe the main part of the
data using three clusters, and the other less typical objects using the fourth one.
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Fig. 6.1. Data visualization and results of application of the normal mixture model. The plots above the diagonal
show the density levels of joint distribution of features projected on subspace of every two features. The diagonal
plots show the density of every feature. The plots under the diagonal show the clusterization based on the
application of the normal mixture model. Every ellipse corresponds to one of four clusters/components of the

mixture

6.3. Student mixture model
To eliminate the above disadvantages, the Student distribution mixture model is applied. The
number of degrees of freedom nu needs some expertise. On Figure 6.2 the dependence of
the variational lower bound on the iteration for the best result among several runs from
different initial approximations is shown. The result of evaluating parameters for four clusters
is shown on Figure 6.3. The blue and red clusters obtained using the Student multidimensional
distribution mixture model correspond to the same clusters in the multi-dimensional normal
distribution mixture model. The green cluster is split into two. Note the clusters have no noise.
This result is a consequence of the stability of the Student distribution to emissions.
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Fig. 6.2. The dependence of the variational lower bound on iteration number

Table 6.1. Centers of clusters obtained using the Student mixture model

Cluster 0 Cluster 1 Cluster 2 Cluster 3

Sample rate 28.3% 27.7% 29.0% 15.0%
Reservoir pressure, MPa 23.86 25.36 25.63 36.04
Reservoir temperature, oC 75.33 80.47 83.91 96.12
Surface gas density, kg / m3 1.01 1.07 1.17 1.11
Surface oil density, kg / m3 859.74 855.61 836.75 823.55
Gas content, m3 / t 49.20 69.58 138.74 425.62
Saturation pressure, MPa 8.46 11.25 13.61 24.49
Oil reservoir density, kg / m3 808.33 772.59 716.74 598.29
Volume coefficient. oil, m3 / m3 1.12 1.20 1.36 2.04
Reservoir oil viscosity, MPa * s 2.29 1.24 0.67 0.27

Oil type Heavy &
Medium

Medium Light Extra
light

Cluster centers are given in Table 6.1. During training, clusters are defined by the
model up to permutation so the order of clusters is determined by experts. One can notice
that for most clusters their centers are strictly ordered by most attributes. The type of oil
corresponding to each cluster is also determined by experts.

7. MODEL RESEARCH

The behavior of the model based on a mixture of four components of Student distributions is
tested on artificial data, the results of experiments are given below. In addition, the quality of
model predictions is tested by test data that is not involved in the training set.

7.1. Artificial experiments
In our research, the results of the model application to artificial samples are analyzed. Some
sample features are fixed in three different versions of the experiments. Their values are
given in Table 7.2. In each of three variants of experiments, the gas content values are varied
between 0 and 800 m3/t. For each value, the probabilistic density of the sample (i.e., the
probability of belonging to each of the three clusters), the expected values of saturation
pressure, reservoir oil density, and oil volume coefficient are computed using a mixture of
Student distributions.

The sample density depending on the gas content for the three variants under study is
given on Figure 7.4. The black dotted line shows the anomaly threshold. If the density is
below the threshold, the sample is considered abnormal. The graph shows that in the first
variant typical samples correspond to gas content values from 90 to 190 m3/t, in the second
variant from 0 to 110 m3/t, in the third from 0 to 90 m3/t.
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Fig. 6.3. Data visualization and results of application of the Student mixture model. The plots above the diagonal
show the density levels of joint distribution of features projected on subspace of every two features. The diagonal
plots show the density of every feature. The plots under the diagonal show the clusterization based on the
application of the Student mixture model. Every ellipse corresponds to one of four clusters/components of the

mixture

The figure 7.5 shows the probability estimations that the sample corresponds to each of
four clusters for three variants of experiments. For example, considering the first variant of
experiments, we can conclude the sample belongs to a blue or green cluster depending on the
value of the gas content .

Figure 7.6 contains the graphs of saturation pressure predictions, reservoir density of
oil, and volume coefficient of oil in the three above variants depending on the gas content.
Orange dots corresponds the samples used in train data. The shaded area denote the predictive
interval. The less typical the sample, the greater the uncertainty of the model and the confident
interval is wider. Note the trajectories of the predicted values are smooth that follows from
the model construction. It is also worth noting that the observed shift in predictions relative
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Table 7.2. Fixed values of features in model experiments

Feature Variant 1 Variant 2 Variant 3

Reservoir pressure, MPa 35 25 18
Reservoir temperature, oC 100 75 50
Surface gas density, kg / m3 1.2 0.95 0.68
Surface oil density, kg / m3 800 845 880
Reservoir oil viscosity, MPa * s 0.5 2 5
Gas content, m3 / t 0 . . . 800 0 . . . 800 0 . . . 800
Saturation pressure, MPa ? ? ?
Oil reservoir density, kg / m3 ? ? ?
Volume coefficient. oil, m3 / m3 ? ? ?

Fig. 7.4. Sample density depending on the gas content for three variants of experiments

to the total mass of points is due to the fact that each variant of experiments has fixed features
not presented on the charts. If there weren’t fixed features the predictions would look like
averages.

Fig. 7.5. Probability estimation of the sample belonging to each of four clusters depending on the gas content

7.2. Predictions quality
The developed model calculates the expected values for unknown feature values based on
the entered sample. The degree of deviation of the estimated values from the true values is
estimated using quality metrics. Let xi be a true value of the feature, and x̂i be a predicted
value under the assumption that xi is unknown. Then the relative error of the prediction xi
is ei = (xi − x̂i)/xi. It measures the deviation of the predicted value from the true value in
relation to the actual value of the true value. Prediction errors are calculated for a test set
containing about 650 samples that are not involved in building the model. When predicting
each value of the model passed all the known values of the samples in addition to predicted.
The prediction quality is calculated as the average absolute and standard error in percentages,
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Fig. 7.6. Predictions of three features depending on gas content. Shaded area denotes confidence interval

which are defined as

MAPE =
100%

n

n∑
i=1

|ei|, RMSPE = 100%

√√√√ 1

n

n∑
i=1

e2
i .

For metrics evaluation, 2.5% of the highest and 2.5% of the lowest values are excluded from
the set of numbers ei due to outliers and incorrect values in the source data.

For comparison, 9 regression models were built for each feature for the following machine
learning methods: gradient boosting (XGBoost†, LGBM‡, CatBoost§), as well as sklearn
implementations¶ of random forest (RF), SVM regression, neural network (ANN). Each such
model is trained to predict one of the features, considering all the other features as a feature
description. Optimal hyperparameters for each model are selected using cross-validation on
the training set. Tables 7.3, 7.4 contain the values of the MAPE and RMSPE metrics for the
test dataset. One can notice in 5 out of 9 cases the model prediction of the Student mixture
is more accurate than all the other models, and in the other cases it is not far behind them.
Moreover, experts usually trust reservoir pressure and temperature, which are more accurately
predicted by gradient boosting, and therefore their prediction is not very significant in this
task.

†https://xgboost.ai/
‡https://lightgbm.readthedocs.io/
§https://catboost.ai/
¶https://scikit-learn.org/
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Table 7.3. Comparison of prediction quality based on the MAPE metric

t-Mix XGBoost LGBM CatBoost RF SVM ANN

Reservoir pressure, MPa 8.13 6.70 6.56 6.53 8.31 6.77 9.63
Reservoir temperature, oC 5.96 5.50 5.67 5.75 5.78 6.58 6.25
Surface gas density, kg / m3 3.42 6.21 6.20 7.08 6.23 4.30 7.38
Surface oil density, kg / m3 0.54 0.87 0.95 0.88 0.87 0.67 1.02
Gas content, m3 / t 3.92 6.51 6.85 7.83 7.33 7.28 9.03
Saturation pressure, MPa 11.69 9.15 9.25 9.34 10.33 9.23 18.07
Oil reservoir density, kg / m3 0.71 1.35 1.27 2.04 1.58 1.77 1.85
Volume coefficient. oil, m3 / m3 0.68 1.43 1.57 2.70 2.13 2.23 2.62
Reservoir oil viscosity, MPa * s 22.32 30.60 26.86 27.30 57.60 123.73 9.66

Table 7.4. Comparison of prediction quality based on the RMSPE metric

t-Mix XGBoost LGBM CatBoost RF SVM ANN

Reservoir pressure, MPa 10.15 9.05 8.96 8.56 12.53 8.86 15.85
Reservoir temperature, oC 7.50 7.15 7.26 7.15 7.61 8.23 7.93
Surface gas density, kg / m3 4.75 7.80 7.79 8.72 7.95 5.44 9.38
Surface oil density, kg / m3 0.88 1.11 1.21 1.07 1.12 1.01 1.58
Gas content, m3 / t 5.64 8.57 8.57 9.92 11.12 10.15 11.21
Saturation pressure, MPa 16.52 12.79 13.27 12.57 14.89 12.71 21.63
Oil reservoir density, kg / m3 1.47 2.08 1.78 2.98 2.36 3.95 2.37
Volume coefficient. oil, m3 / m3 1.49 2.12 2.36 3.74 3.34 4.03 3.29
Reservoir oil viscosity, MPa * s 30.22 44.11 36.69 36.82 91.35 398.20 12.68

8. CONCLUSIONS

The probabilistic model of a mixture of multidimensional Student distributions proposed
in the paper for describing the properties of PVT samples has a wide range of practical
applications, including checking the samples for abnormality, dividing the samples into four
clusters, computing recommended values for missing values in the sample, and in the case
of sample abnormality – for all features not selected as trusted. Experiments have shown that
the recommended values obtained do not contradict the physical properties of PVT samples,
in particular, they have smoothness in terms of arguments.

The division of samples into four clusters corresponding to components of the
multidimensional Student mixture is empirically justified by comparison with a mixture of
multidimensional normal distributions. In the latter case, the quality is unsatisfactory due
to the presence of noise objects that the model adjusts to a separate cluster. The Student
distribution has heavier tails, so it adjusts less to emissions.

The probabilistic model has significant advantages over other models since it can be
used to solve several problems at once and obtain consistent results. Considering only the
regression problem, the probabilistic model, in contrast to the traditional approach, allows
getting predictions of set of features for other set of features and vise verse without repeated
model training. Furthermore, in the conducted experiments, the quality of the obtained
predictions is also superior to other models.

REFERENCES

1. Lagutin, M. B. (2009) Naglyadnaya matematicheskaya statistika [Visual mathematical
statistics]. Moscow, Russia: BINOM. Laboratoriya znanij, [in Russian].

2. Kozlov M.V., Prohorov, A. V. (1987) Vvedenie v matematicheskuyu statistiku
[Introduction to mathematical statistics]. Moscow, USSR: MSU, [in Russian].

3. Shiryaev, A. N. (2004) Veroyatnost [Probability]. Moscow, Russia: MCNMO, [in
Russian].

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)



118 N.A. VOLKOV, E.YU. DAKHOVA, S.A. BUDENNYY, A.M. ANDRIANOVA

4. Kotz, S., Nadarajah, S. (2004). Multivariate T-Distributions and Their Applications.
Cambridge: Cambridge University Press. doi:10.1017/CBO9780511550683

5. Kibria, B. M. G., Joarder, A. H. (2006). A short review of multivariate t-distribution.
Journal of Statistical Research ISSN. 40. 256-422.

6. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. ISBN 978-
0-387-31073-2.

7. Peel, D., Mclachlan, G.. (2000). Robust Mixture Modelling Using the t Distribution. Stat
Comput. 10. 10.1023/A:1008981510081.

8. Shoham S., Fellows M., Normann R. (2003). Robust, automatic spike sorting using
mixtures of Multivariate T-Distributions. Journal of neuroscience methods. 127. 111-22.
10.1016/S0165-0270(03)00120-1.

9. Bishop C. M., Svensen M.. (2004). Robust Bayesian Mixture Modelling. Neurocomput-
ing. 64. 235-252. 10.1016/j.neucom.2004.11.018.

10. Eaton M. L. (1983). Multivariate Statistics: a Vector Space Approach. John Wiley and
Sons. pp. 116–117. ISBN 978-0-471-02776-8.

11. Gantmaher F. R. (2010) Teoriya matric [Matrix theory]. Moscow, Russia: Fizmatlit, [in
Russian].

12. Fruhwirth-Schnatter S. (2006) Finite Mixture and Markov Switching Models.
Psychometrika. 74. 559-560. 10.1007/s11336-009-9121-4.

13. Smith W. B., Hocking R. R. (1972) Algorithm AS 53: Wishart Variate Generator. Applied
Statistics, 21, pp. 341-345.

14. Thomas P. M. (1997). Old and New Matrix Algebra Useful for Statistics. MIT Media Lab
note.

15. Brusilovskij A. I. (2002) Fazovye prevrashcheniya pri razrabotke mestorozhdenij nefti i
gaza [Phase transformations in the development of oil and gas fields]. Moscow, Russia:
Graal, [in Russian].

16. Alakbari F., Elkatatny S., Baarimah S.. (2016). Prediction of Bubble Point Pressure
Using Artificial Intelligence AI Techniques. Proc. of the SPE Middle East Artificial Lift
Conference and Exhibition, 10.2118/184208-MS.

17. Numbere, O. G., Azuibuike, I. I., Ikiensikimama, S. S. (2013). Bubble Point Pressure
Prediction Model for Niger Delta Crude using Artificial Neural Network Approach.
Society of Petroleum Engineers. doi:10.2118/167586-MS

18. Alcocer Y., Patricia R.. (2001). Neural Networks Models for Estimation of Fluid
Properties. Proc. of the SPE Latin American and Caribbean Petroleum Engineering
Conference, 10.2523/69624-MS.

19. Osman, E. A., Abdel-Wahhab, O. A., Al-Marhoun, M. A. (2001). Prediction of Oil PVT
Properties Using Neural Networks. Society of Petroleum Engineers. doi:10.2118/68233-
MS

20. El-Sebakhy, E. A., Sheltami, T., Al-Bokhitan, S. Y., Shaaban, Y., Raharja et. al. (2007).
Support Vector Machines Framework for Predicting the PVT Properties of Crude Oil
Systems. Society of Petroleum Engineers. doi:10.2118/105698-MS

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)


	Introduction
	Distributions and their properties
	Normal distribution
	Gamma distribution
	Student distribution
	Marginal distributions
	Conditional distribution

	Mixture model
	Properties of a mixture model
	Normal mixture distribution
	Student mixture distribution

	Formulas derivation for estimation the parameters of Student mixture
	E-step, Internal step I
	E-step, Internal step II
	M-step
	Variational lower bound and convergence of the method

	Applications of probabilistic model
	Clustering
	Anomalies
	Missing data
	Conditional distribution and probabilistic regression on features

	Modeling PVT properties of reservoir fluids using a probabilistic model
	Data description
	Normal mixture model
	Student mixture model

	Model research
	Artificial experiments
	Predictions quality

	Conclusions

