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Abstract: Almost 400 amorphous polymer materials used in membrane gas separation 
technology are clustered on the basis of the shape of their polymer chains conformations. 
Obtained clusters, which rely solely on the geometry of polymer chains and not on the chemical 
class (polyamides, polyacetylenes, etc.), are shown to discriminate polymers with respect to their 
transport properties, in particular, the coefficient of diffusion. The method proposed consists of 
several steps. Firstly, realistic conformations of large polymer macromolecules are constructed 
using the program code developed in the RDKit environment for Python. Then, polymer 
conformations are characterized by a curve that relates the “accessible surface area” (i.e., the 
contact surface between the spherical model of a macromolecule and a spherical “probe”) to the 
radius of this probe, and also seven similar curves, which relate the polarized (neutral, positively 
or negatively charged, etc.) accessible surface area to the radius of the spherical probe that 
represents the variety of penetrant gases. An improved algorithm for surface area calculation 
maps out the outer surface of the macromolecule to eliminate its influence. The curves are 
averaged between ten polymer conformations to obtain more robust figures. Finally, 
agglomerative clustering is used to separate different polymers in the space of these curves that 
align their accessible-surface-area-related quantities against the probe radius. The proposed 
classification of polymers can be used to develop more precise predictive models of polymers’ 
transport properties for the theory-guided and computer-aided materials design.  

Keywords: machine learning, agglomerative clustering, QSPR, molecular modeling, polymer 
membranes, gas separation 

1. INTRODUCTION 
Membrane technologies of gas separation are extensively used all over the world in 
Hydrogen and Oxygen production, natural gas purification and carbon dioxide separation. 
Despite the great variety of materials used in liquid, metal, ceramic and polymer membranes, 
there is still a high need for a scientifically-based search for new materials, especially for 
polymer membranes. The development of mathematical models to predict properties of 
polymers from their structure allows saving financial and time resources during the 
development of new membrane materials. 

Unfortunately, the mathematical models for transport properties of polymeric materials so 
far have either insufficient predictive power or are limited to specific polymers or their 
classes. Primarily, this is due to the fact that transport properties of polymers used for 
membrane gas separation are determined by the geometry of their polymer chains, 
characterized by a wide variety of chemical structures and methods of their organization 
(spatial isomerism, statistical sequence of polymer units, etc.). 

Several approaches are known from the literature to predict transport properties of 
polymers. Those most popular and well-founded are based on computer simulation of atoms 
and their interactions [19,8]. First of all, they include molecular dynamics (MD) and the 
Grand Canonical Monte Carlo Method (GCMC) [13] that are used to predict solubility and 
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diffusion coefficients. While MD is used to predict diffusion, GCMC models have shown 
their effectiveness in predicting solubility coefficients. One of the common shortcomings of 
both MD and GCMC is their high computational complexity. They require a lot of 
computing resources and machine time. Therefore, these methods seem to be too time-
consuming for mass prediction of the properties (screening) of hypothetical (previously not 
synthesized) polymeric materials. 

At the same time, there is an alternative approach to the prediction of sorption properties 
of polymers and the prediction of their transport parameters. This is a typical task for QSPR 
methods [17,21]. Their goal is to establish statistically significant correlations between the 
numerical values of the physicochemical properties of materials and molecular descriptors. 

Earlier, in [11], the method was proposed and then improved in [10] for predicting the 
sorption parameters of polymers (gas solubility coefficient at infinite dilution S and the 
solubility constant of Henry's law kD in the model of double sorption) for a number of light 
gases in glassy polymers. The approach [11,10] is based on calculating the dependence of a 
number of geometric indices on the effective penetrant radius for conformations of a polymer 
chain segment (200-600 atoms length), obtained from computer modeling of a polymer chain 
segment. 

In this article this approach to molecular modeling and data analysis is further developed 
and applied to building a classification of glassy polymers used in membrane technology. 
The isolated clusters turn out to be closely related to the physicochemical properties of 
substances that are important for the membrane technology. In the future, it can be used to 
construct refined regressions that can predict the main transport properties of polymeric 
materials — solubility, diffusion, and permeability coefficients. 

2. MOLECULAR MODELING 

2.1. Molecular Mechanics Modeling 
Problems of quantitative property forecasting from statistics and those of massive polymer 
classification impose some requirements on the underlying approach to molecular 
mechanicsmodeling (hereinafter MMM). 

1. Conformations (macromolecule atoms’ positions on a scene) obtained from MMM 
should be as realistic as possible (conform to real positions of atoms in a polymer 
membrane). 

2. Manual tuning of the MMM algorithm should be avoided, and the algorithm should 
be as automated as possible. 

3. The MMM algorithm should be able to parallelize on a server and have an acceptable 
calculation time for one polymer. 

4. The method should ensure the stability of the results and their reproducibility. 
5. The method should be applicable to specific polymers used in membrane gas 

separation. 
6. The method should use the free software. 

In this paper, we further improve the MMM method from [11,10], which is based on the 
modeling of conformations of the polymer macromolecule of about several hundred atoms 
size. In [11], for each polymer, an oligomer (200–600 atoms length) consisting of several 
polymer monomer units, was created in the InstantJChem molecular simulation environment 
[4]. For this chain, using Conformer Plugin [6] of the InstantJChem ChemAxon package, 
several conformations of a short chain segment of the polymer under consideration (typically 
including several monomer units and from 200 to 600 atoms) are generated by relaxation in 
the empirical Dreiding field from random initial positions of atoms. Further calculation of 
the indices necessary for constructing the regression model was also performed using 
InstantJChem tools. Despite the fact that, using the obtained conformations, one of the 
transport parameters of polymer membranes, S solubility, was successfully predicted, this 
approach did not meet many criteria, listed above. The most important drawback is the 
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unrealistic nature of the many conformations obtained, as well as the difficulty in expanding 
this solution to server platforms. 

In [10], the problem of the unreality of the obtained conformations was solved by 
performing their modeling in a program in the PerkinElmer Chem3D package [5] using a 
similar technique. To assign a random initial position of atoms to the simulated polymer 
chain, molecular mechanics simulation was performed at a temperature of 300 K to 3000 K 
for 1000 iterations, after which the resulting structure was optimized by free energy in the 
empirical field MM2. This approach showed good results in terms of realistic conformations, 
but made it impossible to automate the MMM process and did not allow the efficient use of 
multiprocessor systems. 

During the search, many different MMM solutions were tested, for example, LAMMPS 
[12], OpenMM [7], Hoomd-Blue [3,9] and others. Some solutions did not allow automation 
of the process (LAMMPS), the others (e.g., OpenMM) were developed for biopolymers and 
had no empirical force fields relevant  for glassy polymers used in membrane gas separation. 

RDKit package [16] - an open-source toolkit – is widely used by the scientific community 
to solve various problems in chemoinformatics and machine learning. The main data 
structures and RDKit algorithms are written in C++, which ensures high performance. RDKit 
also has shells in Python, Java, and C #, which makes it easy to use. 

To arrange the molecule in 3D space in the RDKit environment, the flexible 
EmbedMolecule procedure is used [15]. The initial coordinates of atoms positions in 
molecule can be determined both through the eigenvalues of the distance matrix, and through 
a random positioning of atoms, and the value of the random number generator can be fixed, 
which will later make it possible to obtain the same molecule. Then MMM is performed in 
an empirical force field UFF (Universal Force Field [14]). It is important that RDKit tools 
allow to fix the part of a molecule during MMM. 

The polymer chain is built by a simple algorithm, which uses the EmbedMolecule 
function of RDKit and roughly mimics the real process of polymerization. At the beginning, 
the monomer unit of the polymer is located in the space, then a similarly processed unit is 
added to it, but with other random coordinates. All atomic coordinates, except the atomic 
coordinates of the last two added monomer units, are fixed, and two free units undergo 
energy minimization in the UFF field, which simulates the process of sequential 
polymerization of a macromolecule. In this case, the algorithm takes into account the 
experimental values of the torsion angles and uses the base of universal rules for the mutual 
arrangement of atoms, for example, the mandatory presence in the same plane of the atoms 
of the benzene ring. 

In less than half of the samples, due to the peculiarities in their structure, attempts to 
construct a macromolecule in this way failed after several iterations. In this case, the 
procedure of placing the atoms of a molecule in space was performed with the use of random 
initial coordinates for the entire macromolecule, and not its individual monomer units. 
Examples of the obtained conformations are presented in Fig. 2.1. 



94             O. MILOSERDOV 

Copyright ©2020 ASSA.                                                                                    Adv. in Systems Science and Appl. (2020) 

 
Fig. 2.1. Examples of three polymer repeating units are shown above, and the corresponding macromolecules 

of about 700-1200 atoms size obtained with MMM are shown below 

2.2. Calculation of Geometric Indices 
As in [10], the curves that represent the value of various accessible-surface-area-based 
geometric indices of polymers’ conformations as functions of the radius of a spherical 
“probe” are used to characterize polymers, since the main hypothesis of this method is that 
transport properties of a polymer (e.g., solubility coefficient and the similar measures) to 
some extent depend on the characteristics of the contact surface between the polymer 
macromolecule and the penetrant gas molecule. 

The basic and the simplest index of this family is the accessible surface area (ASA). Its 
calculation is illustrated by Fig. 2.2. ASA is the surface area circumscribed by the center of 
the spherical "probe" of a given radius in all possible positions of its contact with the van der 
Waals surface of this molecule. 
 

 
Fig. 2.2. Examples of calculating the accessible surface area of a molecule 

 
The whole family of the employed indices is presented in Table 2.1.  
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Table 2.1. Geometric indices 
Index Index Description 
ASA 

 
Standardized (per cm3 of the sample) accessible surface area (Å2⋅mol/cm3) 

ASA+ Accessible surface area where contact occurs at a point on the surface with a partial 
positive (q > 0) charge* (Å2⋅mol/cm3) 

ASA– Accessible surface area where contact occurs at a point on the surface with a partial 
negative (q < 0) charge* (Å2⋅mol/cm3) 

ASAH Accessible area of hydrophobic (with low, |q| < 0.125, level of partial charge*) 
surface (Å2⋅mol/cm3) 

ASAP Accessible area of polarized (with high, |q| ≥ 0.125, level of partial charge*) 
surface (Å2⋅mol/cm3) 

DPSA3 DPSA3 = ∑i asai⋅qi, where asai – is the contribution of the i-th atom to the specific 
accessible surface area of the molecule and qi is the partial charge* of i-th atom 
(Å2 e моль/см3) * 

PPSA3 PPSA3 = ∑i asai⋅qi, where the summation is limited to atoms with a positive partial 
charge*: asai⋅ qi > 0 (Å2e mol/cm3) 

PNSA3 PNSA3 = ∑i asai⋅qi where the summation is limited to atoms with a negative partial 
charge: asai⋅qi < 0 (Å2e mol/cm3) 

* Partial charges according to Gasteiger–Marsili were calculated using the rdkit.Chem.rdPartialCharges 
module. 
** Here “e” means the electron charge unit. 

 
Compared to the previous versions of this method, the new tools of MMM presented in 

this article allowed to build bigger molecules and more complex conformations, which 
address not only the interaction of adjacent atoms in a polymer chain but also that of atoms 
came close to each other due to the bending of a macromolecule chain (see Fig. 2.1).  

Also, a new improved index calculation algorithm was implemented, which excludes 
from consideration the outer surface of the oligomer, and thus takes into account interactions 
of a penetrant with the polymer macromolecule. 

The macromolecules in Fig. 2.1 are rather short polymer chains, and their outer shell has 
considerable surface area. Realistic polymer matrices are much bigger and have no such 
outer shell. The contribution of atoms that form these outer shells distorts the value of 
surface-area-based indices from Table 2.1, and their contributions must be excluded from 
index calculation. Therefore, based on the center-of-mass position of the molecule and the 
value of the current “probe” radius R, the indices from Table 2.1 were calculated only for 
atoms of the macromolecule located at no more than d = 10 – R angstrom from its center of 
mass. Hence, the atoms that belong to the outer shell of the conformation were excluded. 

To draw the dependences ASA(R), ASA+ (R), etc., the index value was calculated for each 
R from 0Å to 0.2Å with a step of 0.05Å, from 0.2Å to 1Å with a step of 0.1Å and from 1Å to 
2Å with a step of 0.2Å. Typical dependencies of a number of geometric indices from Table 
2.1 from the “probe” radius for one of the polymers, calculated for different d, are presented 
in Fig. 2.3. One can see from Fig. 2.3 that curves for d = 7Å – R resemble those for 
d = 10Å – R, so the adopted approach is robust with respect to small deviations of the 
selection rule for “internal” atoms. 

To justify the sufficient chain length and the number of generated conformations for the 
stability of the results obtained below, 6 conformations of different lengths (200, 300, 400, 
600, 800, atoms without hydrogen) were generated for 40 different polymers. For them, 
indices from the entire set were calculated for a number of R values from the range from 1 Å 
to 3 Å. In Fig. 2.4 presents, as an example, the obtained dependences of three indices (at 
different R) on the macromolecule size for 16 random polymers from 40 calculated. It can be 
seen from the figure that the indices begin to stabilize when the length of the macromolecule 
exceeds 600 atoms, which was taken as the base length. 
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The same logic shows that averaging over 10 conformations is enough to obtain stable 
index values (see Fig. 2.5). 
 

 
Fig. 2.3. Typical dependencies of a number of geometric indices from Table 2.1 from the “probe” radius for 

one of the polymers, calculated for various d 

 
Fig. 2.4. ASA, ASA+ and DPSA3 indices vs the macromolecule size for 16 random polymers 
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Fig. 2.5.  ASA, ASA+ and DPSA3 indices averaged over conformations vs the number of conformations being 

averaged for 16 random polymers 

3. CLASSIFICATION OF CONFORMATIONAL STRUCTURES 
In machine learning problems correctly collected and pre-processed data play a key role in 
obtaining a qualitative result. The database “Gas separation parameters of glassy polymers” 
(hereinafter referred to as the Database) was created in 1998 at the Laboratory of Membrane 
Gas Separation at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of 
Sciences. The database is a unique source of information and a tool for predicting gas 
separation properties of polymers. Since its inception, the Database is being continuously 
updated. 

The main transport characteristics of polymer gas separation membranes are coefficients 
of permeability, diffusion, and solubility. The permeability coefficient P can be written as a 
product of the solubility coefficient S and the diffusion coefficient D. The first (S) describes 
the driving force of the process of transporting gas molecules, while the second (D) 
corresponds to the kinetic component of the process. 

To solve the clustering problem, 397 unique polymers were selected from the Database, 
each having several records containing experimental data on the interaction of the gas-
polymer pair under different conditions (2629 records in total). While the Database covers 
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more unique polymer structures, for the clustering problem it is necessary to maintain a 
balance in the data on their chemical classes. Therefore, the structures were selected 
according to the rule: 

• if more than 42 structures of a certain chemical class exist in the database, then 
records that have experimental data for P, D, S were selected, 

• otherwise, all structures of this chemical class were selected. 
As justified in Section 2 above, for each polymer in a sample ten conformations were 

generated of size at least 600 atoms (not counting hydrogen atoms). See Fig. 2.1 for the 
examples of conformations built. 

Then, for each conformation and for each R in the range from 0Å to 3Å, the indices from 
Table 2.1 are calculated using the selection rule d = 10Å – R, which rules off the atoms of the 
outer hull of the conformation. Typical dependences of geometric indices ASA, ASA+ and 
DPSA3 on the “probe” radius for one of the polymers are shown in Fig. 3. In contrast to [10], 
where the optimal range of [R–, R+] linearization of the obtained dependencies was searched 
for, the obtained slope and bias coefficients were used as an explanatory regression variables, 
in this article the entire curve is used for classification. 

For the clustering of polymers, the agglomerative method (a sort of hierarchical 
classification) was used [1]. The agglomerative clustering method was launched for the 
number of clusters from k = 2, ..., 30, since the optimal number of clusters was unknown. 
According to the values of the silhouette coefficient, the Calinski–Harabasz index (C-H) and 
the Davies–Bouldin index (DBI) for the clustering constructed, the value k = 15 has been 
chosen. The data supplied to the input of the algorithm was previously standardized. 

To illustrate the quality of the resulting clustering using the TSNE algorithm [20], the 
placement of points in 2D space was constructed. It is clearly seen that the TSNE algorithm, 
being different from agglomerative clustering in its nature, distributes the data points in 
accordance with the obtained clustering. The embedding also allows to evaluate the distance 
between clusters (see Fig. 3.1).  

Table 3.1. The distribution of polymers of different chemical classes over clusters  

Chemical class 

Cluster number Sum 
by 

class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

polyacrylates 1 3 1 9  1          15 
polyesters  2 18 1 1      4  4 4 8 42 
polyethers  1 8  12 4 2  2 5   3   37 

polyphosphasenes        3        3 
polyacetylenes     1 4  3    11    19 

polynorbornenes   5 7 2 2 2 9 1 6   3   37 
polysulphones     19 1    18     2 40 

other N-containing   4 1 5 3      4  9   26 
polyamides   11 1 16 3   2    4   37 
polystyrenes 2  3 1 2 1  13        22 

vinylic polymers 1   3  2 1 5 1    1   14 
polycarbonates   14   1       1  3 19 

polyimides  3 3 5 6      9  16   42 
polyamidoimides  2  2 1  1    11  23   40 

other carbo-chained       1    2      3 
other hetero-chained         1        1 

Sum by cluster 4 15 64 34 63 20 6 34 6 31 28 11 64 4 13 397 
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Fig. 3.1. Data embedding in 2D with TSNE algorithm (clusters are shown with different signs and colors) 

4. CLUSTERING AND TRANSPORT PROPERTIES 
The clusters constructed turn out to be closely related to the transport properties of polymers 
that are important for membrane technology, first of all, permeability, diffusion, and 
solubility coefficients of a polymer material with respect to different penetrant gases. The, 
so-called, Robeson diagram [18] is a conventional representation of transport properties for a 
collection of polymers. The Robeson diagram is constructed for a pair of penetrant gases (for 
example, oxygen-nitrogen) in the coordinates αP = PO2/PN2 — separation selectivity of a pair 
of gases (oxygen-nitrogen) depending on PO2 — the permeability coefficient for a more 
permeable gas (oxygen) and in coordinates αD = DO2/DN2 — diffusion selectivity of a pair of 
gases (oxygen-nitrogen) depending on DO2 — the diffusion coefficient (see Fig. 4.1 and Fig. 
4.2, respectively). 



100             O. MILOSERDOV 

Copyright ©2020 ASSA.                                                                                    Adv. in Systems Science and Appl. (2020) 

Robeson diagrams are often used by membrane gas separation specialists for comparative 
analysis of different groups of polymers. Hence, it is quite natural to represent the clusters of 
polymers constructed in the previous section as the points on a Robeson diagram to analyze 
the relation between the obtained classification of polymers and their transport properties. 

The experimental data on the coefficient of permeability and diffusion were taken from 
the Database. Since the experimental data were obtained at various temperatures, they were 
brought to a single standard value of 308K using the algorithm from [2]. 

Then, the diagrams were constructed using the experimental data on the permeability (see 
Fig. 4.1) and diffusion (see Fig. 4.2) coefficients available from the Database. For the 
convenience of the analysis, along with the points of an individual cluster the center of this 
cluster and the center of the entire data sample (calculated without the explicit outliers) are 
added to the Robeson diagram. 

The clusters turn out to be closely related to the transport properties of polymers. The 
location of the center of mass of the cluster relative to the center of mass of the entire data 
sample, the shape of the cluster and its composition demonstrate these relationships. The first 
thing worth noting is that the points of most clusters are rather crowded on the Robeson 
diagrams. Consequently, materials with similar transport properties are collected in one 
cluster. It is important that clustering was built only on the basis of the shape and geometry 
of conformations of polymer molecules without using any hint like the chemical class of a 
polymer.  

Now consider the clusters separately. The most revealing relationships can be found on 
the Robeson diagram for the diffusion selectivity in Figure 4.2. So, the centers of mass of 
large clusters 3, 5, 13 are shifted to the upper left quadrant of the general diagram. This 
indicates a high selectivity for D with a low diffusivity. Moreover, in combination with the 
information from Fig. 4.1, polymers from these clusters are a good combination of 
permeability selectivity and permeability itself. Also, cluster 11 can be attributed to them if 
there were more experimental data on the diffusion coefficient. For the most part, polymers 
from clusters 6, 8, 12 turned out to be low-selective in terms of permeability and diffusion. 
However, they were highly permeable and highly diffuse. 

From Table 3.1 it can be noted that, in general, clustering does not depend on the 
chemical class of polymers. So, the above clusters 3, 5, 6, 8, 13 consist of polymers of 
various chemical classes. However, there are exceptions. For example, all highly diffuse and 
highly permeable polymers with a low selectivity from 12 cluster are polyacetylenes. All 
polyphosphasenes entered cluster 8, most polycarbonates entered cluster 3, and 
polysulphones were divided into two clusters 5 and 10. Polyamidoimides and polyimides, 
being often similar in structure and properties, were mainly divided into clusters 11 and 13. 

Let us turn to the structure of polymers themselves. Cluster 6 consists only of polymers 
with bulky fluorine substituents, which in this case belong to different chemical classes. In 
combination with the information that the polymers of this cluster are highly permeable and 
highly diffuse and, at the same time, low selective, one can judge the consequences of adding 
bulky fluorine substituents. Moreover, cluster 7, which contains mainly polymers with a 
pentafluorophenyl group, is rather the opposite of low selectivity and low diffusion. This 
suggests that not always the presence of a large number of fluorine molecules leads to 
properties similar to polymers of 6. It is also interesting to compare cluster 6 and cluster 10. 
Cluster 10 also has bulky fluorine substituents; however, monomer units are often several 
times longer and most polymers belong to polyamidoimides and polyimides, which are never 
met in cluster 6. 
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Fig. 4.1. Polymer clusters on the Robeson chart for permeability. The center of the whole data sample is 

depicted with the red circle, while the center of the cluster is depicted with the green triangle 
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Fig. 4.2. Polymer clusters on the Robeson chart for diffusion. The center of the whole data sample is depicted 

with the red circle, while the center of the cluster is depicted with the green triangle 
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The above analysis reveals the deep relation between the transport properties of polymers 
and the shape and geometry of conformations of their macromolecules. The resulting 
clustering allows one to identify the signs and characteristics of polymer molecules with 
various extreme properties, which will undoubtedly be useful in the search and synthesis of 
new promising polymers. 

5. CONCLUSION 
Based on a large sample consisting of almost 400 amorphous polymers from 16 different 
chemical classes used in membrane gas separation, clustering was constructed only on the 
basis of data on the shape and geometry of the conformations of polymer molecules. 
Obtained 15 clusters are closely related to transport parameters important for membrane gas 
separation, such as permeability coefficient P and diffusion coefficient D. 

The method proposed consists of several steps. At the beginning, 10 realistic 
conformations of polymer macromolecules are constructed. For these purposes, a program 
code is written in the RDKit environment for Python. It satisfies all the requirements listed in 
chapter 2: the realism and reproducibility of the resulting structures, fast automated 
calculation, the possibility of parallelization, and free distribution of software. Then, the 
dependencies were calculated of 8 accessible-surface-area-based indices (see Table 2.1) on 
the radius of a spherical probe that represents the variety of penetrant gases. An improved 
algorithm for calculating indices eliminates the influence of the outer shell of the 
macromolecule, which allows focusing on the processes occurring inside the polymer 
membrane. The obtained 8 curves are averaged between ten polymer conformations to obtain 
more robust figures. Then, these dependences characterizing the polymer are used as 
predictors for the agglomerative clustering method. 

The plans for further research include constructing separate regressions for the resulting 
clusters in order to more accurately predict transport properties (P, D, and S coefficients). 
The methods developed allow us to approach the solution of the problem of obtaining 
substances with predetermined properties. For example, the prediction of transport 
parameters for a collection of hypothetic polymers, followed by the manual selection of 
several most promising polymers, could guide the synthesis experiments of novel polymers. 
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