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Abstract: In this work, we present a robust model of vehicular ad hoc networks (VANET)
in order to study information spreading on such topologies. Vehicles are moving along the
fastest routes between their starting points and their destinations on a map derived from a real
urban topology. Vehicles can exchange information through the use of short-range wireless
communication devices. The source of information is a roadside unit which provides packets
for the nearby vehicles. These agents can carry and forward messages for others. As a result of
the data dissemination, the major part of the system becomes informed quite quickly. Presented
results include the investigation of information spreading in the system, e.g. the time evolution
of the average awareness, the age distribution of information owned by separate vehicles and the
statistical properties of time intervals between information exchange events. It has been shown
how the effectiveness of this complex system depends on the density of intelligent devices. Scale-
free behavior was found by time series analysis. Our computer simulation results can help to
design smartcity applications of the future.

Keywords: agent-based simulation, VANET, information diffusion, traffic simulation, time
series analysis

1. INTRODUCTION

The spreading of information in vehicular networks plays a key role in many smart city
services. Because of this, the topic is in the focus of research in the last decade. The
aim of these applications is to make urban traffic safer and comfortable. Previous studies
have analyzed the topological properties of urban road maps [1, 2] and the traffic flow was
measured and studied [3] in some other works in order to increase the efficiency of these
intelligent transportation systems. Several different algorithms and methods were developed
to simulate the motion of vehicles and generate traffic in urban or in highway environment
[4–6]. The communication of moving wireless devices (possibly carried by members of
these vehicular networks) may be described by using standardized communication protocols,
like Dedicated Short Range Communication (DSRC) or IEEE 802.11p standard [7–9]. In
VANETs (Vehicular Ad hoc NETwork) both the routing [10–12] and the broadcasting [4,13]
are actively investigated fields.

Distribution of information was also studied in different wireless systems, e.g. in mobile
peer-to-peer systems [14] or self-organized sensor networks [15]. Some questions related to
the statistical properties of the general spreading processes in VANETs are however still open.
The goal of our research is to introduce and analyze a new framework in order to be able to
answer some of the following questions. What are the limits of the information spreading?
Can we reach all actors of the traffic system based only on self-organization? Do all vehicles
own up-to-date information? Similar questions have been appeared and already answered in
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social networks [16,17], but due to the continuously changing topology, the characteristics of
spreading can be very different.

In Section 2 the construction of the realistic urban topology is shown. Section 3 presents
the details of the simulation of vehicular motion. Information spreading based on carry-and-
forward and multihop broadcast dissemination schemes is presented in Section 4 and then the
first results of our studies are shown in Section 5. At the end we close by some conclusions.

2. UNDERLYING MAP TOPOLOGY OF SIMULATIONS

We applied a real city map, namely the map of our home city as the underlying network
topology to reach a realistic simulation environment. The dataset describing the map was
gained and is available at the page of the OpenStreetMap project [18]. Since in this work
we would like to use this map for agent-based simulation a much more simplified topology
is needed. Because of this the source was reduced keeping the topology of the crossroad
network and the distances between junctions, but losing the real geographical locations of
road sections.

According to the original osm format any crooked road can be built up from shorter
straight segments and the geographical coordinates of their endpoints. In this way, a road
section between crossroads can be described by a list of internal nodes with degree 2. In
our approach, the shape of a road section is negligible and only the length of the section is
important. This was the base of our topology simplifying method. In case of any two road
segments between nodes A−B and nodes B − C, node B was eliminated if it has no other
neighbors than A and C, merging the segments to only one longer segment between nodes
A− C with a distance equal to the sum of lengths of the previous two segments.

After the above reduction process the resulting network can be analyzed from two
different points of view. (i) Taking a look to the network as an abstract topology (undirected
graph) we can find that there are 3422 nodes (junctions) connected by 4812 links (road
sections). It was found that 84% of these nodes have a degree of 3 or 4. In the unit
of link number (ignoring road length) the diameter of the network is 96. (ii) From the
geographical aspect however our network still has some spatial properties. Taking into
account the distances, the average distance between two crossroads is 121.5m, however, the
distribution is quite wide, there are almost 3 orders of magnitude difference between the
shortest and the longest road section. The average distance between two randomly chosen
nodes is 4.1± 1.9km. (More details are available in [19, 20].)

3. MOTION OF VEHICLES

On the above described map vehicles are moving from their randomly chosen starting node
toward their randomly chosen destination node along the fastest path. Even though today
many different navigation options are available to be considered, practice shows that drivers
usually use a route with the shortest travel time instead of the shortest distance route, or the
smallest number of left turns [21]. The original data set contains information about the rank
of all road segments (e.g.: primary, secondary, residential, living street, etc.). The average
speeds of cars depend on the rank of the road. Based on the speed prediction/offer of the
Google Maps [22], different average speed is applied in case of different road ranks. Thus the
shortest and the fastest route can be different.

Vehicles move with constant speed between two neighboring nodes, at a crossroad they
turn according to their route (and perhaps change speed). Traffic jams, traffic lights or the
finite size of vehicles are not taken into account during the simulation because from the point
of the later spreading process the short-term fluctuations of the speed of cars are negligible.
Thus, in this kind of mean-field approach, the velocity of vehicles is not influenced by the
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actual traffic situations. Even though, the source and destination nodes are random the density
of the traffic is really diverse due to the topology (connectivity, ranks).

We assumed that the number of moving cars in the system at a given time can be constant
since the simulated (typically few 10 minutes long) time interval is small compared to the
daily life cycle of a city or the duration of rush-hour traffic. In this way, different scenarios
(e.g. rush-hours or off-peak time) can be simulated separately using a distinct number of cars.
At the beginning of the simulation, there are N vehicles in the system. Later, when a vehicle
arrives to its destination, it is removed and immediately a new one is initialized and started. At
the beginning of the simulation, all the cars are just departed. It is easy to understand that in
order to avoid artificial transient effects the measurement related to spreading is started only
later (t = 0) when the system becomes randomized, however, the simulation of the traffic
is started at t = −t0. The length of the randomization time interval (−t0 ≤ t < 0) is longer
then most of the trips (t0 = 750s, average travel time is 459± 261s), so when the scientific
observation is started all the initial cars have been arrived and others are launched in different
time moments. The simulation is stopped at t = tmax. The system evolves in discrete time
steps. The time step ∆t is small enough to move only a few meters, so it is tiny compared to
the whole simulation time ∆t� t0 + tmax. The time interval of the analysis (0 ≤ t ≤ tmax)
is long enough to cover several generations of vehicles. We found that in order to get reliable
results the total number of simulated cars (Nt) has to be at least five times greater than number
of cars at a given moment (Nt > 5N ).

This approach of macroscopic traffic is quite simplified. The motion of vehicles is much
slower than, spreading of information (detailed in the next section) due to the consecutive
quick message forwarding. This fact allows us to neglect more details of the micro-level
traffic. In addition to the approximate spatial distribution of agents, motion is only required
to regularly change the communication topology.

4. SPREADING OF INFORMATION

In the system, smart vehicles are represented by agents able to interact by short-range
communication. If the distance of two vehicles at a given time moment is less than the
range R of the wireless communication, they can exchange information. If agent i can
receive information from agent j, communication to the opposite direction is also possible
technically. Based on this, in our model the agents can have two different states. On the
one hand agent i can be uninformed, so it has not received any data (denoted by Si = 0).
On the other hand, it can be informed, so it has already got some data (denoted by Si =
1). Beside this vehicle-to-vehicle (V2V) communication, there is infrastructure-to-vehicle
communication (I2V) as well. In the latter case the On Board Units (OBU) of smart vehicles
can receive information from Road Side Units (RSU).

In our model initially all agents are in uninformed state and only one RSU is present,
playing the role of an information source. When an agent passes close enough to the RSU it
receives new up-to-date public information (e.g. traffic or weather alert). The actual content
of messages is negligible. The agent stores it together with the actual timestamp and later
it shares with others within the communication range. If one of these neighboring agents
is uninformed it becomes informed. If both agents that are in contact have been already
informed, the agent with an older timestamp will update its knowledge storing the newer
information with its given timestamp. Thus information can spread in this dynamically
changing network from the RSU to any vehicle even if they have never passed by the RSU. In
order to characterize agent i in detail we introduce the quantity Ti which is the latest/newest
timestamp of information owned by the informed agent i or Ti = −1 if agent i is uninformed.
(So Ti > 0 is the simulation time when the given information unit carried by agent i entered
into the system by the RSU.) The behavior of the system is shown in Fig. 4.1. A vehicle (agent
i) proceeds from node A to node D. It goes by the RSU in node B receiving new information
at t = T . An other vehicle (agent j) moves from node E towards node F . Both of them are
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Fig. 4.1. The behavior of the system.

in the vicinity of the node C at the same time. Since they are within the range R, agent i
can transmits the information to agent j. Between nodes A and B agent i is uninformed, but
between B and D it is in an informed state, having timestamp T . Agent j becomes informed
at node C and possesses also timestamp T between nodes C and F .

At simulation time t, an informed agent i has information with age Ai = t− Ti. The
average age of information 〈A〉 owned by agents in a given time moment can be written as

〈A〉 =

∑
i TiSi
N inf

, (4.1)

where N inf is the number of informed agents, defined as N inf =
∑

i Si. A large value of
N inf/N indicates extensive information spreading. When the average age of information
〈A〉 is low, it means that our smart traffic system is in an up-to-date phase. Thus the number
of informed agents N inf and the average age of information 〈A〉 are good measures of the
effectiveness of information spreading in VANET.

5. RESULTS

Since during the simulation an SI (Susceptible-Infected) model [23] is applied, initially more
and more agents become informed. However, the system never reaches a fully informed
state, because during the simulation new, uninformed agents appear in the system, while
informed ones disappear as they reach their destination. Investigating the time evolution
of the agents it was found that the system reaches a steady state described by saturating
functions. In Fig. 5.1 a, one can observe that at t = 0 (when the RSU is just activated) there
are no informed agents in the system, but soon some agents pass by the information source
of the infrastructure. Then the vehicles carry the information during their motion to different
places of the city meanwhile they behave as secondary information sources speeding up the
spreading of information so leading to increasingN inf (t)/N function with a significant slope.

After a quite short time period, spreading slows down resulting in saturation of the number
of informed agents. The average movement of vehicles during a simulation step ∆t is the
half of the applied range of communication R. (Of course, increasing range R speeds up the
spreading.) The reason why the system reaches this almost steady state is the fact that the
propagation of information can be faster than the motion of vehicles. The saturation level
depends on the number of agents (the density of smart vehicles in the city) and in most
cases the N inf (t)/N curves never reach 1.0. This is shown in Fig. 5.1 b. As one can observe
the information coverage of VANET can be effective only if the number of smart vehicles
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Fig. 5.1. a) Number of informed agents (vehicles) as a function of time for different numbers of agents. After a
short time period a saturation is achieved at a quite high value. b) The previous saturation level depends on the

number of vehicles in the system (of course more smart vehicle leads to higher level of awareness).

exceeds a given threshold (about few hundreds of vehicles in the case of the medium-sized
city Debrecen).

Even though in most cases the number of informed agents N inf is proved to be relatively
high in the system, the really important questions are the following ones. How old is
the average information? Is the system in an up-to-date phase continuously? The average
information age as a function of time 〈A〉 (t) can give the answers. As it is shown on Fig.
5.2 a, most of the agents have relatively young information. Recent information from RSU
overwrites the system very quickly without any outer control. Of course the saturation level
of 〈A〉 (t) (far from the opening time period) is determined by the number of agents. More
smart vehicles lead to a more up-to-date system. (See the Fig. 5.2 b.) The average age of
information is even less than the length of the time period needed to reach the saturation of
the number of informed agents.
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Fig. 5.2. a) The average age of information owned by the vehicles as a function of time. It shows saturation for
different system size. b) The average age of information in the saturation phase decreases logarithmically with

the number of vehicles, so a denser vehicle park in the city results in a more up-to-date system.

The above averages describe the system on a macro scale. For microscale characterization,
we analyzed the time intervals between information exchanges for all agents. The average
information age can be low only if the time interval ∆trecv between two subsequent
information receive events is short for each vehicle. As one can see in Fig. 5.3 a, the
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Fig. 5.3. The distribution of the average message receiving (a) and forwarding (b) time interval of vehicles. They
obey a power law with exponents around 3.4 (a) and 2.5 (b) respectively, independently of the vehicle density.

distribution of ∆trecv has a power-law form: p(∆trecv) ∼ ∆trecv
−γrecv . This means that

most of the agents frequently receive new information packets, but some of them keep old
information for relatively long time. The density of vehicles has no effect on the value of the
exponent which is close to γrecv ≈ 3.4. The distribution of the time intervals between message
forwards ∆tforw also proved to be scale-free, however its exponent γforw is definitely lower,
it is around 2.5. (See Fig. 5.3 b.) One can ask why this difference in the distributions appear
even though the number of receive and forward events are the same. This can be explained
however by conditions of information exchange. When vehicles approach each other within
the communication range, only the up-to-date agent can forward its recent information. In this
way, an agent, who has a quite old information packet has to wait a long time to get a chance
to forward it. Contrarily old information can be overwritten by almost any other message, so
the high receiving chance leads to very few old information to overwrite.

On micro scale, one can follow the spreading of each information holding any given
timestamp T . Agents receive new information from the RSU at time t = T . Then it is
transmitted to other vehicles, so the number of agents NT having the same timestamp T
is increasing. Sooner or later they will be updated so NT (t) is decreasing, finally all of
these information units will disappear at t = T + TL, where TL denotes the lifetime of the
given information. Note that TL is not the lifetime of a given information packet, but the
time interval when the given information (with a given timestamp) is present somewhere in
the system. The time evolution of NT (t) is qualitatively similar for all timestamps, however
quantitatively they are very different. The general form of theNT (t) function can be obtained
by rescaling and averaging all the separate curves. The result is illustrated in Fig. 5.4 a. It
shows that at the beginning information spreads very quickly but after TE time the expansion
reaches its maximum, where M = NT (T + TE) is the maximal number of agents carrying
the information originated at time T . After the expansion, we found a dying out phase with
duration TD = TL − TE . The whole average lifetime 〈TL〉 of information in a system depends
on the number of vehicles proceeding in the town. See Fig. 5.4 b. The curve has a minimum.
In case of small systems, more agents result in lower lifetime TL due to the increasing number
of updates (younger information) related to Fig. 5.2 b. In order to understand the increasing
regime, we have to study the maximum of NT (t− T ) denoted by M . Figure 5.4 c illustrates
that for large system 〈M〉/N increases linearly with N , so an increasing proportion of agents
is carrying the given timestamp in the whole population. If there are more smart vehicles
in the city due to the fast spreading a few information timestamps dominate. There can be
hundreds of different information in the system, however a dominant part of agents carries
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Fig. 5.4. a) The average time evolution of the number of vehicles carrying information with a given timestamp
(T ) for N = 5000. A shorter expansion period TE is followed by a longer dying out period separated by a
maximum M at time t = T + TE . b) The average lifetime of information with a given timestamp as a function
of the number of cars. Increasing vehicle density first leads to decreasing lifetime, but above a certain number of
vehicles, given information can present in the system for a longer time interval. c) The maximal ratio of vehicles
carrying given information with timestamp T at t = T + TE is increasing linearly for large systems. Solid, gray
line just guides the eyes indicating linear dependence. d) The ratio of the expansion period and the lifetime as
a function of the number of agents N . The expansion phase is shrinking by increasing the number of agents

(indicating speeding up of the spreading since M is increasing).

only a few timestamps. In case of a given timestamp the number of agents carrying it can be
a few percent of the population, so hundreds of vehicles. The time needed to overwrite all of
them is long, thus the average lifetime of timestamps 〈TL〉 can increase with N .

The expansion phase is usually shorter than the dying out phase, but their ratio is not fixed.
The 〈TE〉/〈TL〉 ratio as a function of the N number of smart vehicles can be characterized
by an almost linear decreasing curve in the studied systems. (See Fig. 5.4 d.) In case of
N = 103 agents, more than 40% of the lifetime of the average timestamp is in the expansion
phase, while in case of N = 104 only 13% of the lifetime is spent in the expansion period. A
crowded traffic system results in a short and really intensive spread of new information and
it is followed by a long disappearing section with the presence of a few vehicles having old
(maybe no longer valid) information.
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6. SUMMARY

In this work, we presented an agent-based model of information spreading on Vehicular Ad
hoc NETworks. The time-dependent network topology of agents was based on the motion
of communicating smart vehicles. Vehicles are moving based on shortest travel time paths
between the randomly selected starting and destination points of a real city map. Due to
the short-range communication moving vehicles can receive public information from each
other or from a fixed Road Side Unit. In this ad hoc network, the statistical properties
of information spreading were investigated. Above a certain number of smart vehicles in
the system information spreads very fast, and a dominant part of the system can be in an
almost homogeneous informed state. This efficient dissemination of information does not
require considerable computational power of devices because there is no addressing or routing
process and the devices store only the latest packages. However, we found that some agents
can stay in an out-of-date state for a quite long time. The number of smart vehicles has a huge
effect on spreading, only a large self-organized system can be effective.

On micro scale, we analyzed the time intervals between information exchanges for all
agents. We found that the distribution of these intervals has a power-law form where the
density of vehicles has no effect on the exponents. The evolution of the spreading of each
information holding any given timestamps was also analyzed. We found out that the lifetime
of information can be separated into two periods: an expansion period and a dying out period.
We found that the number of agents in these complex systems may affect the information
spreading and the ratio of these two periods in significant and well describable ways. All
these results claim appropriate treating of out-of-date vehicles. The presented results have
shown that the system has many interesting features, although real-life applications require
more realistic simulations.

In our further research, we try to find answers to essential, practical questions. What
happens if the RSU is removed (turned off) or more than one such units are placed to the
system? How to avoid the presence of old (out-of-date, fake) information? What is the effect
of the introduction of a Susceptible-Infected-Susceptible (SIS) model [23] (forgetting old
information)? How to optimize spreading reducing the number of information exchanges (for
energy efficiency), but keeping the system in an up-to-date phase? What is the topology of
this ad hoc communication network?
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