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Abstract: This article is devoted to econometric analysis of the results of experiments conducted with two 
agent-based models, which describe the movement of ground vehicles. There are two types of road users in 
these models: manned ground vehicles (MGV) and unmanned ground vehicles (UGV). In the first model, the 
main difference between UGV and MGV is an ability to exchange massages between UGV for transmitting 
information about extreme situations, which allows them to adjust speed and direction of movement. In the 
second model, in addition to the above differences, UGV have an additional advantage, namely, the ability to 
intelligently assess density of traffic flow for efficient maneuvering. In these models, at a given roundabout, 
traffic characteristics such as output stream traffic and the number of traffic accidents are analyzed. The main 
task of the econometric analysis is to study dependence of these traffic characteristics on the model parameters 
such as average vehicle speed, input flow rate, message exchange rate between UGV, and the impact of the 
effect obtained from the implementation into UGV ability of intelligent estimation of traffic flow density. 
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1. INTRODUCTION 
Currently, the task of developing new intelligent control systems for an ensemble of 

ground-based UGV is being actualized in order to ensure high-speed and safe traffic, 
maximize the capacity of the transport system and minimize the number of factors (for 
example, emerging traffic accidents) that threaten other road users.  

Works [1-7] are devoted to development of UGV control systems. In particular, the paper 
[1] proposes an algorithm based on predictive tracking control, designed to reduce time for 
decision-making. A very promising direction in the design of UGV control systems is an 
approach based on the use of machine learning methods, in particular, reinforced learning 
[2]. Such methods make it possible to ensure an effective response of UGV to the occurrence 
of certain situations on the road (for example, the sudden appearance of a pedestrian). At the 
same time, even the use of multilayer neural networks with a large number of neurons and 
synoptic connections (deep learning) [8, 9], the use of ultraprecise neural networks [10], etc. 
does not allow for zero learning error in pattern recognition and classification of moving 
objects with complex characteristics. Therefore, the task of developing UGV control systems 
based on simple rules that take into account the most common road situations for making 
effective decisions about maneuvering, changing lanes [4, 7], adjusting the speed and 
direction of traffic, etc. is urgent. Such a task can be solved using agent-based simulation 
methods [6, 7, 11, 12], fuzzy clustering [7, 13, 14, 15] and genetic optimization algorithms 
[16]. 

So, earlier we developed and implemented two agent-based models of MGV and UGV 
motion in AnyLogic simulation system [6, 7]. 
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The first model, using the previously proposed phenomenological approach [11], is 
designed to assess the influence of various parameters (such as average initial speeds, input 
flow intensity, data exchange rate between UGV, etc.) on the behavior and condition of 
unmanned and manned ground vehicles in a dense flow [6]. The spatial dynamics of MGV 
and UGV is defined by a system of difference equations with a variable structure. The model 
takes into account the effects of "turbulence" and "traffic congestion" caused mainly by high 
vehicle density and occurrence of road accidents. At the same time, effective interaction is 
carried out between the UGV, in particular, periodic exchange of messages about the traffic 
situation (for example, about the places where accidents occur), in order to timely adjust 
speed and direction of movement. An important feature of this model is the proposed concept 
of the agent's personal space. The behavior of agents (MGV and UGV) in flow depends on 
density of the surrounding space. As the flow density increases, the radius of the agent's 
personal space is compressed (i.e., the transport flow is compacted). However, after reaching 
a certain threshold value of density, the radius of the agent's personal space increases 
significantly in manned ground vehicles, due to the occurrence of panic, and partially 
increases in UGV, due to a predetermined desire to avoid collision in dense traffic flow. 

 
Fig. 1.1. Configuration of road space for MGV and UGV 

The second model is designed for effective management of UGV, in particular, by 
maneuvering when changing lanes, the algorithm of which is based on the proposed fuzzy 
clustering algorithm [7]. The movement of the MGV and UGV ensemble in a certain two-
dimensional space is considered. The space consists of combination of circular motion, two 
entrances and two exits from the circle (Fig. 1.1). At the same time, UGV makes individual 
decisions about trajectory adjustment based on simple rules. If there is less dense traffic in 
one of the adjacent lanes, this UGV is tuning to the corresponding lane. In this case, the flow 
density is estimated using fuzzy clustering methods for each of the available alternatives 
(lanes) across the entire ensemble of vehicles (both UGV and manned ground vehicles that 
do not have all the information about the density of the surrounding space). As a result, 
adaptive UGV management is supported, which minimizes the risks of accidents (accidents 
involving UGV) and maximizes traffic (total output stream) in conditions of heavy traffic 
flow. Software implementation in AnyLogic of the developed simulation model was 
performed and numerical experiments were carried out. Modes that ensure safe and high-
speed movement of vehicles in dense traffic flow are found (Fig. 1.2). The developed system 
(Fig. 1.2) allows us to evaluate influence of multiple control parameters (for example, 
average speeds of MGV and UGV, intensities of input flows of MGV and UGV, etc.) on the 
total number of accidents and traffic of the output stream. 
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Fig. 1.2. Software implementation of the model in AnyLogic simulation system 

This work is devoted to the analysis of the results of experiments conducted with these 
models. The main task of this analysis is to study dependence of the output stream traffic and 
the number of accidents on model parameters such as average vehicle speed, input stream 
intensity, message exchange frequency between UGV, and the impact of the effect obtained 
from the implementation into UGV ability of intelligent estimation of traffic flow density. To 
do this, a pool of identical experiments was conducted within each model. A set of 
experiments is formed as a result of multiple runs of the model, in each of which the 
specified model parameters take values in a given range with a given step. Finally, a database 
consisting of the results of more than one hundred thousand experiments is formed for each 
model. 

Based on these results, an econometric analysis was carried out: the dependence of the 
output stream traffic and the number accidents on the parameters in both the first and second 
models was studied. Also the effect obtained as a result of the introduction of UGV with the 
ability to intelligently assess the density of road traffic, consisting in increasing the output 
stream traffic and reducing the number of accidents, was estimated. 

2. SOURCE DATA, PRIMARY DATA ANALYSIS 
This paper uses data obtained from a pool of experiments with each of the two agent-based 
models [6, 7] that describe the movement of vehicles, both manned and unmanned, in a 
given section of circular motion. In these experiments, such traffic characteristics as the 
output stream traffic and the number of traffic accidents over a certain period of time, which 
act as dependent variables, were calculated. The following parameters of agent-based models 
are explanatory variables: 

• IntensityOfUnсrewedVehicles – intensity of entry of UGV to the specified section of 
circular motion (in units of model time);  

• IntensityOfUsualAgents – intensity of entry of MGV to the specified section of 
circular motion (in units of model time); 

• SpeedOfUncrewedVehicles – average UGV speed (km/h); 
• SpeedOfUsualAgents – average MGV speed (km/h); 
• IntensityOfConnections – intensity of messaging between UGV (in units of model 

time).   
As noted in the introduction, lot of experiments are formed as a result of multiple runs of the 
model implemented in AnyLogic using the special option “Sensitivity Analysis”. In this case, 
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the specified model parameters take values in the specified range with the specified step 
(Table 2.1). 

Table 2.1. Variation of model parameters  
№ Name 

of parameter  
Range 

of variation  
Variation step Number 

of variations   
1 IntensityOfUncrewedVehicles 0.005 – 0.05 0.005 10 
2 IntensityOfUsualAgents 0.005 – 0.05 0.005 10 
3 SpeedOfUncrewedVehicles 40 – 140 10 11 
4 SpeedOfUsualAgents 40 – 140 10 11 
5 IntensityOfConnections 0 – 1 0.1 11 

 
It is easy to see that the total number of experiments in each pool is 133100. The Table 2.2 
shows the main descriptive statistics of dependent variables.  

Table 2.2. Descriptive statistics 
 Average Median Standart  

deviation 
Minimum Maximum 

Output stream traffic 
(model 1) 

56.5 56 25.4 3 149 

Output stream traffic 
(model 2) 

67.8 65 35.3 3 207 

Number of accidents 
(model 1) 

16 10 18.6 0 148 
 

Number of accidents 
(model 2) 

5.7 1 12.7 0 145 

 
According to Table 2.2, introduction of intelligent UGV leads to an increase in output traffic 
by 20% and a decrease in the average number of accidents by 2.8 times. It is also worth 
noting that the median number of accidents is reduced from 10 to 1, i.e. in model with the 
ability to intelligently estimate the traffic density, approximately half of the experiments do 
not have an accident. In Fig. 2.1 and Fig. 2.2 histograms of the output stream traffic 
distribution are presented, and in Fig. 2.3 and Fig. 2.4 – histograms of the distribution of the 
number of accidents in model 1 and model 2, respectively. 

 
Fig. 2.1. Histogram of the output stream traffic distribution in model 1 
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Fig. 2.2. Histogram of the output stream traffic distribution in model 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3. Histogram of the number of accident distribution in model 1 

 
 

 
Fig. 2.4. Histogram of the number of accident distribution in model 2 

From Fig. 2.3 and Fig. 2.4 it follows that the number of experiments without an accident in 
model 2 is three times less than in model 1. We finish the initial data analysis with the graph 
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below (Fig. 2.5). It shows how the number of experiments in which the number of accidents 
is not less than the specified number (between the minimum and maximum number) 
decreases in both the first and second models. 

 
Fig. 2.5. Number of experiments with number of accidents not less than a given value 
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Let's proceed to the study of the influence of the model parameters specified in Table 2.1 on 
the output stream traffic and the number of accidents, i.e., to construct and evaluate the 
corresponding regression equations. At the initial stage of this study, we will try to determine 
the model specification. Since the set of explanatory variables is defined in advance in the 
framework of building the above agent-based models, we are trying to determine the type of 
assumed dependency. We restrict ourselves to two types of functions that are most often 
encountered in econometric studies: linear and power-law. In this regard, we present 
matrices of pairwise correlations of all variables (both explanatory and dependent), as well as 
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• X2 – IntensityOfUsualAgents; 
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• X4 – SpeedOfUsualAgents; 
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• Y1 – Output stream traffic; 
• Y2 – Number of accidents. 

Thus – X1, X2, X3, X4, X5 – explaining variables, а Y1, Y2 – dependent. 
Table 3.1. Correlation matrix of variables in model 1 
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Y2  0.47  0.46  0.11 -0.21 -0.003 -0.16  1.00 
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Table 3.2. Correlation matrix of logarithms of variables in model 1 
 LOG(X1) LOG(X2) LOG(X3) LOG(X4) LOG(X5) LOG(Y1) LOG(Y2) 

LOG(X1)  1.00 -0.22 -0.008  0.02 -0.0007  0.09  0.47 
LOG(X2) -0.22  1.00  0.001  0.03  0.0005  0.08  0.44 
LOG(X3) -0.008  0.001  1.00 -0.015 -0.0003  0.37  0.10 
LOG(X4)  0.02  0.03 -0.015  1.00  0.002  0.75 -0.17 
LOG(X5) -0.0007  0.0005 -0.0003  0.002  1.00 -0.0003 -0.001 
LOG(Y1)  0.09  0.08  0.37  0.75 -0.0003  1.00 -0.10 
LOG(Y2)  0.47  0.44  0.10 -0.17 -0.001 -0.10  1.00 

Table 3.3. Correlation matrix of variables in model 2 
 X1 X2 X3 X4 X5 Y1 Y2 

X1  1.00 -0.26 -0.02  0.12 -0.001  0.23  0.19 
X2 -0.26  1.00  0.04 -0.008 -0.002  0.13  0.39 
X3 -0.02  0.04  1.00 -0.05 -0.001  0.37  0.12 
X4  0.12 -0.008 -0.05  1.00 -0.0009  0.74 -0.41 
X5 -0.001 -0.002 -0.001 -0.0009  1.00 -0.003  0.001 
Y1  0.23  0.13  0.37  0.74 -0.003  1.00 -0.37 
Y2  0.19  0.39  0.12 -0.41  0.001 -0.37  1.00 

Table 3.4. Correlation matrix of logarithms of variables in model 2 
 LOG(X1) LOG(X2) LOG(X3) LOG(X4) LOG(X5) LOG(Y1) LOG(Y2) 

LOG(X1)  1.00 -0.23 -0.02  0.10 -0.002  0.20  0.14 
LOG(X2) -0.23  1.00  0.04 -0.03 -0.0006  0.07  0.45 
LOG(X3) -0.02  0.04  1.00 -0.05 -0.001  0.35  0.10 
LOG(X4)  0.10 -0.03 -0.05  1.00 -0.0006  0.77 -0.47 
LOG(X5) -0.002 -0.0006 -0.001 -0.0006  1.00 -0.001  0.001 
LOG(Y1)  0.20  0.07  0.35  0.77 -0.001  1.00 -0.40 
LOG(Y2)  0.14  0.45  0.10 -0.47  0.001 -0.40  1.00 

 
Based on the data from these tables, we can draw the following conclusions: 

1. The pairwise correlation both between explanatory variables and between their 
logarithms is low in both models, which, when evaluating the corresponding 
regression equations, cannot become a source of multicollinearity. This is important 
given that we are interested in the contribution of each explanatory variable to 
changes in dependent variables. 

2. Comparing pairwise correlations between dependent and explanatory variables does 
not allow us to determine which of the functions (linear or power-law) most 
adequately describes the dependence of output stream traffic and the number of 
accidents on the model parameters. Therefore, in the future we will conduct 
econometric analysis using both types of functions. 

In connection with the use of power functions, which will be logarithmized before estimation, 
we discard the results of experiments in which a variable assumes a zero value. Thus, to 
construct the regression equations for the output stream traffic, the data of 102448 
observations were used, and for the number of accidents – the data of 65134 observations. 

4. ECONOMETRIC ANALYSIS OF TRAFFIC CHARACTERISTICS IN THE 
FRAMEWORK OF LINEAR REGRESSION EQUATIONS 
We proceed to evaluate the dependences of the output stream traffic and the number of 
accidents in both models on the indicated parameters of the model in the framework of linear 
regression equations. So, we will build and study linear regression equations with the 
following dependent variables: 

• output stream traffic in model 1; 
• output stream traffic in model 2; 
• number of accidents in model 1; 
• number of accidents in model 2. 

The coefficients were estimated in the framework of the classical multiple regression model 
using the least squares method. Since the White test confidently rejects the null hypothesis of 
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homoskedasticity of regression residues, standard errors are estimated by using the White 
procedure. 

4.1. Results of an econometric analysis of the output stream traffic in the framework of 
linear regression equations 
Here are the results of evaluating the dependence of the output stream traffic (Table 4.1) on 
the above set of explanatory variables. 

Table 4.1. Dependent variable – output stream traffic, linear regression 
Explanatory variables Model 1  Model 2  

Constant -37.76*** 

(0.27) 
-79.16*** 

(0.40) 
IntensityOfUncrewedVehicles 147.22*** 

(3.72) 
499.05*** 

(5.29) 
IntensityOfUsualAgents 284.38*** 

(4.56) 
446.01*** 

(6.70) 
SpeedOfUncrewedVehicles 0.34*** 

(0.002) 
0.48*** 
(0.002) 

SpeedOfUsualAgents 0.60*** 
(0.002) 

0.88*** 
(0.003) 

IntensityOfConnections 0.40 
(0.28) 

-0.12 
(0.25) 

R2 0.73 0.76 
Note. In parentheses are the values of standard errors. ***, **, * – significance at the 1, 5 and 10% level, 
respectively. 
 
As follows from Table 4.1, all explanatory variables in both models except 
IntensityOfConnections, which describe the output stream traffic, are significant at a 1% 
level. We also note that in both models the values of the determination coefficients are quite 
high.   
Comparing the coefficients for significant variables in both models, we can draw the 
following conclusions:  

1. An increase in the UGV input stream intensity by 0.005 units of model time 
(variation step, Table 2.1) leads to an increase in model 2 output stream traffic 
compared to model 1 output stream traffic by about 1.76 units. For MGV, the 
indicated difference is 0.81 units. 

2. An increase in the average UGV speed by 10 km / h (variation step, Table 2.1) leads 
to an increase in the output stream traffic of model 2 compared with the output stream 
traffic of model 1 by 1.4 units. For MGV, the indicated difference is 2.8 units. 

4.2. Results of an econometric analysis of the number of accidents in the framework of 
linear regression equations 
Here are the results of evaluating the dependence of the number of accidents on the above set 
of explanatory variables (Table 4.2). 

Table 4.2. Dependent variable – number of accidents, linear regression 
Explanatory variables Model 1 Model 2 

Constant -22.46*** 
(0.20) 

-6.34** 
(0.24) 

IntensityOfUncrewedVehicles 797.77*** 
(2.98) 

414.23*** 
(3.96) 

IntensityOfUsualAgents 810.13*** 
(3.14) 

546.11*** 
(4.00) 

SpeedOfUncrewedVehicles 0.07*** 
(0.001) 

0.04*** 
(0.001) 

SpeedOfUsualAgents -0.15*** 
(0.001) 

-0.22*** 
(0.002) 

IntensityOfConnections -0.16 
(0.13) 

0.12 
(0.16) 

R2   0.62 0.45 

Note. In parentheses are the values of standard errors. ***, **, * – significance at the 1, 5 and 10% level, 
respectively. 
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From Table 4.2 it follows that, as in the previous case, the IntensityOfConnections variable is 
not significant. All other explanatory variables describing the number of accidents in both 
models are significant at a 1% level. The positive values of the coefficients in the variables 
IntensityOfUncrewedVehicles and IntensityOfUsualAgents are quite natural. The average 
speed of UGV has a positive effect on the number of accidents, and the average speed of 
MGV is negative. This is explained as follows: an increase in the speed of MGV, in contrast 
to an increase in the speed of UGV, is a result of enough free traffic and leads to a decrease 
in road congestion, and an increase in the speed of UGV can lead to unpredictable actions by 
MGV. Comparing coefficients for explanatory variables in both models, we can draw the 
following conclusions:  

1. An increase in UGV input stream intensity by 0.005 units of model time (variation 
step, Table 2.1) leads to a decrease in the number of accidents in model 2 compared 
to the number of accidents in model 1 by about 1.92 units. For MGV, the indicated 
difference is about 1.6 units. 

2. An increase in the average UGV speed by 10 km / h (variation step, Table 2.1) leads 
to a decrease in the number of accidents in model 2 compared with the number of 
accidents in model 1 by 0.3 units. For MGV, the indicated difference is 0.7 units. 

In conclusion, we note that evaluating the dependence of the output stream traffic and the 
number of accidents on the specified model parameters using the linear function gives 
generally good results. Only an assessment of the dependence of the number of accidents on 
the studied parameters in model 2 can be called not very successful due to the rather low 
value of the determination coefficient equal to 0.45. We proceed to the estimation of these 
dependences using a nonlinear function. 

5. ECONOMETRIC ANALYSIS OF TRAFFIC CHARACTERISTICS IN THE 
FRAMEWORK OF NONLINEAR REGRESSION EQUATIONS 
Let's proceed to estimate the dependences of the output stream traffic and the number of 
accidents in both models on the indicated parameters of the model in the framework of 
nonlinear regression equations. So, we will build and study power regression equations with 
the following dependent variables: 

• output stream traffic in model 1; 
• output stream traffic in model 2; 
• number of accidents in model 1; 
• number of accidents in model 2. 

After logarithming of the equation, the coefficients were estimated in the framework of the 
classical multiple regression model using the least squares method, and standard errors were 
estimated using the White procedure. Here are the results of evaluating the dependence of the 
output stream traffic (Table 5.1) and the number of accidents (Table 5.2) on the indicated set 
of explanatory variables. 

Table 5.1. Dependent variable –. output stream traffic, nonlinear regression 
Explanatory variables Model 1 Model 2 

Constant -2.65*** 
(0.03) 

-3.79*** 
(0.02) 

IntensityOfUncrewedVehicles 0.08*** 
(0.002) 

0.17*** 
(0.002) 

IntensityOfUsualAgents 0.08*** 
(0.002) 

0.13*** 
(0.002) 

SpeedOfUncrewedVehicles 0.55*** 
(0.003) 

0.68*** 
(0.003) 

SpeedOfUsualAgents 1.07*** 
(0.004) 

1.35*** 
(0.003) 

IntensityOfConnections 0.002 
(0.002) 

-0.0000013 
(0.002) 

R2 0.72 0.77 
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Table 5.2. Dependent variable – number of accidents, nonlinear regression 
Explanatory variables  Model 1 Model 2 

Constant 11.77*** 
(0.06) 

13.86*** 
(0.07)  

IntensityOfUncrewedVehicles 1.11*** 
0.005 

0.66*** 
(0.006) 

IntensityOfUsualAgents 1.10*** 
(0.004) 

1.12*** 
(0.006) 

SpeedOfUncrewedVehicles 0.30*** 
(0.008) 

0.20*** 
(0.009) 

SpeedOfUsualAgents -0.61*** 
(0.008) 

-1.61*** 
(0.009) 

IntensityOfConnections -0.07*** 
(0.005) 

0.004 
(0.005) 

R2   0.58 0.52 

Note. In parentheses are the values of standard errors. ***, **, * – significance at the 1, 5 and 10% level, 
respectively. 
 
Comparing Table 5.1 and Table 5.2 with Table 4.1 and Table 4.2, respectively, we can 
conclude that power regressions give qualitatively the same conclusions as linear ones. This 
is especially true for the description of these dependencies for output stream traffic. As for 
the description of the dependence for the number of accidents, here we can identify some 
advantage of power regression. Firstly, the value of the determination coefficient for model 2 
increases from 0.45 to 0.52, and secondly, in contrast to the linear dependence, the 
IntensityOfConnections variable is statistically significant in the first model at a 1% level. 
The corresponding coefficient value in Table 5.2 (-0.07) allows us to state that an increase in 
message intensity between UGV by 14% allows reducing the number of accidents by 1%. 
Moreover, in the second model, this variable is insignificant. This is explained by the fact 
that in the second model, UGV have ability to estimate density of traffic flow, which allows 
them to maneuver effectively. In such a situation, the exchange of messages about the 
presence of an accident becomes irrelevant for the UGV. 

6. CONCLUSION 
In [6, 7] two agent-based models of movement of UGV and MGV, which were developed 
and implemented in AnyLogic simulation system, are described. The main difference 
between the second model and the first is that UGV is endowed with an additional capability 
- the ability to intelligently assess the density of traffic flow. The main purpose of this article 
is to evaluate the effect obtained from the implementation of these UGV, which is to increase 
output stream traffic and reduce the number of accidents. For this purpose a pool of identical 
experiments was carried out within each model, the results of which became the initial basis 
for conducting an econometric analysis. For both the first and second models, the 
dependence of the output stream traffic and the number of accidents on a given road section 
in a given period of time on a number of model parameters such as the average vehicle speed, 
input stream intensity, and the frequency of exchanges between UGV was studied. The study 
of these dependencies was carried out both in the framework of linear and power regressions. 
Evaluation of these dependencies made it possible to determine an increase in the output 
stream traffic and a decrease in the number of accidents in the second model relative to the 
indicated characteristics in the first model depending on the model parameters.      
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