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Abstract: In this paper, the properties of coincidence points of mappings acting between (q1, q2)-
quasimetric spaces are studied. For a pair of mappings, we obtain estimates for the distance from
a point to the coincidence points set and intersection of the respective graphs of the mappings.
In addition, the stability of coincidence points is studied. A generalization of Lim’s lemma is
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

The paper is devoted to the investigation of coincidence points of pairs of set-valued mappings
acting between (q1, q2)-quasimetric spaces. In order to proceed to the statement of the
problem, let us recall the definitions of the concepts in use.

Let X be a nonempty set, numbers q0 ≥ 1, q1 ≥ 1, q2 ≥ 1 be given. A function ρX :
X ×X → R+ is called a (q1, q2)-quasimetric if

• ρX(x, y) = 0⇔ x = y ∀ x, y ∈ X
(the identity axiom);

• ρX(x, z) ≤ q1ρX(x, y) + q2ρX(y, z) ∀x, y, z ∈ X
(the (q1, q2)-generalized triangle inequality).

If ρX is a (q1, q2)-quasimetric, then the space (X, ρX) is called a (q1, q2)-quasimetric space.
The concept of the (q1, q2)-quasimetric space was introduced in [1]. If q1 = q2 = 1 then

this concept coincides with the concept of a quasimetric space. If we additionally assume that
a quasimetric satisfies the symmetry axiom, i.e. ρX(x, y) ≡ ρX(y, x), it becomes a metric.

The detailed description of topological properties of (q1, q2)-quasimetric spaces was
provided in [2]. Recall some basic definitions. A sequence {xi} ⊂ X is said to converge
to a point x ∈ X if ρX(x, xi)→ 0 as i→∞. The point x is called a limit of {xi}. A subset
of X is said to be closed if every limit of every convergent sequence from this set belongs to
this set. A sequence {xi} ⊂ X is said to be a Cauchy sequence if

∀ ε > 0 ∃N ∈ N : ρX(xj, xi) < ε ∀ i > j > N.

Let (X, ρX) and (Y, ρY ) be (q1, q2)-quasimetric spaces, Φ,Ψ : X ⇒ Y be set-valued
mappings that map points x ∈ X to non-empty subsets of Y.
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A point ξ ∈ X is called a coincidence point of the set-valued mappings Φ,Ψ if

Φ(ξ) ∩Ψ(ξ) 6= ∅.

Below we use the following notation: Coin(Ψ,Φ) stands for the set of all coincidence
points of mappings Ψ and Φ; gphΨ stands for the graph of Ψ, i.e.

gphΨ = {(x, y) ∈ X × Y : y ∈ Ψ(x)};

Γ(Ψ,Φ) stands for the intersection of the graphs of Ψ and Φ, i.e.

Γ(Ψ,Φ) := {(x, y) ∈ X × Y : y ∈ Ψ(x) ∩ Φ(x)}.

It is obvious that
Coin(Ψ,Φ) 6= ∅ ⇔ Γ(Ψ,Φ) 6= ∅.

For non-empty sets U, V ⊂ X, denote

dist(U, V ) = inf{ρX(x1, x2) : x1 ∈ U, x2 ∈ V },

h+
X(U, V ) = sup

u∈U
dist(u, V ),

hX(U, V ) := max{h+
X(U, V ), h+

X(V, U)}.

The function h+
X is called the Hausdorff deviation; the function hX is called the Hausdorff

(q̂1, q̂2)-quasimetric (note that (q̂1, q̂2) may differ from (q1, q2)). For Hausdorff deviation h+
X ,

the (q1, q2)-generalized triangle inequality holds (see [3, page 25]), i.e.

h+
X(U,W ) ≤ q1h

+
X(U, V ) + q2h

+
X(V,W ) ∀U, V,W ⊂ X.

Moreover, the definitions above directly imply that

hX(U, V ) ≥ h+
X(U, V ) ≥ dist(U, V ) ∀U, V ⊂ X.

Let us recall now some definitions related to set-valued mappings.

Definition 1.1:
( [3, Definition 5.5]) Given a number β ≥ 0, the set-valued mapping Φ : X ⇒ Y is called
β-Lipschitz if

h(Φ(x1),Φ(x2)) ≤ βρX(x1, x2) ∀x1, x2 ∈ X.
If (X, ρX) = (Y, ρY ) and β < 1 then the β-Lipschitz set-valued mapping Φ is said to be a
contraction.

Definition 1.2:
( [3, Definition 4.4]) The set-valued mapping Φ : X ⇒ Y is said to be closed, if for all
sequences {xi} ⊂ X, {yi} ⊂ Y and points x ∈ X, y ∈ Y such that xi → x, yi → y and
(xi, yi) ∈ gph(Φ) for all i, we have (x, y) ∈ gph(Φ).

Definition 1.3:
We will say that the graph of the set-valued mapping Φ : X ⇒ Y is complete, if for all
Cauchy sequences {xi} ⊂ X and {yi} ⊂ Y such that {(xi, yi)} ⊂ gph(Φ), there exists a
point (x, y) ∈ gph(Φ) such that xi → x and yi → y.

Denote by BX(x0, r) a closed ball in X centered at x ∈ X with the radius r > 0, i.e.

BX(x0, r) = {x ∈ X : ρX(x0, x) ≤ r}.
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Definition 1.4:
( [3, definition 5.4]) Given a number α > 0, the set-valued mapping Ψ : X ⇒ Y is called
α-covering if ⋃

y∈Ψ(x)

BY (y, αr) ⊆ Ψ(BX(x, r)) ∀r ≥ 0,∀x ∈ X.

Let us now recall the coincidence point existence theorem from [3]. Let numbers α > 0,
β ∈ [0, α) and set-valued mappings Ψ,Φ : X ⇒ Y be given. Denote

MΨ,Φ(x, r) := {y ∈ Φ(x) : dist(Ψ(x), y) < r}, x ∈ X, r > 0,

S(θ, n) :=
1− θn

1− θ
, θ ∈ [0, 1), n = 0, 1, 2... ,

m0 := min

{
j ∈ N : q2

(
β

α

)j
< 1

}
.

Theorem 1.1:
( [3, Theorem 5.7]) Let numbers α > 0 and β ∈ [0, α) be given. Assume that

• the set-valued mapping Ψ : X ⇒ Y is α-covering and its graph is closed;
• set-valued mapping Φ : X ⇒ Y is β-Lipschitz;
• at least one of the graphs gph(Ψ) or gph(Φ) is complete.

Then for all
x0 ∈ X, r0 > dist(Ψ(x0),Φ(x0)), y1 ∈MΨ,Φ(x0, r0)

there exists ξ ∈ X such that
Ψ(ξ) ∩ Φ(ξ) 6= ∅,

lim
λ→ξ

ρX(x0, λ) ≤
q2

1α
m0−1S(q2

β
α
,m0 − 1) + q1(q2β)m0−1

αm0 − q2βm0
r0.

This assertion not only provides the sufficient conditions for the existence of a coincidence
point but also an estimate of the distance from a point x0 ∈ X to a coincidence point ξ of the
given mappings. A problem to obtain an estimate of distance from the point y1 to a point
η ∈ Ψ(ξ) ∩ Φ(ξ) naturally arises. For the case when (X, ρX) and (Y, ρY ) are metric spaces,
this problem was solved in [4, 5]. The main goal of our paper is to obtain results analogous
to those in [4,5] for set-valued mappings acting between (q1, q2)-quasimetric spaces. We also
discuss a similar problem for fixed points of set-valued mappings and derive propositions on
fixed points properties similar to those in [6].

The results of this paper may have applications in the investigation of various nonlinear
equations. One of the possible applications of the results is the investigation of nonlinear
equations in Banach spaces equipped with an additional bimodule structure over a group
ring based on the theory developed in [7]. Note that the results on coincidence points and
their analogs (see, for example, [8], [9]) are applied in the study of equations appearing in
economic models (see [10]), differential inclusions (see [11], [12], [13]), and other problems.

2. MAIN RESULTS. ESTIMATES OF DISTANCE FROM A POINT TO THE
INTERSECTION SET OF TWO GRAPHS

Let q1 ≥ 1, q2 ≥ 1 be given numbers, (X, ρX), (Y, ρY ) be (q1, q2)-quasimetric spaces.
Given α > 0, β ∈ [0, α), denote byFα,β the set of all ordered pairs of set-valued mappings

(Ψ,Φ), Ψ,Φ : X ⇒ Y, such that

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)



94 R. SENGUPTA, Z.T. ZHUKOVSKAYA, S.E. ZHUKOVSKIY

• the set-valued mapping Ψ : X ⇒ Y is α-covering;
• set-valued mapping Φ : X ⇒ Y is β-Lipschitz;
• either gph(Ψ) is complete and Φ(x) is a closed set for every x ∈ X or Ψ is closed and

gphΦ is complete.

Theorem 2.1:
Let numbers α > 0, β ∈ [0, α) and an arbitrary ordered pair of set-valued mappings
(Ψ,Φ) ∈ Fα,β be given. Then for all

x0 ∈ X, r0 > dist(Ψ(x0),Φ(x0)), y1 ∈MΨ,Φ(x0, r0)

there exist ξ ∈ X and η ∈ Y such that

η ∈ Ψ(ξ) ∩ Φ(ξ),

lim
λ→ξ

ρX(x0, λ) ≤
q2

1α
m0−1S(q2

β
α
,m0 − 1) + q1(q2β)m0−1

αm0 − q2βm0
r0, (2.1)

lim
κ→η

ρY (y1, κ) ≤ β
q2

1α
m0−1S(q2

β
α
,m0 − 1) + q1(q2β)m0−1

αm0 − q2βm0
r0. (2.2)

Before proving Theorem 2.1, let us prove the following lemma.
Lemma 2.1:
Let the set-valued mapping Ψ : X ⇒ Y be α-covering, the set-valued mapping Φ : X ⇒ Y
be β-Lipschitz. Then for arbitrary

δ > 0, x0 ∈ X, y1 ∈MΨ,Φ(x0, αδ + dist(Ψ(x0),Φ(x0)))

there exist sequences {xi} ⊂ X and {yi} ⊂ Y such that

ρX(x0, x1) ≤ δ +
dist(Ψ(x0),Φ(x0))

α
, (2.3)

ρX(xi−1, xi) ≤
(β
α

+ δ
)
ρX(xi−2, xi−1) ∀i ≥ 2, (2.4)

yi ∈ Ψ(xi) ∩ Φ(xi−1) ∀i ≥ 1, (2.5)
ρY (yi−1, yi) ≤ (β + αδ)ρX(xi−2, xi−1) ∀i ≥ 2. (2.6)

Proof
Let us take an arbitrary x0 ∈ X and δ > 0. Set

r0 = αδ + dist(Ψ(x0),Φ(x0)).

Let us take an arbitrary point y1 ∈MΨ,Φ(x0, r0). Since the mapping Ψ is α-covering, there
exists a point x1 ∈ BX(x0, r0) such that y1 ∈ Ψ(x1). Therefore, y1 ∈ Ψ(x1) ∩ Φ(x0). Let us
construct the sought sequences by induction.

If x0 = x1 then set x2 := x1, y2 := y1. Assume that x0 6= x1. Set

r1 := (β + αδ)ρX(x0, x1).

Since the mapping Φ is β-Lipschitz, we have hY (Φ(x0),Φ(x1)) < r1. Therefore, there exists
a point y2 ∈ Φ(x1) such that ρY (y1, y2) < r1. Since y1 ∈ Ψ(x1), we have

y2 ∈
⋃

y∈Ψ(x1)

BY (y, r1).
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Therefore, since the set-valued mapping Ψ is α-covering, there exists a point x2 ∈ BX(x1, r1)
such that

y2 ∈ Ψ(x2) and ρX(x1, x2) ≤ r1

α
.

The sought x2, y2 are constructed.
Let us now assume that for a certain j, the sought points xi, yi, i = 1, j, are constructed.

Let us construct xj+1, yj+1.
If xj = xj−1 then set xj+1 := xj , yj+1 := yj .
Assume that xj 6= xj−1. Set

rj := (β + αδ)ρX(xj−1, xj).

Since the mapping Φ is β-Lipschitz, we have hY (Φ(xj−1),Φ(xj)) < rj. Therefore, there
exists a point yj+1 ∈ Φ(xj) such that ρY (yj, yj+1) ≤ rj. Since yj ∈ Ψ(xj), we have

yj+1 ∈
⋃

y∈Ψ(xj)

BY (y, rj).

Since the set-valued mapping Ψ is α-covering, there exists a point xj+1 ∈ BX(xj, rj) such
that

yj+1 ∈ Ψ(xj+1) and ρX(xj, xj+1) ≤ rj
α
.

The sought xj+1, yj+1 are constructed.

Proof of Theorem 2.1. Without loss of generality, we assume α = 1. Take a δ > 0 such
that

min

{
j ∈ N : q2

(
β

α
+ δ

)j
< 1

}
= m0, r0 > dist(Ψ(x0),Φ(x0)) + δ.

Let us consider the corresponding sequences {xi} and {yi}, that were constructed in
Lemma 2.1. Let us show that {xi} is a Cauchy sequence.

For integers i, j ≥ 0, we have

ρX(xi, xi+j) ≤ q1ρX(xi, xi+1) + q2ρX(xi+1, xi+j) ≤

≤ q1r0(β + δ)i + q2

(
q1ρX(xi+1, xi+2) + q2ρX(xi+2, xi+j)

)
≤

≤ q1r0(β + δ)i + q1q2r0(β + δ)i+1 + q2
2

(
q1ρX(xi+2, xi+3) + q2ρX(xi+3, xi+j)

)
≤

≤ · · · ≤ q1r0(β + δ)i
(
1 + q2(β + δ) + · · ·+ qj−2

2 (β + δ)j−2 + qj−1
2 (β + δ)j−1q−1

1

)
=

= q1r0(β + δ)iS̃(j).

Here

S̃(j) = S(q2(β + δ), j − 1) + qj−1
2 (β + δ)j−1q−1

1 , j ∈ N, S̃(0) = 0.

Thus, for any non-negative integer i and k, we have

ρX(xi, xi+k) ≤ q1ρX(xi, xi+m0) + q2ρX(xi+m0 , xi+k) ≤

≤ q1ρX(xi, xi+m0) + q2

(
q1ρX(xi+m0 , xi+2m0)+

+q2ρX(xi+2m0 , xi+k)
)
≤ q1ρX(xi, xi+m0) + q1q2ρX(xi+m0 , xi+2m0)+

+q2
2

(
q1ρX(xi+2m, xi+3m0) + q2ρX(xi+3m0 , xi+k)

)
≤
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≤ q1ρX(xi, xi+m0) + q1q2ρX(xi+m0 , xi+2m0) + q1q
2
2ρX(xi+2m0 , xi+3m0) + q2

3ρX(xi+3m0 , xi+k) ≤
≤ · · · ≤ q1ρX(xi, xi+m0) + q1q2ρX(xi+m0 , xi+2m0)+

+ · · ·+ q1q
p−1
2 ρX(xi+(p−1)m0 , xi+pm0) + qp2ρX(xi+pm0 , xi+k) ≤

≤ q2
1r0β

iS̃(m0)
(
1 + q2(β + δ)m0 + q2

2(β + δ)2m0 + · · ·+ qp−1
2 (β + δ)(p−1)m0

)
+

+qp2q1r0(β + δ)i+pm0S̃(k − pm0) =

= q2
1r0(β + δ)iS̃(m0)S(q2(β + δ)m0 , p) + qp2(β + δ)i+pm0q1r0S̃(k − pm0),

where p is the integer part of k/m0. Since, q2(β + δ)m0 < 1, we have

ρX(xi, xi+k) ≤

≤ q2
1r0(β + δ)i

(
S̃(m0)S(q2(β + δ)m0 , p) + qp2r0(β + δ)pm0q−1

1 S̃(k − pm0)
)
≤

≤ q2
1r0(β + δ)i

( S̃(m0)

1− q2(β + δ)m0
+ q−1

1 S̃(k − pm0)
)
.

(2.7)

Since, 0 ≤ k − pm0 ≤ m0, the value q−1
1 S(k − pm0) is uniformly bounded for all k.

Therefore, {xi} is a Cauchy sequence. Let us show that {yi} is also a Cauchy sequence.
According to the lemma, ρY (yi+1, yi+j+1) ≤ (β + δ)ρX(xi, xi+j) for every i and j.

Therefore, repeating the arguments above, we get

ρX(yi+1, yi+k+1) ≤ (β + δ)[q2
1r0(β + δ)i

(
S̃(m0)S(q2(β + δ)m0 , p)+

+qp2(β + δ)pm0q−1
1 S̃(k − pm0)

)
] ≤

≤ q2
1r0(β + δ)i+1

(
S̃(m0)

1−q2(β+δ)m0
+ q−1

1 S̃(k − pm0)
)
.

(2.8)

Therefore, {yi} is a Cauchy sequence.
Consider now two cases. At first, assume that the gph(Ψ) is complete and each value of

Φ is a closed set. Then the Cauchy sequences {xi}, {yi} converge to points ξ ∈ X, η ∈ Ψ(ξ)
respectively as (xi, yi) ∈ gph(Ψ). We have

hY (Φ(xi),Φ(ξ)) = hY (Φ(ξ),Φ(xi)) ≤ βρX(ξ, xi),

and thus h+
Y (yi+1,Φ(ξ)) ≤ βρX(ξ, xi). Therefore,

h+
Y (η,Φ(ξ)) ≤ q1ρY (η, yi+1) + q2h

+
Y (yi+1,Φ(ξ)) ≤ q1ρY (η, yi+1) + q2βρX(ξ, xi).

Since {yi+1} tends to η and {xi} tends to ξ, we have h+
Y (η,Φ(ξ)) = 0. This equality and the

closedness of Φ(ξ) imply η ∈ Φ(ξ).
Assume now that gph(Φ) is complete and Ψ is closed. Then the Cauchy sequences {xi},

{yi} converge to some points ξ ∈ X , η ∈ Φ(ξ) respectively, since (xi, yi+1) ∈ gph(Φ). The
set gph(Ψ) is closed, therefore η ∈ Ψ(ξ).

So, it is proved that
η ∈ Φ(ξ) ∩Ψ(ξ).

Passing to the limit in (2.7) as k → +∞ and putting i = 0 we obtain

lim
ζ→ξ

ρX(x0, ζ) ≤
q2

1α
m0S

(
q2

β+αδ
α
,m0 − 1

)
+ q1q

m0−1
2 (β + αδ)m0−1

αm0 − q2(β + αδ)m0

(
δ +

dist(Ψ(x0),Φ(x0))

α

)
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Hence, as the choice of δ is arbitrary, it implies (2.1). Analogously passing to the limit as
k →∞ in (2.8) and substituting i = 0 by virtue of the choice of δ we obtain (2.2). 2

Let us now obtain an estimate of the distance from a point (x, y) ∈ X × Y to the set
Γ(Ψ,Φ). Put

K(m0) :=
q2

1α
m0−1S(q2

β
α
,m0 − 1) + q1(q2β)m0−1

αm0 − q2βm0
.

For vectors z = (x, y) ∈ X × Y, A = (AX , AY ) ∈ R2 and a subset Γ ⊂ X × Y, we write

D(z,Γ) ≤ A

if
∀ ε > 0 ∃(ξ, η) ∈ Γ : lim

λ→ξ
ρX(x, λ) ≤ AX + ε, lim

κ→η
ρY (y, κ) ≤ AY + ε.

Theorem 2.2:
Let α > 0 and β ∈ [0, α) be given. If (Ψ,Φ) ∈ Fα,β then the set Γ(Ψ,Φ) is non-empty and,
moreover, for arbitrary x ∈ X, y ∈ Y, the inequality

D
(
(x, y),Γ(Ψ,Φ)

)
≤ A(x, y, yφ) ∀ yφ ∈ Φ(x), (2.9)

holds. Here

A(x, y, yφ) :=
(
K(m0)dist(Ψ(x), yφ), q1ρY (y, yφ) + q2βK(m0)dist(Ψ(x), yφ)

)
.

Proof
Theorem 2.1 implies that Γ(Ψ,Φ) 6= ∅.

Let us take an arbitrary x ∈ X, y ∈ Y, yφ ∈ Φ(x), ε > 0. Set r := dist(Ψ(x), yφ). The
definition of dist(·, ·) implies

dist(Ψ(x),Φ(x)) ≤ r.

Therefore, yφ ∈MΨ,Φ(x, r + ε). It follows from Theorem 2.1 that there exist ξ ∈ X and
η ∈ Y such that (ξ, η) ∈ Γ(Ψ,Φ) and

lim
λ→ξ

ρX(x, λ) ≤ K(m0)(r + ε), lim
κ→η

ρY (yφ, κ) ≤ βK(m0)(r + ε).

Since ρY (y, κ) ≤ q1ρY (y, yφ) + q2ρY (yφ, κ), we have

lim
κ→η

ρY (y, κ) ≤ q1ρY (y, yφ) + q2 lim
κ→η

(yφ, κ) ≤ q1ρY (y, yφ) + q2βK(m0)(r + ε).

The arbitrariness of ε > 0 implies that (2.9) holds.

Theorem 2.3:
Let α > 0 and β ∈ [0, α) be given. If (Ψ,Φ) ∈ Fα,β then the set Γ(Ψ,Φ) is non-empty and,
moreover, for arbitrary x ∈ X, y ∈ Y, the inequality

D((x, y),Γ(Ψ,Φ)) ≤ A(x, y) (2.10)

holds. Here

A(x, y) :=
(
K(m0)(r1 + r2), q1r2 + q2βK(m0)(q1r1 + q2r2)

)
,

r1 := dist(Ψ(x), y), r2 := dist(y,Φ(x)).
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Proof
Take arbitrary points x ∈ X, y ∈ Y, yψ ∈ Ψ(x), yφ ∈ Φ(x) and a number ε > 0 such that

ρY (yψ, y) < dist(Ψ(x), y) +
ε

2
, ρY (y, yφ) < dist(y,Φ(x)) +

ε

2
.

Set

ε1 :=
ε(q1 + q2)

2
, r := q1r1 + q2r2.

Let us show that yφ ∈MΨ,Φ(x, r + ε1).
Indeed, by the assumption yφ ∈ Φ(x). Moreover,

ρY (yψ, yφ) < q1r1 + q2r2 +
ε(q1 + q2)

2
≤ r + ε1

and
dist(Ψ(x),Φ(x)) ≤ dist(Ψ(x), yφ) ≤ ρY (yψ, yφ).

Hence, dist(Ψ(x), y) < r + ε1. Therefore, yφ ∈MΨ,Φ(x, r + ε1).
Theorem 2.1 implies that there exist ξ ∈ X and η ∈ Y such that (ξ, η) ∈ Γ(Ψ,Φ) and

lim
λ→ξ

ρX(x, λ) ≤ K(m0)(r + ε1), lim
κ→η

ρY (yφ, κ) ≤ K(m0)β(r + ε1). (2.11)

Since
ρY (y, κ) ≤ q1ρY (y, yφ) + q2(yφ, κ)

the inequality (2.11) implies

lim
κ→η

ρY (y, κ) ≤ q1ρY (y, yφ) + q2 lim
κ→η

(yφ, κ) ≤ q1r2 + q2K(m0)β(r + ε1).

Moreover, it follows from (2.11) that

lim
λ→ξ

ρX(x, λ) ≤ K(m0)(r + ε1).

The arbitrariness of ε > 0 implies that the inequality (2.10) holds.

Remark 2.1:
In the case when (X, ρX) and (Y, ρY ) are metric spaces, Theorem 2.1 coincides with [4,
Theorem 1] and Theorem 2.2 coincides with [4, Theorem 3].

3. COROLLARIES. ESTIMATES OF DISTANCE BETWEEN
INTERSECTIONS OF GRAPHS AND SETS OF COINCIDENCE POINTS

Let q1 ≥ 1, q2 ≥ 1 be given numbers, (X, ρX), (Y, ρY ) be (q1, q2)-quasimetric spaces.
Let us define one more function which characterizes a distance between subsets of

(q1, q2)-quasimetric spaces. For U, V ⊂ X set

e+(U, V ) := sup
v∈V

dist(U, v).

Even though the definitions of e+ and h+ look quite similar, these functions are actually
different as ρX is not necessarily symmetric.

Let us describe some properties of the function e+.
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Proposition 3.1:
For arbitrary sets U, V, W ⊂ X, the following inequalities hold

e+(U,W ) ≤ q1e
+(U, V ) + q2e

+(V,W ), (3.12)

dist(U,W ) ≤ q1e
+(U, V ) + q2e

+(V,W ), (3.13)

Proof
Let us prove (3.12). Take arbitrary sets U, V, W ⊂ X, a point w ∈ W and a number ε > 0.
According to the definition of e+ there exists v ∈ V and such that ρX(v, w) ≤ e+(V,W ).
Moreover, there exists u ∈ U such that ρX(u, v) ≤ e+(U, V ). We have,

dist(U,w) ≤ ρX(u,w) ≤ q1ρX(u, v) + q2ρX(v, w) ≤ q1e
+(U, V ) + q2e

+(V,W ).

Due to the arbitrariness of w ∈ W, the above inequality implies (3.12). Inequality (3.13)
follows from (3.12) as dist(U,W ) ≤ e+(U,W ).

We will also use the following inequality which was proved in ( [3, Property 5.1]):

dist(U,W ) ≤ q1dist(U, V ) + q2h
+(V,W ). (3.14)

Theorem 3.1:
Let α > 0 and β ∈ [0, α) be given. If (Ψ,Φ) ∈ Fα,β then for arbitrary (ξ̃, η̃) ∈ Γ(Ψ̃, Φ̃) and
ε > 0 there exists (ξ, η) ∈ Γ(Ψ,Φ) such that

lim
λ→ξ

ρX(ξ̃, λ) ≤ K(m0)
(
q1e

+(Ψ(ξ̃), Ψ̃(ξ̃)) + q2h
+(Φ̃(ξ̃),Φ(ξ̃))

)
+ε,

lim
κ→η

ρY (η̃, κ) ≤ q1q2h
+(Φ̃(ξ̃),Φ(ξ̃)) + q2βK(m0)

(
q2

1e
+(Ψ(ξ̃), Ψ̃(ξ̃)) + q2

2h
+(Φ̃(ξ̃),Φ(ξ̃))

)
+ ε.

Proof
Fix an arbitrary pair (ξ̃, η̃) ∈ Γ(Ψ̃, Φ̃) and take an arbitrary ε > 0. Applying Theorem 2.3 to
the mappings Φ and Ψ we obtain that there exists (ξ, η) ∈ Γ(Ψ,Φ) such that

lim
λ→ξ

ρX(ξ̃, λ) ≤ K(m0)(r1 + r2) + ε, (3.15)

lim
κ→η

ρY (η̃, κ) ≤ q1r2 + q2βK(m0)(q1r1 + q2r2) + ε. (3.16)

Here r1 := dist(Ψ(ξ̃), η̃), r2 := dist(η̃,Φ(ξ̃)).

It follows from (3.13) that dist(Ψ(ξ̃), η̃) ≤ q1e
+(Ψ(ξ̃), Ψ̃(ξ̃)) + q2e

+(Ψ̃(ξ̃), η̃). Since η̃ ∈
Ψ̃(ξ̃), we have

r1 = dist(Ψ(ξ̃), η̃) ≤ q1e
+(Ψ(ξ̃), Ψ̃(ξ̃)).

Since η̃ ∈ Φ̃(ξ̃), we have dist(η̃, Φ̃(ξ̃)) = 0. So, it follows from (3.14) that

r2 = dist(η̃,Φ(ξ̃)) ≤ q2h
+(Φ̃(ξ̃),Φ(ξ̃)).

Hence, the desired inequalities follow from (3.15) and (3.16).

Let us introduce one more notation. Given arbitrary sets Γ̃,Γ ⊂ X × Y and a vector
A = (AX , AY ) ∈ R2, the notation

H+(Γ̃,Γ) ≤ A
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means that for arbitrary (x, y) ∈ Γ̃ we have D((x, y),Γ) ≤ A.
Let arbitrary set-value mappings Ψ,Φ, Φ̃, Ψ̃ : X ⇒ Y and numbers α > 0, β ∈ [0, α) be

given. Set
AX(x) := K(m0)

(
q1e

+(Ψ(x), Ψ̃(x)) + q2h
+(Φ̃(x),Φ(x))

)
,

AY (x) := q1q2h
+(Φ̃(x),Φ(x)) + q2βK(m0)

(
q2

1e
+(Ψ(x), Ψ̃(x)) + q2

2h
+(Φ̃(x),Φ(x))

)
,

A(x) := (AX(x), AY (x)), x ∈ X.
Given a set Ξ ⊂ X, denote

sup
ξ∈Ξ

A(ξ) = {Λ ∈ R2 : Λ ≥ A(ξ) ∀ ξ ∈ Ξ}.

Here the inequality is understood in the coordinate-wise sense.
Theorem 3.2:
Let α > 0 and β ∈ [0, α) be given. If (Ψ,Φ) ∈ Fα,β then

H+(Γ(Ψ̃, Φ̃),Γ(Ψ,Φ)) ≤ Λ ∀Λ ∈ sup
ξ̃∈Coin(Ψ̃,Φ̃)

A(ξ̃). (3.17)

If, in addition, ρX is lower semicontinuous with respect to the second argument, then

h+(Coin(Ψ̃, Φ̃),Coin(Ψ,Φ)) ≤ sup
ξ̃∈Coin(Ψ̃,Φ̃)

AX(ξ̃) (3.18)

Proof
Take arbitrary Λ ∈ R2 such that Λ ≥ A(ξ) for all ξ̃ ∈ Coin(Ψ̃, Φ̃). Take arbitrary (ξ̃, η̃) ∈
Γ(Ψ̃, Φ̃). Theorem 3.1 implies that D((ξ̃, η̃),Γ(Ψ,Φ)) ≤ Λ. Hence, (3.17) is proved.

Let us prove (3.18). Assume now that ρX is lower semicontinuous with respect to the
second argument. Theorem 2.3 implies that for every pair (ξ̃, η̃) ∈ Γ(Ψ̃, Φ̃) and every ε > 0
there exists a point ξ ∈ Coin(Ψ,Φ) such that

ρX(ξ̃, ξ) ≤ K(m0)(dist(Ψ(ξ̃), η̃) + dist(η̃,Φ(ξ̃))) + ε, (3.19)

It follows from (3.13) that dist(Ψ(ξ̃), η̃) ≤ q1e
+(Ψ(ξ̃), Ψ̃(ξ̃)) + q2e

+(Ψ̃(ξ̃), η̃). Since η̃ ∈
Ψ̃(ξ̃), we have

dist(Ψ(ξ̃), η̃) ≤ q1e
+(Ψ(ξ̃), Ψ̃(ξ̃)).

Since η̃ ∈ Φ̃(ξ̃), we have dist(η̃, Φ̃(ξ̃)) = 0. Thus, (3.14) implies

dist(η̃,Φ(ξ̃)) ≤ q2h
+(Φ̃(ξ̃),Φ(ξ̃)).

Substituting these estimates into (3.19) we obtain

ρX(ξ̃, ξ) ≤ AX(ξ̃) + ε.

Hence,
h+(Coin(Ψ̃, Φ̃),Coin(Ψ,Φ)) =

= sup
ξ̃∈Coin(Ψ̃,Φ̃)

dist(ξ̃,Coin(Ψ,Φ)) ≤ sup
ξ̃∈Coin(Ψ̃,Φ̃)

AX(ξ̃).

Inequality (3.18) is proved.
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Corollary 3.1:
Let assumptions of Theorem 3.1 hold and ρX be lower semi-continuous with respect to the
second argument. Then for arbitrary (ξ̃, η̃) ∈ Γ(Ψ̃, Φ̃) and ε > 0 there exists (ξ, η) ∈ Γ(Ψ,Φ)
such that

ρX(ξ̃, ξ) ≤ K(m0)(q1e
+(Ψ(ξ̃), Ψ̃(ξ̃)) + q2h

+(Φ̃(ξ̃),Φ(ξ̃))) + ε, (3.20)

ρY (η̃, η) ≤ q1q2h
+(Φ̃(ξ̃),Φ(ξ̃)) + q2βK(m0)(q2

1e
+(Ψ(ξ̃), Ψ̃(ξ̃)) + q2

2h
+(Φ̃(ξ̃),Φ(ξ̃))) + ε.

Recall Lim’s lemma (see [14]). LetX be a complete metric space, β ∈ [0, 1), Φ, Φ̃ : X ⇒
X be β-contractive set-valued mappings such that Φ(x), Φ̃(x) are closed for every x.

h(Fix(Φ),Fix(Φ̃)) ≤ 1

1− β
sup
x∈X

h(Φ(x), Φ̃(x)).

Here Fix(Φ) is the set of fixed points of the mapping Φ.
Let us now derive a generalization of Lim’s lemma for coincidence points of mappings

between (q1, q2)-quasimetric spaces.
Corollary 3.2:
Let α > 0 and β ∈ [0, α) be given. Assume that ρX is lower semicontinuous with respect to
the second argument. If (Ψ,Φ), (Ψ̃, Φ̃) ∈ Fα,β then

h+(Coin(Ψ̃, Φ̃),Coin(Ψ,Φ)) ≤ K(m0) sup
x∈X

(
q1e

+(Ψ(x), Ψ̃(x)) + q2h
+(Φ̃(x),Φ(x))

)
(3.21)

Proof
It follows from Theorem 3.2 that

h+(Coin(Ψ̃, Φ̃),Coin(Ψ,Φ)) ≤ sup
ξ̃∈Coin(Ψ̃,Φ̃)

AX(ξ̃) ≤ sup
x∈X

AX(x) =

= K(m0) sup
x∈X

(
q1e

+(Ψ(x), Ψ̃(x)) + q2h
+(Φ̃(x),Φ(x))

)
.

Hence, (3.21) holds.

Let us now derive a generalization of Lim’s lemma for fixed points of self-mappings of
(q1, q2)-quasimetric spaces.
Corollary 3.3:
Assume that (X, ρX) is a complete (q1, q2)-quasimetric space and ρX is lower semicontinuous
with respect to the second argument. Given a number β ∈ [0, 1), assume that mappings
Φ, Φ̃ : X → X are β-contractions and closed. Then

h+(Fix(Φ̃),Fix(Φ)) ≤ q2
q2

1S(q2β, n0 − 1) + q1(q2β)n0−1

1− q2βn0
sup
x∈X

h+(Φ̃(x),Φ(x)).

Here n0 := min{j ∈ N : q2β
j < 1}.

Proof
Set Ψ(x) := {x}, Ψ̃(x) := {x}, α := 1. Then (Ψ,Φ), (Ψ̃, Φ̃) ∈ Fα,β, m0 = n0,

e+(Ψ(x), Ψ̃(x)) = 0, and

K(m0) =
q2

1S(q2β, n0 − 1) + q1(q2β)n0−1

1− q2βn0
.

Hence, applying Corollary 3.2 we obtain the desired inequality.
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Corollary 3.4:
Let (X, ρX) be a complete (q1, q2)-quasimetric space, ρX be lower semicontinuous in the
second argument, (Σ, ρΣ) be a (q1, q2)-quasimetric space, Φ : X × Σ→ X be given. Given
numbers β ∈ [0, 1) and l ≥ 0, assume that mapping Φ(·, σ) is a β-contraction and closed for
every σ ∈ Σ, Φ(x, ·) is l-Lipschitz.

Then the set-valued mapping σ 7→ Fix(Φ(·, σ)) is Lipschitz.

Proof
Take arbitrary σ, σ̃ ∈ Σ. It follows from Corollary 3.3 that

h+

(
Fix(Φ(·, σ̃)),Fix(Φ(·, σ))

)
≤ c sup

x∈X
h+(Φ(x, σ̃),Φ(x, σ)),

where

c = q2
q2

1S(q2β, n0 − 1) + q1(q2β)n0−1

1− q2βn0
.

Hence, h
(
Fix(Φ(·, σ̃)),Fix(Φ(·, σ))

)
≤ c sup

x∈X
h(Φ(x, σ̃),Φ(x, σ)).Moreover, since Φ(x, ·) is

l-Lipschitz, we have
sup
x∈X

h(Φ(x, σ̃),Φ(x, σ)) ≤ lρΣ(σ̃, σ).

Thus, h
(
Fix(Φ(·, σ̃)),Fix(Φ(·, σ))

)
≤ lcρΣ(σ̃, σ), which completes the proof.

Let us now discuss the question of the stability of coincidence points. Given a sequence
of pairs of set-valued mappings (Ψn,Φn),Ψn,Φn : X ⇒ Y,which tend in a certain sense to a
pair of set-valued mappings (Ψ,Φ), Ψn,Φn : X ⇒ Y, and a point ξ ∈ Coin(Ψ,Φ). Our goal
is to derive conditions for the existence of points ξn ∈ Coin(Ψn,Φn) such that ξn → ξ.

Corollary 3.5:
Assume that ρX is lower semicontinuous with respect to the second argument, {(Ψn,Φn)} ⊂
Fα,β for every n, and there exists a point ξ ∈ Coin(Ψ,Φ) such that

e+(Ψn(ξ),Ψ(ξ))→ 0, h+(Φ(ξ),Φn(ξ))→ 0.

Then there exists a sequence {ξn}, such that

ξn ∈ Coin(Ψn,Φn) ∀n, ξn → ξ as n→∞.

Proof
Take an arbitrary point η ∈ Ψ(ξ) ∩ Φ(ξ). Corollary 3.1 implies that for every n there exists a
point ξn ∈ Coin(Ψn,Φn) such that

ρX(ξ, ξn) ≤ K(m0)
(
q1e

+(Ψn(ξ),Ψ(ξ)) + q2h
+(Φ(ξ),Φn(ξ))

)
+ 2−n.

Since e+(Ψn(ξ),Ψ(ξ))→ 0 and h+(Φ(ξ),Φn(ξ))→ 0, we have ρX(ξ, ξn)→ 0. Therefore,
ξn → ξ.
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