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Abstract: Accurate modeling of electrical drives for online testing is a relevant problem. 

Switched Reluctance Machine (SRM) has lately attracted significant attention because it has 

several advantages compared to conventional engines. It is simple, free of rare-earth and fault-

tolerant machine. An analytical model of a SRM has not been reported yet due to the dynamic 

and strong nonlinearity of SRM. The most SRM control and applications are based on several 

assumptions and simplifications. Therefore, it is convenient to develop an accurate approach to 

identify the SRM characteristics. In this paper, an analytical modeling and identification method 

of magnetization characteristics of Switched Reluctance Machine (SRM) is proposed. Presently, 

an exact mathematical model of SRM is established. Unlike several previous studies, in this 

approach the system nonlinearities of SRM are allowed to be hysteresis (i.e. the hysteresis effect 

is considered) and taking account the inherent magnetic nonlinearity. Indeed, the SRM is 

considered as highly nonlinear which makes the modeling of these machines difficult to achieve. 

Then, it is convenient to develop an accuracy model of SRM because it is always operated in the 

magnetically saturated mode to maximize the energy transfer. The developed model can be used 

in control, simulation and design development. Furthermore, an identification method, at 

standstill test, based on frequency technics is developed allowing the identification of SRM 

nonlinearities (considering the saturation and the hysteresis effects). In this respect, it is shown 

that the nonlinear behavior of SRM can be exactly described by a block-oriented nonlinear 

structure. Specifically, the SRM can be described by a Wiener nonlinear model. Compared to the 

existing methods, the proposed study gives good accuracy of flux-linkage value characteristics 

and enjoys the simplicity of implementation. 

Keywords: switched reluctance machine, hysteresis effect, saturation effect, nonlinear 

identification, nonlinear modeling, Wiener model, frequency-geometric method 

 

1. INTRODUCTION 

The world is now focused on how to reduce the cost of equipment used in renewable energy, 
electrical vehicles (EV), as well as in other applications. For wind energy conversion, many 
research has been done to evaluate the generator that is characterized by low cost, easy to 
maintain, high performance, and able to work under variable speeds [1, 2]. Moreover, the 
choice of motor drives for EV is very critical. In this context, the SRM is typically selected 
as a generator or motor because of its low cost, simplicity, robust structure, small moment of 
inertia rotor and fault-tolerant capability. Then, it is easy to maintain. Note that the majority 
of losses show up in the stator because the SRM has no rotor winding, no brushes, and does 
not have a magnet permanent [3] (see Fig. 1), there are also others benefits of SRM. In view 
of these significant remarks, the SRM is relatively easy to cool and is insensitive to high 
temperatures [4]. The SRM can be a suitable choice for wind energy and EV applications. In 
this respect, the SRM becomes more competitive compared to the classical machines such as 
induction machines. However, its major defects are torque ripples and acoustic noise [4]. 
Note that several studies are still ongoing to mitigate these effects [5, 6].  
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Even though the several advantages of the SRM, the strong nonlinearity makes the 
modeling of SRM not an easy task. Despite all efforts in modeling and identification of SRM, 
finding an analytical model, which can accurately represent the nonlinear behavior of SRM, 
is widely open for scientific research. As commonly used in the literature, the modeling and 
identification methods of SRM flux linkage or self-inductance characteristics are classified 
into 4 categories: experimental measurements [7, 8], numerical solutions [9, 10], intelligent 
methods [11, 12], and analytical approaches [13, 14].  

Roughly, the experimental methods are costly, require considerable time, can damage the 
machine and possibly create a safety hazard. Therefore, this method can be used to validate 
the obtained results.  

Previous research has shown that two magnetization characteristics have been generally 
looked for SRM modeling. The first method is established using the inductance 
characteristics based model. The second solution is based on the flux-linkage [4]. At this 
stage, it is worth emphasizing the difficulty to establish a model that can accurately describe 
the behavior of the machine. This study proposes the development of an exact analytical 
model for the SRM, which is featured by a simple structure and reduced computational time. 
Then, an identification method is proposed for determining the flux linkage magnetization 
characteristics.  

Lately, researchers have shown an increased interest in using block-oriented nonlinear 
models based on the input and output systems [16–18]. In this paper, it is proved that the 
SRM behavior can be accurately designed using block-oriented nonlinear model. Specifically, 
it is shown that the SRM at standstill can be exactly described by the Wiener model (Fig. 2). 
This later is given by the cascade connection of a linear dynamic system followed by a static 
or dynamic nonlinearity block [17, 18] as shown in Fig. 2. To the author’s knowledge, for the 
first time, it has been shown that the SRM can be exactly described by the Wiener model. 

As soon as a model of SRM is obtained, the identification method of the system 
parameters using this model constitutes also an important problem. In this article, a new 
approach is suggested for the identification of the magnetization characteristics often called 
flux linkage characteristics are much dependent on current and rotor position of the motor. 
Note that the problem of identifying the SRM nonlinearities will be carried out including 
saturation and hysteresis effects. Presently, a frequency-domain solution is designed to 
determine the SRM nonlinearities. The frequency identification methods have been widely 
used to identify the nonlinear systems parameters [16, 19, 20]. It is shown that the SRM can 
be analytically described by a nonlinear system of Wiener model. The proposed frequency 
approach consists of applying a sine input voltage ( ) sin( )v t V t=  to the phase winding, for 

any given rotor position. Then, by recording the current measurement at the winding terminal, 
the system nonlinearities of the model describing the SRM can be identified using a simple 
Frequency-Geometric method. Then, the SRM can be modeled analytically using the data 
acquisition obtained by the finite element method (FEM).   

Note that this study is quite different from previous works [21–24]. The first key step in 
the development of this identification approach is the determination of an accurate model 
describing the nonlinear behavior of SRM. Another key step consists of designing an 
identification method using an appropriate excitation signal to estimate the parameters and 
the characteristics of SRM. Then, the system nonlinearities of SRM are allowed to be static 
or hysteretic operator. Furthermore, the model and the identification solution take into 
account the inherent magnetic nonlinearity. Then, using the developed nonlinear model of 
SRM, an identification method at standstill test is developed. The identification approach is 
based on frequency technics using simple sine input voltage. It is shown that the inner signal 
of the SRM model can be analytically determined at any time t. 

In the first stage, the hysteresis effect is not considered. A filtering algorithm of the 
current at the winding terminal is suggested. Accordingly, the system nonlinearities of the 
model describing the SRM can be easily identified using the recording of the phase current 

https://www.linguee.fr/anglais-francais/traduction/commonly+used.html
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(the filtered signal) over one half-period of time. Then, the flux-linkage characteristics can be 
easily obtained. Furthermore, these results are compared with those obtained using 
magnetostatic method.   

In the second stage, the saturation and the hysteresis effects of SRM nonlinearities are 
considered. For any given rotor position, the SRM phase winding is excited using also a sine 
input voltage. Then, using the proposed filtering algorithm of the phase current, the system 
nonlinearities of the model describing the SRM can be accurately estimated using the 
recorded data over one period of time. Accordingly, the flux-linkage characteristics can be 
provided without any other experiment (using uniquely the phase voltage and the recorded 
current). Compared to the magnetostatic method, it is shown that the proposed study gives 
good accuracy of flux-linkage value characteristics, enjoys the simplicity of implementation 
and characterized by a reduced computational time. To the authors’ knowledge, no previous 
study has found an exact model simulating the behavior of SRM. In addition, very few 
published works have attempted to identify the hysteresis operator.    

The paper is organized as follows: The principle of operation and the equations describing 
the SRM are stated in Section 2. Then, the mathematical model and the description of the 
identification method of SRM nonlinearity are dealt within Section 3. Section 4 presents 
examples of obtained results using the proposed study.  

 
 

 

 
 

Fig. 1.1. Example of a 8/6 SRM 
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Fig.1.2. Wiener Model 

 

2. OPERATION PRINCIPLE AND EQUATIONS DESCRIBING SRM 

SRM is a double saliency device in which the stator comprises a salient magnetic circuit 

provided with coils supplied by a current i, and the rotor is also a salient ferromagnetic 

circuit but without any conductor or magnet [24], [25] as shown in Fig.1.1. In such machine, 

torque is produced by the tendency of its rotor to move to a position where the reluctance of 

the excited winding is minimized (aligned position) [24], [25]. Then, the machine rotates the 

magnetic field by synchronizing continuously and consecutively the supply of different 

phases with the rotor position by means of the firing angles (turn-on and turn-off). SRM can 

operate as a motor or generator. In order to obtain motoring mode, a stator phase is excited 

when the rotor is moving from an unaligned position towards the aligned position. Likewise, 

Rotor (does not contain any coil)     Stator Coils 

( )iG s

 

h(.) 
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by exciting a stator phase when the rotor is moving from aligned towards the unaligned 

position, a generating mode will be attained [26]. To feed each stator phase of the SRM, we 

generally use an asymmetric half-bridge converter [27], [28] (Fig.2.3).  

The magnetic flux created by the ampere-turns Ni oscillates between two extreme values 

correspond to [29]:    

- Unaligned position in which the magnetic circuit has a maximum reluctance (minimum 

inductance) as illustrated by Fig. 2.4a. 

- Aligned position in which the magnetic circuit has a minimum reluctance (maximum 

inductance) as explained by Fig. 2.4b. 

The structure of the studied machine is of four phase 8/6 SRM, where 8 designates the 

number of poles in the stator (Ns) and 6 is the number of poles in the rotor (Nr). The choice 

of Ns and Nr is important since they have significant implications on the torque. The material 

of the SRM stator and rotor is steel M36 with the nonlinear B-H characteristic. 

The mutual coupling between adjacent phases is very small and can be neglected[25], 

[29]. Let i, R, L, ω, θ, and v denote the phase current, phase resistance, inductance, rotor 

speed, rotor position angle, and phase voltage respectively. Then, the voltage equation of a 

phase winding can be given as:  

                                                               

                                                     ( ) ( )
( , )d i

i
dt

v t R t
 

= +                                                   () 

where λ is the flux-linkage per phase. Under the hypothesis of nonmagnetic coupling 

between phases (at any given time, only one phase is excited), the flux-linkage can be 

expressed as follows: 

 

                                                    ( , ) ( , )i L i i  =                                                            (2.2) 

 

Due to the nonlinear behavior of the ferromagnetic material, the flux in the stator phases 

varies nonlinearly according to the rotor position θ and the phase current i. Accordingly, 

through direct derivation of (2.2) in (2.1), one immediately gets the following expression of 

the phase voltage: 

                                         ( ) ( ) ( )
( ) ( ), ,

,i i
L i L idi di

v t R t L i
dt i dt

 
 


= + +

  
+ 

  
              () 

The last term in (2.3) is the back electromotive force (EMF) voltage that is expressed by: 

 

                                                            
( ),

e i
L i




=



                                                                          ()    

 

Fig.2.3. Asymmetric Half Bridge Converter 
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           (a)                                            (b)                                             (c) 

 
Fig.2.4 (a) Unaligned position; (b) Aligned position; (c) Midway position 

3. MODELING AND IDENTIFICATION APPROACH OF SRM 

At standstill test, the back electromotive force (EMF) voltage is nil because it is proportional 

to the shaft speed. Accordingly, the expression of phase voltage in (2.3) becomes:  

                                          ( ) ( ) ( )
( ),

,i i
L idi di

v t R t L i
dt i dt


= + +




                              () 

The rotor of SRM is blocked at specific positions relative to the phase to be tested, e.g. at 

aligned, unaligned, and a midway between the above two positions. At blocked rotor (for any 

given rotor position  ), the nonlinearity ( )L i


(i.e. the inductance according to the current 

phase) can be described using a finite orthogonal function, e.g. polynomial decomposition 

[30], [31]:  

                                                
0

( )
n

k

k
k

θ
a iL i

=

=                                                           () 

where n is the polynomial function degree and ka  its coefficients. Then, it is readily follows 

from (3.1) and (3.2) that the phase voltage can be expressed as:  

                                             ( )k+1

k=0

( )
n

k

d
b i

dt
v t =                                                        (3.3a)   

where:                                                     

                                           1     1
2

    1     
k

k

R
a for k

b

a for k

+ =
=








                                                               (3.3b) 

This result means that the phase voltage can be obtained by deriving a polynomial 

function according to the phase current. Then, let introduce the following polynomial 

function:    

                                                k+1

k=0

( )
n

kf i b i=                                                                    (a) 

 

Then, in view of (3.4a), it follows that the phase voltage ( )v t in (3.3a) can be rewritten as 

follows: 

                                             
( )

( )
df i

dt
v t =                                                                 (3 .4b) 

 

Remark 3.1: 
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It follows from the formulae (3.2)-(3.4) show that the nonlinear system having, the phase 

current i(t) as input and the phase voltage v(t) as output, can be described by a Hammerstein 

model, i.e., nonlinear element (f(i)) followed by a linear block (derivative term).  

 

At this point, it is worth emphasizing that the derivative action can be modeled by a 

linear block. It is readily follows that the analytical nonlinear system (3.4a-b) (the phase 

voltage v(t) according to the phase current i(t) for any given rotor position) can be modeled 

by a nonlinear subsystem followed by a linear dynamical element as shown by Fig.3.1. This 

nonlinear model is called Hammerstein system.                        

 

 

 

 

Fig. 3.1. Hammerstein nonlinear model 

The aim presently is to develop an identification approach allowing to estimate the 

inductance nonlinearity ( )L i


, for any given rotor position  , and the flux-linkage 

( , ) ( , )i L i i  = . Furthermore, the hysteretic shape of the flux linkage can be seen.  

Then, it is worth emphasizing that, from practical point of view, the input signal of SRM 

is not a current excitation, but rather a phase voltage and the output signal of SRM is the 

phase current.    

Indeed, the SRM is generally excited by a phase voltage and the phase current can be 

viewed as the output measurement. Then, the output electrical signal of SRM (i.e. the phase 

current i(t)) according to the input excitation (i.e. the phase voltage v(t)) can be modeled by a 

nonlinear system of Wiener model (Fig.1.2), where h(.) is the system nonlinearity, ( )iG s  is 

the linear subsystem and ξ(t) is the measurement noise. Specifically, the linear element is an 

integrator block ( ( ) 1/iG s s= ). The above model is analytically described by the following 

equations: 

                                                        ( ) ( )* ( )ix t g t v t=                                                                    () 

                                                          ( )( ) ( )i t h x t=                                                                          ()   

                                                            ( ) ( ) ( )y t i t t= +                                                                     ()  

 

where: 
0

( ) ( ) st

i ig t G s e ds
+

=   (the inverse Laplace Transform of ( )iG s ); the symbol '*' refers 

to the convolution operation; v(t) and y(t) represent the (measurable) input and output of the 
system, respectively. In this respect, note that the internal signal x(t) is not accessible to 
measurement. At this stage, an identification approach is proposed based on frequency 
method. Then, the SRM characteristics and the parameters determination can be dealt using 
frequency-geometric tools. Accordingly, the following sine signal is being applied to the 
system input (phase voltage):   

                                                    ( ) sin( )v t V t=                                                               () 

 
In the steady state, the internal signal x(t) is also sinusoidal (of the same period of v(t)) 

and can be written as [15], [16], [18]: 

                                                       ( ) ( / ) cos( )x t V t = −                                                             () 

   f(.) G(s) i 

 

v 

f

(

.

) 
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Commonly, the main complexity of Wiener model identification problem is due to the 

fact that the internal variable x(t) is not accessible to measurement. Fortunately, in our 

nonlinear model, it follows (3.9) the inner signal x(t) can be easily estimated at any time t. 

Presently, a frequency domain method is proposed to identify the system nonlinearity h(.) 

using the data obtained from finite element method. In this respect, the sinusoidal voltage 

( ) sin( )v t V t=  is being applied to the phase winding and the resulting phase current is 

recorded. Then, the SRM nonlinearities characteristics can be accurately determined using 

only the system input (i.e. the phase voltage v(t)) and the measurable output signal (i.e. the 

phase current i(t)). It is interesting to bear in mind that, if the input excitation v(t) is  

T=2π/ω-periodic, then the steady state of inner signal x(t) and output system i(t) are also 

periodic of the same period T as v(t) [15], [18]. This result is a quite interesting achievement 

as it shows that, the curve of i(t) according to x(t) can be easily obtained using uniquely the 

set of points ( ) ( )( ), ( ) -( / ) cos( ), ( )x t i t V t i t = , in the steady state, over one period T. The 

determination of the functions ( ) ( )( ), ( ) ( / ) cos( ), ( )x t i t V t i t = − constitutes another key 

challenge of this work, because it makes possible the estimation of nonlinearity h(.) of SRM 

model (Fig. 1.2) at any given rotor position  .  

Practically speaking, the useful information (the phase current i(t)) is not directly 

accessible to the measurement. Indeed, the measurement signal y(t) is the phase current with 

additive noise (please see (3.7)). Let ˆ ( )
M

i t  denotes the phase current estimate. In this respect, 

thanks to periodicity of i(t) (T=2π/ω), an accurate estimate of the phase current can be 

obtained using the following estimator:   

  

                                             ( )  )
1

0

1ˆ ( ) 2 / f 0 2 /or
M

Mdef

k

i t y t k t
M

   
−

=

= +                          (a) 

 

                                             ˆ ˆ( 2 / ) ( )
M M

i t k i other iset w + =                                             (b) 

 

where M is an integer, preferably of large value. Then, the identification of the system 

nonlinearity h(.) can easily be achieved using the collected data over the interval  )0 2 /M  . 

For convenience, let us summarize the identification steps of system nonlinearity h(.): 

 Firstly, using the set of recorded data  ) ( ); 0y t for t MT , the estimate of the current 

phase i(t) can be obtained using the estimator (3.10a-b). Then, we generate the fictive 

internal signal ( ) ( / ) cos( )x t V t = −  over one period T. Therefore, the estimate ˆ (.)
M

h  of 

nonlinear element h(.) can be simply performed by constructing the set of points: 

( )  ) ˆ( ), ( ) ; 0
M

x t i t for t T
.  

Finally, an accurate estimate of SRM nonlinearity, for different rotor positions, can be 

obtained using the above frequency-geometric method. The above results lead to the 

following proposition. 
 

Proposition 3.1: 

 

Let consider the identification problem of SRM model at standstill (Fig. 1.2), where the 

noise ( )t  is supposed to be a zero-mean ergodic stochastic process. This latter is excited by 

the sine input ( ) sin( )v t V t= . Accordingly, one has with probability 1 (w.p.1): 

1. The current estimate ˆ ( )
M

i t  converges to the true phase current signal i(t). 
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2. The system nonlinearity estimate ˆ (.)
M

h  converges to the true function h(.).  

 

Proof.  

 

To prove the first part of the proposition, let us combining (3.7) and (3.10a-b), one thus 

gets: 

                                            ( )
1 1

0 0

1 1
ˆ ( ) 2 / 2 /( )
M

M M

k k

i t i t k t k
M M

   
− −

= =

= + + +                           
() 

 

Bearing in mind that the phase current i(t) is T=2π/ω -periodic, (3.11) can thus be rewritten 

as: 

                                            

1

0

1
( ) ( ) ( 2 / )ˆ

M

M

k

t i t t k
M

i   

−

=

= + +                                                         () 

 

Using the fact that the noise is a zero-mean ergodic stochastic process, the last term in (3.12) 
converges to zero as M tends to infinity (w.p.1). This completes the first part of proposition.  

        To prove the second part of proposition, let us recall that for the input ( ) sin( )v t V t=  

(Fig.1.2), the inner signal x(t) belongs to the interval / /V V   − . Accordingly, the system 

nonlinearity h(.) can be described, within the interval / /V V   − , as the set of all points 

( ) ( )( )  ) ( )( ), ( ) ( ), ; 0x tx t i t x t h t T=  . Therefore, the nonlinearity estimate ˆ (.)
M

h  can be 

featured by plotting the set of points ( )  ) ˆ( ), ( ) ; 0
M

x t i t t T . It follows from the first part of 

proposition that: 

 

                              ( ) ( )  )ˆ( ), ( ) ( ), ( ( )) 0lim   
M

M

x t i t x t h x t t Tfor any
→

=                                 () 

 

      This means that the nonlinearity estimate ˆ (.)
M

h  converges to the true function h(.) w.p.1 

for any  )0t T . This completes the proof of proposition.  

      This result is a quite interesting achievement as it shows that, it is possible to obtain an 

accurate estimate of SRM characteristics for any given rotor position . At this stage, other 

significant results can be observed. On one hand, if the system nonlinearity h(.) is static, the 

estimate ˆ (.)
M

h of h(.) can be done by using simply the set of points ( )ˆ( ), ( )
M

x t i t over one-half 

period  )0 / 2t T . On the other hand, in the case where the nonlinear element h(.) of SRM is 

hysteresis, the system nonlinearity estimate ˆ (.)
M

h  can be featured using the set of points 

( )ˆ( ), ( )
M

x t i t  over one period of time (i.e. ( )  ) ˆ( ), ( ) ; 0
M

x t i t for t T ). These results lead to the 

following proposition.  
 

Proposition 3.2: 

 

Let us reconsider the above identification problem of SRM model (Fig. 1.2). This machine is 

excited by the phase voltage (3.8), where the amplitude V and the frequency ω (rd/s) of v(t) 

are kept constant. Let’s assume that, in steady state, ( ) ( )( ) (( 1) )h hx kT x k T= + . Then, the 

following results are obtained:  

1. If the hysteresis effect of SRM magnetization characteristics is not considered, for 

/ /x V V    −  the nonlinear element h(.) (in the steady state) can be constructed by 

fitting the set of points (x(t), i(t)) over one half-period (  )0 / 2for t T ).  
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2. Now, the hysteresis effect of SRM magnetization characteristics is considered. Then, 

for any fixed V and  , the hysteretic nonlinearity h(.) (in the steady state) can be 

obtained by plotting the set of points ( )  ) ( ), ( ) ; 0x t i t t T  (i.e. over one period of 

time). 

 

Proof. 

 

First, one immediately gets using (3.6) -(3.9) for any  )0t T :  

                    

                                                      ( ) ( )( ) ( ) ( / ) cos( )i t h x t h V t = = −
      

                                  () 

 

Then, if the SRM system nonlinearity h(.) is static (does not contain the hysteresis effect), 

then for any  )0 / 2t T  there exists 't T t= −  such that:  

 

                                                 ( ) ( )  )' / 2( ) ( ') ( )   t T Tani t h t h x t dx = =                                  () 

 

Accordingly, the static nonlinear function h(.) can be described uniquely by the set of 

points ( )  ) ( ), ( ) ; 0 / 2x t t t Ti  . This completes the first part of proposition. 

At this stage, the function h(.) is hysteretic nonlinear operator. Accordingly, using the 

assumption ( ) ( )( ) (( 1) )h x kT h x k T= +  one immediately gets that all points of coordinates 

( )  ) ( ), ( ) ; 0x t t t Ti   build a closed locus [16], [18]. Furthermore, for any given amplitude V 

and frequency ω, a single closed locus is obtained. Finally, the shape of hysteretic 

nonlinearity h(.), for fixed values of (V, ω), can be described by plotting the points of 

coordinates (x(t), i(t)) for  )0t T . 

Presently, the aim is to present a method of modeling and identification of the flux-

linkage ( , )i  . The above obtained achievement is useful to determine the flux-linkage 

features. Accordingly, it is readily follows from (2.1) that, the flux-linkage ( , )i   can be 

expressed as: 

                                           ( )( )( )( , ) tv t ti R i d   −=                                                     (3.16) 

Then, it follows from (3.9) and (3.16) that, the flux-linkage can be rewritten as: 

                                                                

                                            ( )( , ) cos( ) t
V

i t R i dt  


= − −                                                  (3.17) 

( )( )( )( , ) x t h x ti R dt  = −          (3.18) 

where the first term part on the right side corresponds to x(t), given by (3.9). Therefore, it 

readily follows from (3.17) that, the flux-linkage characteristics can be achieved using the 

resistor measurement R, the values of x(t) and the phase current measurement ˆ ( )
M

i t . In this 

respect, it is worth emphasizing that no other information (experiment) is required to 

determine the flux-linkage characteristics. Indeed, the latter can be estimated using only the 

available information’s in the first stage (i.e. ˆ ( )
M

i t and x(t)). 
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4. SIMULATION RESULTS & DISCUSSION  

To show the efficiency of this approach, the machine 8/6 SRM is considered in simulations. 

Let us choose the rotor position 0 =   as the aligned position of phase A (Fig. 2.4a). 

Accordingly, 30 =   corresponds to the unaligned position of phase A (Fig. 2.4b) and 

15 =  corresponds to the Midway position. Simulations were carried out using a FEM 

software by collecting data acquisition at several specific positions (e.g. at aligned, midway 

and unaligned positions). 

Firstly, the SRM is being excited by the sinusoidal phase voltage ( ) sin( )v t V t= , where 

the amplitude 400V V= and the frequency 314 / srd = .   

According to the proposition 3.2, note that the amplitude V and frequency  (rd/s) of the 

input signal are kept constant. Accordingly, the steady state of phase current i(t) is also 

periodic of the same period of v(t). 

Furthermore, note that a noise signal ( )t  is added to the useful information (i.e. i(t)). 

This noise is supposed to be a zero-mean ergodic stochastic process. Then, the system output 

y(t), i.e. the undisturbed phase current added to the measurement noise, is collected on the 

interval  )0t MT , where M=10. Fig.4.1 illustrates y(t) for three rotor positions.  

The plot confirms that the phase current measurement y(t) is also periodic of the same 

period of v(t).  

Then, using the estimator (3.10a-b), the phase current estimate ˆ ( )
M

i t  can be obtained for 

any given rotor position. This latter is plotted in Fig. 4.2 over one period of time. It is clearly 

seen that, as the rotor gets closer to the aligned position, the saturation effect becomes more 

significant and notably distorts the shape of the phase current (the black curve in Fig. 4.2). 

Bearing in mind that x(t) is not accessible to measurement, but it can be easily determined 

at any time t using the expression (3.9) (Fig. 1.2). Then, the nonlinearity estimate ˆ (.)
M

h  can 

be featured by the set of points ( )  ) ˆ( ), ( ) ; 0
M

x t i t t T  (using the phase current 

estimate ˆ ( )
M

i t ). At this stage, it is worth emphasizing that two cases can be observed 

according to the system nonlinearity h(.) (Proposition 3.2). 
 

 

Fig. 4.1. Output signal ( )y t  

 

Fig. 4.2. Phase current estimate signal ˆ ( )Mi t  

 

4.1. SRM magnetization characteristics without considering the hysteresis effect (static 

curves)  
 

Presently, we suppose that h(.) is static nonlinearity. Then, the shape of h(.) can be described 
using the phase current estimate and the inner signal x(t) over one half-period (Proposition 
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3.2). Accordingly, an accurate estimate ˆ (.)
M

h  of the system nonlinearity h(.) can be obtained 

using the set of points ( )  ) ˆ( ), ( ) ; 0 / 2
M

x t i t t T  (i.e. by plotting the phase current estimate 

ˆ ( )
M

i t  in respect to x(t)). Then, the nonlinearity estimate ˆ (.)
M

h for different rotor positions, e.g. 

aligned, midway and unaligned, can be achieved by repeating the same experiment. In this 

respect, the obtained nonlinearity estimate ˆ (.)
M

h  for aligned, midway, and unaligned 

positions are shown by Fig.4.3. The plots confirm that the function ˆ (.)
M

h  presents a severe 

nonlinearity at aligned position due to the saturation effect.  

Then, another important feature of SRM is the flux-linkage, which is very interesting to 
be estimated. For convenience, let us consider the expression of flux-linkage ( , )i   in (3.17). 

Accordingly, this latter can be determined by integrating the estimated current and using the 
signal x(t) (given by (3.9)).  

In this respect, it is worth emphasizing that the determination of flux-linkage features can 
be obtained using uniquely the results of experiments carried out in the first stage. In the case 
where the phase current is unidirectional, the first quadrant of (λ, i) plane is considered. Then, 
the obtained flux-linkage characteristics are shown in Fig.4.4. These results show that, using 
the proposed approach, the flux-linkage characteristics are acquired with good accuracy 
compared to those obtained using magnetostatic model. 

 

Fig. 4.3. The estimate of the function h(.) without taking into account the hysteresis effect  
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Fig. 4.4 Flux-linkage characteristics without considering hysteresis effect 

 

4.2. SRM magnetization characteristics considering the hysteresis effect 
 

Presently, the nonlinear elements are allowed to be hysteretic. To this end, a frequency-
geometric tool is used as shown in section 3. In this respect, the determination of electrical 
nonlinearities and flux-linkage characteristics of SRM can be found using the same 
experiment suggested in the first case (without considering the hysteresis effect). Then, it 

follows Proposition 3.2 and using phase current estimate ˆ ( )
M

i t , the hysteretic nonlinearity 

estimate ˆ (.)
M

h  can be featured by the set of points ( )ˆ( ), ( )
M

x t i t  for  )0 2 /t   . So, the 

curves of system nonlinearity estimate ˆ (.)
M

h  for three key positions (aligned, midway and 

unaligned positions) are shown by Fig.4.5. As can be seen, the obtained curves of ˆ (.)
M

h  are 

not static and are closer to closed locus (in steady state). These locus will be referred to the 
hysteretic behaviors of SRM. Furthermore, note that the surface of hysteretic curve increases 
according to the position rotor. Accordingly, the hysteretic losses are small at the aligned 
position and become high at the unaligned position. 

.   

 

Fig. 4.5. The estimate of the function h(.) considering the hysteresis effect 
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In the case where the phase current is unidirectional, the first quadrant of ( , )i plane is 

considered. Accordingly, the obtained flux-linkage ( , )i   characteristics are shown in 

Fig.4.6.  

The achieved flux-linkage characteristics show that ( , )i   is not static, but it is close to a 

closed locus. Moreover, the hysteretic surface is considerably narrow at the aligned position 
and increases according to the position rotor. 

Note that, the validation of the identification method was performed using magnetostatic 
technic as can be seen in Fig .4.4. Let us recall that, the magnetostatic method is a pure 
numerical solution which requires a full set of data obtained from FEM [25], [32]. This 
method differs substantially from our approach, which is based only upon the input-output 
measurement data. As can be seen in Fig.4.4, the achieved flux-linkage shapes using the 
proposed method and those obtained using magnetostatic give very close results. In the case 
where the hysteresis effect is considered, the present analysis confirms the existence of 
hysteresis effect, which is not too discussed in the literature. 

 

Fig. 4.6. Flux-linkage characteristics with hysteresis effect 

5. CONCLUSION 

This paper proposes an analytical modeling and identification method of magnetization 
characteristics of SRM. One key step in the design of such method is the construction of the 
nonlinear block-oriented model modelling the behavior of the SRM. Specifically, it is shown 
that the SRM can be described by a Wiener model. To our knowledge, no previous work has 
been dealt with this technic. Then, an analytical identification method is developed to obtain 
the magnetization characteristics of the SRM. The identification method is dealt based on a 
simple Frequency-Geometric method by applying a sine input voltage to the phase winding, 
for any given rotor position. Then, the inner signal x(t) of the nonlinear Wiener system (the 
SRM model) can be easily estimated at any time t. Accordingly, all the electrical parameters 
of SRM can be accurately estimated using the phase voltage and the recording of the current 
measurement at the winding terminal. 

On one hand, if the hysteresis effect of SRM nonlinearities is not considered, the 
magnetization characteristics can be estimated using data-acquisition over one-half period. 
The obtained results are compared with other achieved data using the FEM method. On the 
other hand, the identification of SRM magnetization features can be performed even if the 
hysteresis effect is considered using only data-acquisition over one period. In this respect, it 
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is worth emphasizing that very few available works have attempted to identify the hysteresis 
effects of SRM. 

Furthermore, it is shown that the hysteretic losses are generally small at the aligned 
position and can be of high value at the unaligned position. This result is confirmed by the 
area of the obtained hysteresis curve. 

Another originality of the present study lies in the fact that the machine model can be 
analytically represented using block-oriented systems. The proposed Wiener model still be 
very simple in use and the magnetization characteristics can be easily achieved using the 
Frequency-Geometric method. Another feature of this work is the fact that the modeling 
design and the identification scheme require less computational time, unlike several previous 
studies. The accuracy of the model has been verified by comparing the obtained 
characteristics using this approach with those using the magnetostatic method. 

Despite all efforts in modeling and identification of SRM, finding an accurate analytical 
model, which represents the nonlinear behavior of SRM, is wide open for scientific research. 
In terms of future work, it would be interesting to use the same model in real time. Then, this 
model can used to obtain the dynamical model of SRM. The hysteresis measurement (surface 
of the hysteretic curve) can offer some suggestions to handle the losses. This approach could 
be tested on some applications of SRM using the obtained model.   
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