
Adv Syst Sci Appl 2020; 02:32–43
Published online at https://ijassa.ipu.ru.

Original Russian Text © V. V. Zakharov, A. V. Mugayskikh, 2018, published in Upravlenie Bol’shimi
Sistemami / Large-Scale Systems Control, 2018, No. 73, pp. 108-133.

Dynamic Adaptation of Genetic Algorithm for Solving Routing
Problems on Large Scale Systems

Viktor Zakharov1, Alexander Mugayskikh1*

1Saint Petersburg State University, Saint Petersburg, Russia

Abstract: This paper is devoted to the implementation of the dynamic adaptation procedure for
the genetic algorithm used for solving large-scale travelling salesman problem. This procedure
serves to obtain more profitable solutions by a fixed operating time. In order to evaluate
effectiveness of new approach computational experiments were performed on well-known
problem instances from TSPLib library. As a result, generated solutions reduce the length of
the routing plans in considered problem instances compare to classical genetic heuristics. By that,
we show how to use the property of time inconsistency of heuristics to get better solutions. New
criteria for estimating the efficiency of heuristics algorithms called experimental level of time
consistency is introduced.

Keywords: time consistency, genetic algorithm, vehicle routing problem

1. INTRODUCTION

One of the most challenging goals in the field of transportation logistics is cost optimization,
which allows to increase company’s benefit for the same amount of resources used. For
transportation companies, reduced costs can be achieved by constructing effective route
plans for the vehicles. A significant effect of cost reduction can be shown on large transport
networks. For this reason, researches pay much attention to models and methods which
generate less expensive solutions in the routing problems. Probably, the most important
objective of mathematical modelling in transportation logistics is the vehicle routing problem.
A classical example of a vehicle routing problem is the travelling salesman problem, which
will be examined in details.

This article is motivated by the problem of time inconsistency (or dynamic instability) of
heuristic algorithms solving vehicle routing problems and developing methods to avoid this:
to increase the level of dynamic stability and efficiency of the algorithms with experiments
hold on a genetic algorithm. The article is structured as follows. After introduction, it includes
seven sections. The first section is devoted to the description of general model of the travelling
salesman problem (TSP) and contains the review of methods solving it. The second section
provides the basic concepts and terms of the genetic algorithm used in the text. Section 3
includes a description of the basic scheme of the genetic algorithm and one of the most
effective tools for constructing a solution — the Greffenstett’s crossover. The fourth section
discusses the problem of dynamic instability of heuristics in solving routing problems and a
new criterion is suggested — the experimental level of time inconsistency. In section 5 we
introduce the description of dynamic adaptation procedure which can improve basic solutions
of heuristic algorithms. Section 6 presents the results of numerical experiments to evaluate

∗Corresponding author: alexander.mugaiskih@gmail.com

DYNAMIC ADAPTATION OF GENETIC ALGORITHM FOR SOLVING ROUTING PROBLEMS 33

the level of time inconsistency of the genetic algorithm and a comparative analysis of the
results obtained by the genetic heuristics and its dynamic adapdation procedure. Comparative
analysis was hold on a set of problem instances from the TSPLib library, widely known
among specialists. In the seventh section we place brief conclusions and plans for further
research.

2. TRAVELLING SALESMAN PROBLEM: FORMULATION AND METHODS

2.1. Problem formulation
The travelling salesman problem consists in finding the shortest trip between a set of vertices,
visiting each vertice exactly once, starting and finishing at a specified vertice.

The TSP can be represented as a graph G = (V,E), where set of vertices
V = {v1, v2, . . . , vn} stands for cities from the problem instance and set of edges
E = {(vi, vj) : vi, vj ∈ V, i 6= j} represents paths between the cities. The weight of an edge
(vi, vj) is the distance or travel cost between vertices vi and vj .

Travelling salesman problem can be defined as an problem of finding a Hamiltonian cycle
in graph G with the least weight. Let I = {1, . . . , n} be the set of indices of vertices from the
problem instance. The problem objective function f is total length of the route that includes
all vertices from the problem instance. Suppose xij is a binary variable which is equal to one
if route passes the arc (i, j), and zero otherwise. Length of the route between two vertices i
and j is defined as Euclidean distance cij . Then the problem can be defined in the form of
linear programming proposed by [9, 27, 29]:

f =
∑
i∈I

∑
j 6=i,j∈J

cijzij → min,

subject to:
0 ≤ zij ≤ 1, zij ∈ Z∑
j∈I,j 6=i

zij = 1,∀i ∈ I, (2.1)

∑
i∈I,i 6=j

zij = 1,∀j ∈ I, (2.2)

∑
i∈S,j∈S

zij = |S| − 1 (S ⊂ V, |S| > 1) (2.3)

Equalities (2.1) – (2.2) enforce that every vertice is visited exactly once. The last constraints
guarantee the absence of two or more disjoined parts in the final route.

The travelling salesman problem takes a central role in combinatorial optimization. It has
a wide range of practical application in various fields: transport logistics [1], robotics [6, 8],
job shop scheduling. Among its applications one can mention constructing routing plans for a
fleet of vehicles of logistic company; performing video surveillance by wireless robots [33];
robot-assisted sensor network deployment and data collection [37]; generating assembly
sequences in an autonomous multi-robot coordinated furniture system [26]; planning routes
in controlled airspace [12]. Despite the seeming simplicity of the mathematical model of the
travelling salesman problem, it still receives close attention from specialists while considering
the problem in new formulations and under various restrictions and constraints.

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

34 V. V. ZAKHAROV, A. V. MUGAYSKIKH

2.2. Algorithms and methods
All of approaches solving travelling salesman problem can be assigned either to exact
or heuristics algorithms. Brute-force search, branch and bound algorithm, Branch and cut
methods and dynamic programming are among the exact algorithms.

The branch-and-bound method and the branch-and-cut method represent the modification
of exhaustive search. The main idea is to form the rooted tree, check the bounding criterion
bounding and discard the current branch if it is not possible to produce a better solution
than the best one found so far by the algorithm. Some variants of this approach can solve
the travelling salesman problem with several hundred vertices, however, they require high
computation power of the computers used.

The idea of dynamic programming, proposed by R. Bellman [3], M. Held, and R. Karp
[19], can be also applied to the TSP problem and consists in a many-step decision-making
process, at each step of which it is necessary to determine the Bellman function and find the
best route for the left vertices. The number of operations required to calculate the final route
increases exponentially with of size of problem instance.

Due to the NP-complexity of the TSP problem, exact methods cannot always be
effectively applied to large-scale problems. For this reason, heuristic methods are used that
generate solutions that are close to optimal, but in an acceptable time compared to exact
algorithms. An experimental analysis of heuristic algorithms for solving the TSP problem
and its subclasses was carried out in [17].

Heuristic algorithms can be divided into 2 classes according to the method of generating
the final route: constructive and iterative heuristics. Tour construction heuristics obtain only
one solution without its further improvement [24]. For example: nearest neighbour algorithm
[23], greedy algorithm [18], insertion heuristics [14] and Christofides approximation
algorithm presented in [7]. The algorithms above sequentially build a feasible solution by
adding vertices to the final route until a complete route is formed. The part of the solution
built to the current moment will remain unchanged until the end of the algorithm. The length
of generated solutions is about 10–15% away from the optimal solution.

More useful for getting shorter routes are tour improvement heuristics. There methods
begin to work with an already prepared route generated by one of the constructive methods,
iteratively improving the solution at each step. There are several ways to do this: 2-opt
swap and 3-opt swap, or perform as a part of local search algorithms and the Lin-Kernigan
heuristics [20, 21].

Metaheuristics as a higher-level procedure also refer to tour improvement heuristics
[4, 13]. These are quite general iterative procedures using randomization and self-learning
elements, intensification and diversification of the search, adaptive control mechanisms, as
well as constructive heuristics and local search methods. Metaheuristics work either with
single candidate or with whole population of feasible solutions. Single solution approaches
include variable neighborhood search, tabu search, simulated annealing [15] and others.
Population-based approaches are genetic algorithms, ant colony optimization [10], greedy
randomized adaptive search procedure and some others [36].

3. TERMINOLOGY AND DEFINITIONS

Further in the article, the following terms and definitions are used.
Heuristic algorithm is a problem-solving method, which solutions may not necessarily be

optimal, but about which it is known that it gives a fairly good solution in most cases.
Genetic algorithm is a heuristic algorithm for solving optimization problems by randomly

selecting, combining and varying the desired parameters using mechanisms similar to
natural selection occurred in nature, generating different solutions at each launch due to the
randomization mechanisms used in it.

Individual is a feasible solution to a problem instance in a genetic algorithm.

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

DYNAMIC ADAPTATION OF GENETIC ALGORITHM FOR SOLVING ROUTING PROBLEMS 35

Population is the final set of individuals in a problem instance, which the genetic
algorithm will work with.

Chromosome is a set of genes that describe an individual. In the travelling salesman
problem, genes in the chromosome correspond to the vertices of the test problem.
Chromosome contains the order in which the vertices are passed through in this solution.

Gene is an atomic element of a chromosome.
Crossover is the main stage of the genetic algorithm, in which two individuals of the

same population take part. By combining and inheriting the characteristics of both parent
individuals (parents), new individuals (children) are generated, and the quality of new
individual is improved as well as the quality of whole offspring population.

Mutation is one of the stages of the genetic algorithm, in which one individual from the
population takes part. Mutation is carried out with the aim of restoring the individuals dropped
out of the population and forming genes that were not present in the original population.

Selection is the final stage of the genetic algorithm aims to form a new population of
individuals by selecting the most adapted individuals for their inclusion in the further process
of evolution.

4. GENETIC ALGORITHM WITH GREFFENSTTE’S CROSSOVER

The genetic algorithm is a metaheuristic algorithm, which is based on operations of natural
selection that occurs in nature. It was first introduced in 1975 by John Holland as a
subcategory of evolutionary algorithms [22]. Without detailing the description of all stages of
the genetic algorithm, we briefly give a pseudocode of the classical genetic algorithm, which
consists of the following steps:

1. Initialization of stating population, s individuals.
2. While stop criterion is not met, do:
3. Several crossover operators (with 2 two random individuals)
4. Several mutation operators (random individual)
5. Evaluation of fitness function and selection

Applied to the travelling salesman problem, each individual in population stands for one
feasible solution of a problem instance and represents the order in which the vertices are
visited. The fittest individual in the last population is accepted as the final solution.

The genetic algorithm is a genetal heuristic procedure that can be implemented in
a software package for solving different flavors of routing problems, such as TSPTW
(Travelling salesman problem with time windows), IRP (Inventory routing problem), VRP
(Vehicle routing problem), MDVRP (Multi-depot vehicle routing problem), PDP (Pickup
and delivery problem) and others. In addition, genetic heuristics is capable of solving both
the original problem and its sub-problem, which is necessary condition for applying dynamic
adaptation procedures of this algorithm.

As it is known, the main operator of the genetic algorithm, which will be discussed in
details in Section 5, is crossover. The crossover methods proposed in the literature are valid
for the travelling salesman problem and give generally acceptable results, but they do not
use information about the distance between the vertices of the TSP problem instances. John
Greffenstett solved this problem by proposing in his work [16] a new type of crossover that
uses information about the distance between vertices.

As applied to TSP intances with a symmetric distance matrix of 70 and 100 vertices of
the TSPLib test library [32], the use of the Greffenstett’s heuristic at the stage of crossover
helped to get shorter routes compared to partially mapped crossover, cycle crossover,
edge recombination crossover, two-point crossover, uniform order-based crossover, shuffle
crossover and sub-tour exchange crossover. For more information on these types of
crossovers, see [25]. For a problem instance with 100 vertices, Greffenstett’s crossover

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

36 V. V. ZAKHAROV, A. V. MUGAYSKIKH

showed the best result among other kinds of crossovers and differs from optimal solution
by 11.9% [25]

In work [31] authors also compared 8 types of crossover to solve the VRP problem,
generalization of the TSP problem on the number of vehicles (2 and more). The following
crossovers were described: order crossover, partially mapped crossover, edge recombination
crossover, cycle crossover, alternating edges crossover, Greffenstett’s crossover and its two
modifications [31]. The best results among the mentioned algorithms on the VRP test
problems of the Christofides standard library [11] were shown by the Greffenstett’s heuristic
crossover and its two modifications.

Thus, the proposed kind of crossover outperforms its alternatives in generating shorter
routes, and it was implemented in the genetic algorithm for solving problem instances for
further research. The results are presented in the following sections of the article.

The following scheme presents the classic Greffenstett crossover operation:

1. Randomly chosen vertice v is placed in the first gene of the children chromosome
2. While complete route is not formed, do:
3. Compare the length of two edges connected with v, choose the shortest among them and

denote the corresponding vertice as vmin

4. If vmin is already in children’s chromosome, then vmin will be the randomly chosen
vertice in the set of non-used in the current route

5. Place vertice vmin in the next gene of children’s individual
v = vmin.

5. TIME INCONSISTENCY OF HEURISTIC ALGORITHMS

In work [5], the authors note that the process of finding the optimal solution in genetic
algorithms is guided exclusively by the obtained values of the objective function at the
previous points in the solution space. And assumptions about such properties of the objective
function such as convexity, differentiability, and Bellman’s optimality property optimality are
not used.

Formulated in [2] principle of optimality claims that at any period of time restriction of
multi-period optimal routing plan found by exact algorithm for any remaining time horizon
appears to be optimal in current sub-problem. It’s worth noting, restriction of solution
obtained by tour improvement heuristic algorithm could be not optimal in a current sub-
problem for at least one of the periods. Constructive heuristics almost always generate time
consistent routes, however, they do not provide a high level of efficiency compared to iterative
ones.

Using the principles of dynamic stability described in [30], we introduce the following
notation.

Let us consider set of problem instances P for the travelling salesman problem. Suppose
that for each instance p ∈ P we can obtain a set of different solutions S(p) generated by
heuristics. Each solution s(p) corresponds to an order in which vertices of the problem
instance are visited in a route. We consider the order of the vertices of one route and divide it
into T parts so that the number of vertices that were visited in the first t parts of the route is
calculated by the formula n(t, s(p)) = bn0t/T c, where n0 is the size of the problem instance
p, and T — parameter defined before the experiment. Thus, each part of the route (except the
last) contains the same number of vertices. By the period t, where t = 0, 1, . . . , T − 1, we
mean the time interval in the route that corresponds to the part t of the original solution s(p).

Define s+(t, p) as remaining consequence of nodes after period t and
s−(t, p) stands for such part of the route that includes nodes visited
during periods τ = 0, 1, . . . , t. Thus each solution can be represented as
s(p) = s−(t, p) ∪ s+(t, p).

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

DYNAMIC ADAPTATION OF GENETIC ALGORITHM FOR SOLVING ROUTING PROBLEMS 37

For t = 1, . . . , T − 1 we consider the sub-problem p(s−(t, p)). This sub-problem differs
from initial problem instance. Firstly, nodes already visited before period t are excluded
for visit in next periods. Secondly, new depot is located at the last node of part s−(t, p)
that belongs to the route s(p). Then we obtain solution s(p(s−(t, p))) for the sub-problem
p(s−(t, p)) using the same heuristics.
Definition 5.1:
Solution s(p) (routing plan), obtained by heuristic algorithm H , is time consistent according
to algorithm H , if for each t = 1, . . . , T − 1 and each s(p(s−(t, p))) generated by H , the
following inequality holds:

f(s+(t, p)) 6 f(s(p(s−(t, p)))), (5.4)
where f is distance value for corresponding route.
Definition 5.2:
Solution s(p) (routing plan), obtained by heuristic algorithm H , is time inconsistent
according to algorithm H , if exists t

′
and s(p(s−(t

′
, p))) generated by H , and the following

inequality holds:
f(s+(t, p)) > f(s(p(s−(t

′
, p)))). (5.5)

The property of time consistency of the solution in the TSP shows that moving according
to the initial route plan, no shorter solution will be found than the current one in the sub-
problem generated by the method described above. And vice versa, time inconsistency of the
solution means that at least in one of the periods a routing plan can be generated that will
more profitable than the current one.

We introduce the procedure for calculating the level of time consistency of the heuristic
algorithm H for a certain class of vehicle routing problems.

1. Consider set P of problem instances of certain class in routing problems.
2. Generate set N of various solutions for every p ∈ P by heuristic algorithm H . Obtained

solutions (routing plans) will be different from each other due to the randomization used
in heuristic operators: crossover, mutation, selection.

3. Perform M runs for each solution s(p) ∈ S(p), where each run includes checking
whether solution is time consistent or not. Parameter M aims to average the obtained
results of calculation, assume M = 5. Starting with t = 1, formulate sub-problem
p(s−(t, p)) and find its solution by algorithm H . Check initial solution to be time
consistent after first period. If inequality (5.4) holds, move to the second period. If not,
mark the period at which property of time consistency is violated and start the next run.

Let b(s, t) be the number of runs, in which time consistency is violated for the solution
s(p) for period t. If s is optimal, then regarding Bellman’s principle of optimality we would
have the following quality:

T−1∑
t=1

b(s, t) = 0. (5.6)

Definition 5.3:
Experimental level of time consistency conH for heuristics H to be the value calculated as
follows

conH = 1− 1

M |P |
∑
p∈P

1

|N |
∑

s(p)∈N

T−1∑
t

b(s(p), t). (5.7)

The experimental level of time consistency can vary for problem instances but one can
note that 0 ≤ conH ≤ 1. High value of experimental level of time consistency for heuristics
forms expectation that considered heuristics generates solutions which tend to stay optimal
during the realization of its initial routing plan.

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

38 V. V. ZAKHAROV, A. V. MUGAYSKIKH

6. DYNAMIC ADAPTATION OF GENETIC ALGORITHM

The concept of dynamic stability has been widely studied in recent years for problems of
game theory. Using the main idea of the algorithm proposed in [40], we suggest dynamic
adaptation procedure for the class of the travelling salesman problem and genetic algorithm
solving it.

At the initial stage, we generate a set of N different solutions of the problem instance by
the genetic algorithm. From the set N we choose the best solution, with the minimum value
of the objective function. For it, we will obtain M experiments on checking if property of
time consistency holds. If this property is violated, starting from the period t, i.e. after the
period t, the better solution will be found in the current subproblem p(s−(t, p)). To reduce
the total length of the routing plan through all vertices, the current routing plan should be
changed according to the new solution obtained in the considered subproblem. The general
scheme of dynamic adaptation is as follows [28].

1. Obtain set N of different solutions generated by heuristics H for p ∈ P.
2. Define s1(p) = arg min

s(p)∈N
f(s(p)).

3. From t = 1 to T − 1 do
4. Formulate sub-problem p(s−t (t, p)), obtain set N of solution.
5. Define s∗t+1(p) = arg min

s(p(s−t (t,p)))∈N
f(s(p(s−t (t, p)))).

6. Check if the property of time consistency is valid for st(p).
7. If f(s+t (t, p)) > f(s∗t+1(p)) , then routing plan should be changed to
st+1(p) = s−t (t, p) ∪ s∗t+1(p).

7. COMPUTATIONAL RESULTS

7.1. Experimental level of time consistency of the genetic algorithm with Greffenstett’s
crossover for solving the TSP

To conduct the experiment, five test instances from the standard TSPLib library were
considered and a genetic algorithm with a Greffenstett’s heuristic crossover to solve them
was applied. The following set of parameters was used in the computational experiment:
|P | = 5,M = 5, T = 5, |N | = 20. For each of the test problems, 20 different solutions were
generated. The number of runs for one solution s(p) equaled 5. The original route was divided
into five periods. The period number t was marked, after which the solution s(p) lost the time
consistency property. These values correspond to the columns b(s, t) in Table 7.1.

Table 7.1. The experimental level of time consistency of the GA for the TSP

Problem instance Number of
runs

b(s, t) Number
of time consistent runst = 1 t = 2 t = 3 t = 4

att48 100 31 16 26 8 19
eil51 100 64 14 11 3 8

berlin52 100 19 27 4 4 46
st70 100 16 22 4 1 57

eil101 100 15 28 3 2 52
Sum 500 145 107 48 18 182

The average level of Experimental level of time consistency of the genetic algorithm for
solving the TSP equals 0, 364.

conGA = 0,364.

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

DYNAMIC ADAPTATION OF GENETIC ALGORITHM FOR SOLVING ROUTING PROBLEMS 39

This value is quite low: only a third of the solutions generated at the initial stage keep the
optimality property in the process of their implementation. This means that there are other
routes that can be obtained dynamically using the same heuristic algorithm, the values of the
objective function of which will be less than in current solutions.

We calculate the level of time consistency for solutions obtained using the dynamic
adaptation procedure. We will carry out the experiment according to the same scheme and
with the parameters determined earlier. The experimental results are shown in Table 7.2.

Table 7.2. The experimental level of time consistency of the dynamic adaptation for the GA for the TSP

Problem instance Number of
runs

b(s, t) Number
of time consist. runst = 1 t = 2 t = 3 t = 4

att48 100 24 5 11 1 59
eil51 100 47 11 7 5 30

berlin52 100 2 12 5 3 78
st70 100 1 7 5 5 82

eil101 100 1 6 4 4 85
Sum 500 75 41 32 18 334

The average value of the experimental level of time consistency of a dynamically adapted
genetic algorithm for solving the TSP problem is 0.668, which is almost two times higher
than for the genetic algorithm before adaptation.

We consider the dependence of the number of time-consistent solutions obtained during
the experiment in the first t periods on period t. The total number of runs performed is
M |N ||P |. Function (8) is introduced which states for the number of time-consistent solutions
after the completion of each period.

c(s, t) =M |N ||P | −
t∑

k=0

b(s, k). (7.8)

Fig. 7.1. Number of time consistent solution after period t for the genetic algorithm and its dynamic adaptation

In Figure 7.1, the continuous line corresponds to the values of the function c(s, t) during
calculation the experimental level of the time consistency of the genetic algorithm with
the Greffenstett’s heuristic crossover, and the dashed line corresponds to the values of this
function for the dynamic adaptation of this heuristics.

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

40 V. V. ZAKHAROV, A. V. MUGAYSKIKH

7.2. Comparison of route plans obtained by genetic heuristics and its dynamic adaptation
procedute

Using the example of the TSP problem and the genetic algorithm, it was shown that
the dynamic adaptation procedure allows to obtain solutions with a higher level of time
consistency.

We will check how the length of the route plans changes with this procedure. Table 7.3
presents a comparison of the lengths of routes (solutions) generated by the genetic algorithm
and its dynamic adaptation. The average values of the objective function are given for 500
runs of algorithms. The stopping criterion for each start of the genetic algorithm with the
Greffenstett’s heuristic crossover was reaching 100 generations of population. The dynamic
adaptation procedure was carried out according to the scheme given in algorithm 3, with the
following set of parameters: T = 5, |N | = 20.

We introduce the following notation: the value lGA(p) equals the length of the route
obtained by the genetic algorithm for the test problem p, lDAGA(p) is the length of the route
obtained by using a dynamically adapted genetic algorithm. The last two columns of table 3
show the values of the objective function corresponding to the effective start. An effective run
of the dynamic adaptation procedure for the problem instance p is a run for which the value
of lGA(p)− lDAGA(p) is the maximum in the experiment.

Table 7.3. Comparison of length of routing plans generated by genetics and its dynamic adaptation

Problem instance Mean length value Effective run
Genetic heuristics Dynamtic adaptation Genetic

heuristics
Dynamtic
adaptation

att48 12270,72 11723,79 11657 10928
eil51 493,72 464,64 493 448

berlin52 8836,31 8257,36 8570 7893
st70 803,25 758,61 765 708

eil101 779,30 720,338 725 665

Table 3 shows that for each of the problem instances considered, the average length
of the generated solutions by the dynamic adaptation algorithm is less than the classical
genetic algorithm with the Greffenstett’s heuristic crossover. The percent of improvement
we calculate by the equation below:

k =
lGA(p)− lDAGA(p)

lGA(p)
100%. (7.9)

The average percentage improvement is 6, 01%. The maximum improvement value was
obtained for the problem instance eil51 and amounts to 9, 12%.

7.3. Time analysis for applying dynamic adaptation procedure
The procedure of dynamic adaption of a genetic algorithm requires additional runs on each
period and leads to increasing the time to get one routing plan. We will carry out the following
experiment. Let tdyn be the average duration (in seconds) of the dynamic adaptation algorithm
to generate a route. Let us limit the runtime of classical genetic heuristics to tdyn. For each
problem instance, we will make 100 launches of the genetic algorithm and its dynamic
adaptation and compare the results of the two methods with a fixed duration of their work
equal to tdyn.

As can be clearly seen from Table 7.4, with a fixed operating time, the method of
dynamic adaptation of genetic heuristics is able to generate better solutions compared to
the genetic algorithm with the Greffenstett’s heuristic crossover. This remark should be taken
into account in large-scale problem instances, when the generation time of one route can take

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

DYNAMIC ADAPTATION OF GENETIC ALGORITHM FOR SOLVING ROUTING PROBLEMS 41

Table 7.4. Comparison of length of routing plans obtained by fixed runtime tdyn

Problem instance Mean length value tdynGenetic alrorithm Dynamic adaptation
att48 12273,51 11723,79 120,1
eil51 492,44 464,64 165,5

berlin52 8820, 25 8257,36 206,35
st70 807,37 758,61 1300,4

eil101 786,54 720,338 3403,7

tens of minutes. The experiment also showed, in the case of a fixed runtime for generating
the routing plan, it is more profitable to use the dynamic adaptation procedure instead of the
classical heuristic, distributing the time between the corresponding periods of the algorithm.

8. CONCLUSION

In this article, a genetic algorithm with a Greffenstett’s heuristic crossover solving the TSP
problem was described and implemented in Java programming language. The level of time
consistency of the solutions generated by this heuristic is estimated. The calculations for a set
of problem problems from the TSPLib library demonstrated that the genetic algorithm with
the Greffenstett’s heuristic crossover generates routes with a low level of time consistency.

To generate solutions with a higher level of time solvency, a dynamic adaptation procedure
for a genetic algorithm with a Greffenstett’s heuristic crossover is proposed. As a result, the
level of time consistency of the new solutions increased by two times. At the same time, the
average value of the route length decreased by 6.01%. Thus, the practical application of the
proposed dynamic approach allows to generate shorter routes.

It was also shown that with a fixed restriction on the operating time, the procedure for
dynamically adapting the genetic algorithm with the Greffenstett’s crossover leads to obtain
shorter routes.

It is worth noting that the proposed method of dynamic adaptation can be applied to other
heuristic algorithms for solving the TSP problem. The usage of the this method to solve
vehicle routing problems such as TSPTW, IRP, MDVRP, PDP is possible if the heuristic
algorithm is able to solve both the problem itself and its subproblems [34, 35].

REFERENCES

1. Anbuudayasankar S. P., Ganesh K., Mohapatra S. (2014). Survey of Methodologies for
TSP and VRP, Models for Practical Routing Problems in Logistics, Springer, 11–42.

2. Bellman R. (1957). Dynamic Programming, Princeton: Princeton University Press,
1957. – 392 p.

3. Bellman R. (1962). Dynamic programming treatment of the travelling salesman
problem, Journal of the ACM, 9, 61–63.

4. Blum C., Roli A. (2003). Metaheuristics in combinatorial optimization: Overview and
conceptual comparison, ACM Comput. Surv., 35(3), 268–308.

5. Borisovskiy P.A., Eremeev A.V. (2004). Comparison of some evolutionary algorithms,
Automation and Remote Control, 3, 3–9, [in Russian].

6. Chiu K.-M., Liu J.-S. (2011). Robot routing using clustering-based parallel genetic
algorithm with migration, Proceedings of Merging Fields Of Computational Intelligence
And Sensor Technology, 9, 42–49.

7. Christofides N. (1976). Worst-case analysis of a new heuristic for the travelling salesman
problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

42 V. V. ZAKHAROV, A. V. MUGAYSKIKH

Mellon University, 11 p.
8. Comarela, G., Goncalves, K., Pappa, G.L., Almeida, J., Almeida, V. (2011). Robot

routing in sparse wireless sensor networks with continuous ant colony optimization,
Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation GECCO’11, New York, NY, USA, ACM, 599–606.

9. Dantzig G.B. (1963). Linear programming and extensions, Princeton: Princeton Univ.
Press, 219 p.

10. Dorigo M., Gambardella L.M. (1997). Ant colonies for the travelling salesman problem,
Biosystems, 43(2), 73–81.

11. Dorronsoro B. The VRP Web. Languages and Computation Sciences Department,
University of Malaga, http://www.bernabe.dorronsoro.es/vrp/

12. Furini F., Persiani C.A., Toth P. (2016). The Time Dependent Travelling Salesman
Planning Problem in Controlled Airspace, Transportation Research Part B:
Methodological, 90, 38–55.

13. Gendreau M., Potvin J.-Y. (2010). Handbook of Metaheuristics, Springer Publishing
Company, 649 p.

14. Gendreau M., YeHertzo A., Laporte G., Stan M. (1998). A Generalized Insertion
Heuristic for the Travelling Salesman Problem with Time Windows, Oper. Res., 46(3),
330–335.

15. Granville V., Krivanek M., Rasson J.-P. (1994). Simulated annealing: A proof of
convergence, IEEE Trans. Pattern Anal. Mach. Intell., 16(6), 652–656.

16. Grefenstette J. J., Gopal R., Rosmaita B. J., Van Gucht D. (1985). Genetic algorithms
for the traveling salesman problem, Proceedings of the 1st International Conference on
Genetic Algorithms, Hillsdale: Lawrence Erlbaum Associates, 160–168.

17. Gutin G., Punnen A.P. (2002). The traveling salesman problem and its variations,
Kluwer Academi, 837 p.

18. Gutin G., Yeo A., Zverovich A. (2002). Traveling salesman should not be greedy:
domination analysis of greedy-type heuristics for the tsp, Discrete Applied Mathematics,
117(1–3), 81–86.

19. Held M., Karp R.M. (1961). A dynamic programming approach to sequencing
problems, Proceedings of the 1961 16th ACM National Meeting, ACM, 201–204.

20. Helsgaun K. (2000). An effective implementation of the lin-kernighan traveling
salesman heuristic, European Journal of Operational Research, 126, 106–130.

21. Helsgaun K. (2009). General k-opt submoves for the lin-kernighan tsp heuristic, Math.
Program. Comput., 1(2–3), 119–163.

22. Holland J. H. (1975). Adaptation in natural and artificial systems, Ann Arbor: The
University of Michigan Press, 183 p.

23. Hurkens Cor A. J., Woeginger G.J. (2004). On the nearest neighbor rule for the traveling
salesman problem Oper. Res. Lett., 32(1), 1–4.

24. Johnson D.S., McGeoch L.A. (2001). Experimental analysis of heuristics for the stsp.
In Local Search in Combinatorial Optimization, Wiley and Sons, 80 p.

25. Khan I.H. (2015). Assessing Different Crossover Operators for Travelling Salesman
Problem, I.J. Intelligent Systems and Applications, 1, 19–25.

26. Knepper, R.A., Layton, T., Romanishin, J., Rus, D. (2013). Ikeabot: An autonomous
multi-robot coordinated furniture assembly system, Robotics and Automation, 855–862.

27. Miller C.E., Tucker A. W., and Zemlin R.A. (1960). Integer programming formulation
of traveling salesman problems J. ACM, 7(4), 326–329.

28. Mugayskikh A.V. (2015). Dynamic adaptation of genetic algorithm for travelling
salesman problem, Control Processes and Stability, 2, 665–670, [in Russian].

29. Papadimitriou C.H. and Steiglitz K. (1982). Combinatorial Optimization: Algorithms
and Complexity, Upper Saddle River: Prentice-Hall, Inc. 496 p.

30. Petrosyan L.A., Zenkevich N.A. (2009). Principles of dynamic stability, Large-Scale
Systems Control, 3, 100–120, [in Russian].

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

DYNAMIC ADAPTATION OF GENETIC ALGORITHM FOR SOLVING ROUTING PROBLEMS 43

31. Puljic K., Manger C.R. (2013). Comparison of eight evolutionary crossover operators
for the vehicle routing problem, Mathematical Communications, 18, 359–375.

32. Reinelt G. Travelling Salesman Problem Library, http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/

33. Sivasoundari A., Kalaimani S. (2013). Wireless surveillance robot with motion
detection and live video transmission, International Journal of Emerging Science and
Engineering, 1, 147–165.

34. Shirokikh V.A., Zakharov V.V. (2015). Dynamic Adaptive Large Neighbourhood Search
for Inventory Routing Problem, Advances in Intelligent Systems and Computing,
Springer, 359, 231–241.

35. Shirokikh V.A., Zakharov V.V. (2017). Heuristic evaluation of the characteristic function
in the Cooperative Inventory Routing Game, Journal on Vehicle Routing Algorithms,
Springer, 1–14.

36. Talbi E.-G. (2013). Metaheuristics for Bi-level Optimization, Springer Publishing
Company, Incorporated, 288 p.

37. Wang, Y., Wu, C.H. (2007). Robot-assisted sensor network deployment and data
collection, Proceedings of the 2007 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 467–472.

38. Zachariasen M, Dam M. (1996). Tabu Search on the Geometric Traveling Salesman
Problem, Proceedings from Metaheuristics International Conference, Colorado, 1996,
571–587.

39. Zakharov V.V., Dementieva M. (2004). Multistage cooperative games and problem of
time consistency, International Game Theory Review, 6, 157–170.

40. Zakharov V.V., Shchegryaev A.N. (2014). Multi-period cooperative vehicle routing
games, Contributions to Game Theory and Management, 7(2), 349–359.

41. Zakharov V.V., Shchegryaev A.N. (2015). Stable Cooperation in Dynamic Vehicle
Routing Problems, Automation and Remote Control, Springer, 76(5), 935–943.

Copyright © 2020 ASSA. Adv Syst Sci Appl (2020)

	Introduction
	Travelling salesman problem: formulation and methods
	Problem formulation
	Algorithms and methods

	Terminology and definitions
	Genetic algorithm with Greffenstte's crossover
	Time inconsistency of heuristic algorithms
	Dynamic adaptation of genetic algorithm
	Computational results
	Experimental level of time consistency of the genetic algorithm with Greffenstett's crossover for solving the TSP
	Comparison of route plans obtained by genetic heuristics and its dynamic adaptation procedute
	Time analysis for applying dynamic adaptation procedure

	Conclusion

