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Abstract: A mathematical framework based on category theory is proposed to formally describe 
and explore procedures of modeling engineering products and processes that comprise operation 
of a model-based enterprise. The framework is intended to provide interoperability across a 
variety of engineering modeling languages and tools, supplying them with a common abstract 
foundation capable to represent, generate, and verify diverse design and production knowledge. 
The framework is leveraged via algebraic representation of product configurations as diagrams in 
categories with models as objects and descriptions of actions involved into products assembly as 
morphisms. Relevance of the framework is justified by appealing to systems engineering 
standards such as IEC 81346. Category theoretical methods for solving direct assembly problems 
that consist in constructing a product model from a given configuration are presented. 
Specifically, solutions are obtained via the universal construction called a colimit of a diagram. 
Much attention is then paid to stating and solving inverse assembly problems that consist in 
recovery and subsequent optimization of the configuration from the product model and assembly 
actions. Inverse problem solving is in demand for generative design, viz. an emerging fully 
automatic product development and manufacturing technology. Example solutions to direct and 
inverse problems are described in categories that represent two major areas of model-based 
enterprise operation: solid body geometric modeling of mechanical products and discrete-event 
simulation of production processes. 

Keywords: model-based enterprise, model-based systems engineering, assembly planning, 
generative design, category theory, colimit 

1. INTRODUCTION 

A model-based enterprise is a type of industrial organization in which all product life 
cycle processes are arranged around a digital 3D-model of the product annotated with 
detailed product manufacturing information (PMI) [1]. Techniques and tools to develop and 
leverage such a model, with applicability ranging from requirements elicitation and analysis 
through design to manufacturing, maintenance, and disposal, are provided by model-based 
systems engineering (MBSE). More than a decade has passed since the introduction of the 
model-based enterprise concept, during which it gradually matured to an industrial level of 
readiness for implementation, with supporting standards, neutral formats, techniques, and 
software tools for maintaining PMI. Recently, in the emerging Industry 4.0 context, new 
challenges arise, associated with upgrading a product model to the level of a digital twin, viz. 
a virtual copy of the product that reliably reproduces and imposes the structure, state, and 
behavior of the physical original in real time [2]. The degree of design and production 
automation is increased steadily, up to complete elimination of human intervention in the so-
called generative design cycle [3]. 

At the same time, the core problem of specifying the product model in a neutral form that 
guarantees complete undistorted access to it for all life cycle participants and tools cannot be 
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considered solved [4]. There are many specific modeling languages, techniques, and tools 
that are poorly compatible with each other. A natural, albeit “difficult”, approach to make 
them interoperable consists in supplying them with a common abstract formal framework of 
reference that is capable to represent, generate, and verify diverse design and production 
knowledge. The highest level of formality, generality, and verification power is achievable 
by leveraging appropriate mathematics. In this paper, following a recent trend [5, 6, 7], 
category theory is employed as such a framework. Models are treated as objects of suitable 
categories, in which morphisms describe actions involved into assembling complex products. 
Category theoretical constructions that represent MBSE techniques on abstract conceptual 
level are defined and studied. Considerable amount of experience in such a study has been 
gathered previously in model-based software engineering [8] and is now being transferred to 
systems engineering in general. Specifically, a product configuration is established to be 
represented as the diagram in a category of models, and the assembly procedure is formally 
described by a universal construction called the colimit of this diagram [9]. In the context of 
generative design, the inverse assembly problems are stated, solving of which amounts to 
reconstructing a diagram from a fragment of its colimit [10]. 

Some approaches to “categorify” the engineering domain are presented in the literature. 
For example, the framework for ontology and database design is proposed, where objects of 
the categories represent information entities that specify various aspects (facets) of products; 
and morphisms describe functional relationships like “has” or “contains” that connect entities 
to meaningful databases [11]. In [12], a symmetric monoidal category is constructed whose 
associated graphical language is capable to represent signal-flow diagrams of control theory: 
control system state spaces, comprised by finite vectors of signals, are objects of the category, 
and signal processing devices are represented by morphisms. Our approach differs from 
these and others in strong adhering to the model-based paradigm, where models and 
manipulations with them are taken for primary entities and thus represented by objects and 
morphisms, respectively. 

The paper is composed as follows. Section 2 is devoted to overview of problems 
pertaining to assembling products in model-based setting. In Sections 3 and 4, category 
theoretical means to solve direct and inverse assembly problems are presented, respectively. 
Some conclusions and directions for further research are outlined in Section 5. 

2. DIRECT AND INVERSE PROBLEMS OF ASSEMBLING PRODUCTS 

In MBSE, products, parts, and equipment are represented by formalized models of 
various types: digital images of geometric shapes and bodies, numerical approximations of 
differential equations, labeled graphs, databases, etc. Herewith, the internal structure of 
models is not so much necessary to be known at decomposing the product into assembly 
units and planning the production process. The range of model capabilities to connect with 
other models is more important in order to create a hierarchy of assembly unit models. In 
other words, the models are usually considered as “black boxes” with known behavior with 
respect to other models, and are combined into structural schematics of complex products 
and processes, as shown in Fig. 1 [13]. Hence, model-based production planning procedures 
and software tools operate over a virtual catalog of models and descriptions of possible 
actions involved into composing assembly units. 

This point of view is substantiated by systems engineering standards such as IEC 81346 
“Industrial systems, installations and equipment and industrial products—Structuring 
principles and reference designations”. This standard prescribes to represent the complex 
product structure as a directed graph of the hierarchy of units that are denoted by reference 
designations. The structure and related labeled graphs of various other types routinely occur 
while performing various MBSE procedures [10]. A graph that consists of models of 
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constituents of a certain unit, which are related by the unit assembly actions, is called the unit 
configuration. 

 

 

Fig. 1. Assembly planning [13] 

As an example that is particularly relevant to mechanical design, consider a mechanical 
product consisting of rigid solid parts (see the left half of Fig. 1). For such a product, models 
of parts and assembly units are geometric bodies that can be represented for computer 
processing by various means: Constructive Solid Geometry (CSG), finite array of small 
spatial cells (voxels), boundary representation (BRep) [14]. Representations of particular 
product parts or assembly units are obtained from such models by affine isometries and 
stretches. For instance, the model of a barbell (heavy sporting equipment) consists of several 
cylinders of different sizes. In the barbell structure graph, the cylinders are represented by 
different vertices, although all of them are generated by the same geometric model. So the 
solid body model catalog contains a cylinder, with which several different actions of 
inclusion into the barbell are associated. 

Another example of modeling technique, widely used in production planning, is discrete-
event simulation (see the right half of Fig. 1). Its widespread support is regarded among the 
most significant achievements of MBSE. Here, a model represents an operational scenario, 
viz. a fragment of the imagined history of the simulated object behavior described as a 
discrete sequence of events of various types. Some events may trigger others or prevent 
others from occurring, inducing causal relations between some events within a scenario. 
Descriptions of actions used to build scenarios of the complex systems behavior reflect the 
contribution of the components. Specifically, the operational scenario of the model-based 
enterprise plant is composed from operational scenarios of plant equipment units that interact 
with each other in the course of the production process. So, in discrete-event simulation, a 
structure graph represents the process hierarchy. 

The direct product assembly problem is stated as follows. Given a product configuration, 
the model of the product as a whole needs to be constructed along with actions involved into 
assembling it, to complete the hierarchical product structure graph. The principle of 
constructing the target product model is easy to see from the structure representation: the 
model should be located at precisely one hierarchical level above the level of largest 
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constituent units. In other words, the product model should include all constituents’ models 
respecting their relations within the configuration, and nothing more in a sense that it should 
be included into any model that include all constituents’ models respecting the configuration 
relations. 

This principle is easy to explain on a simple example. Suppose that a product should be 
assembled from two given parts P and S, and a manufacturing engineer has decided to join 
them by means of a certain glue, viz. the intermediate part G that can be directly applied on 
both P and S. Action of the glue is described by the following configuration: parts G and P 
comprise an intermediate unit PG produced as a result of applying the glue on P, and 
similarly, parts G and S comprise a unit SG. The model of the target product R assembled by 
gluing P and S with G is selected among candidate models that contain units PG and SG and 
respect the glue G in a sense that tracing the glue inclusion through either one of the two 
units amounts to the same action. The selection obeys the following structural criterion: R 
should be unambiguously identifiable within any candidate model T. This criterion is shown 
schematically in Fig. 2 [15], where models included into the IEC 81346 compliant product 
structure graph are colored in yellow and tagged by reference designations, and the glue is 
appended as a manufacturing information annotation. 

 

 

Fig. 2. Schematics of gluing [15] 

Provided that such a model R exists, it clearly represents the product that is assembled by 
gluing two parts without any extra changes or augmentations. Moreover, it is easy to see that 
such model is unique in a sense that any two such models, by definition, contain each other. 
On the contrary, if the model R doesn’t exist (cannot be found in the model catalog), then the 
wrong glue was chosen: G is incapable to connect P with S. 

Notice that the gluing configuration is significantly simplified in case when influence of 
the glue on parts is negligible, so we can assume that PG = P and SG = S. In this case, the 
configuration takes a shape of a span, viz. a graph consisting of two edges with the same 
source: P  G  S. We will refer to this kind of gluing as non-intrusive. In real world, it 
routinely occurs in solid body modeling: applying thin layer of a glue leaves the shape of a 
part unchanged. For example, non-intrusive gluing is intended to fix parts together at 
assembly tasks M1-M4 shown in Fig. 1. 

Let’s return to the general setting. If models contain values of some parameters, and 
descriptions of assembly actions contain rules for transforming the values, then the structure 
graph allows to calculate values of the parameters for the target product, including geometry, 
topology, dimensions, tolerances, etc. Emergent parameters that can’t be attributed to any 
particular unit can also be calculated. Examples of calculations of this kind are known in the 
field of composite materials design [16]. The averaged (effective) physical properties of a 
composite, such as a Young’s modulus and a Poisson’s ratio, depend in a complex way on 
properties of components and methods of manufacturing the composite from them. Using 
elasticity theory methods, these dependencies are specified as linearized matrix relations that 
label arrows of the composite material structure graph. Then it becomes possible to predict 
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the properties of the material virtually by computation over a database of components shown 
in Fig. 3, avoiding costly physical experiments. 
 

 

Fig. 3. Materials database [16] 

Although direct calculation of the product model by its configuration is so much 
important, it plays only a secondary, instrumental role in preparing a large complex product 
for manufacturing. According to the standards like IEC 81346 and manufacturing practices, 
the assembly process is routinely designed in a top-down fashion, from the product as a 
whole to progressively smaller units. Therefore, a typical assembly planning problem has 
inverse rather than direct character: given the unit model, it is needed to determine (recover) 
the configuration from which the unit can be effectively assembled. The assortment of 
theoretically possible configurations is unimaginably huge, but in practice, it is severely 
constrained by plant capabilities, stakeholders’ requirements, suppliers’ offers, engineers’ 
preferences, and other factors. So, the primary assembly planning procedure consists in 
identification of the class of all configurations that produce the given unit and satisfy all 
constraints imposed by practical factors. Once this class is identified, search for the final unit 
configuration is performed across it aiming to optimize conventional process objective 
functions, such as cost, duration, and complexity [17]. For this reason, we will call this class 
the assembly design space. Developing algorithms and tools to explore the space on a solid 
mathematical basis powered by computer algebra and artificial intelligence would allow to 
automate the design for manufacturability (DfM) practices. The ultimate target is the end-to-
end generative design cycle of complex products in model-based enterprise environment. 

For example, the inverse problem of gluing is stated as follows. In accordance with the 
IEC 81346 standard, the structure of the target product R is specified as a graph consisting of 
three models P, S, R and two actions P  R, S  R. An admissible gluing configuration is 
any combination of five models and four actions that comprise the “zigzag” shape 
highlighted by solid arrows in Fig. 2. Among all such configurations, those are of interest for 
which solving the direct problem produces specified actions P  R and S  R as two-step 
inclusions of the two outer models into the target product. In particular, outer models 
themselves are required to be precisely P and S, and the target product model is required to 
be R. 

3. CATEGORY THEORY IN PRODUCT ASSEMBLY MODELING 

As stated in the Introduction, the natural source of mathematical means for representation, 
generation, and verification of product structure graphs is category theory, viz. a branch of 
higher algebra that “starts with the observation that many properties of mathematical systems 
can be unified and simplified by a presentation with diagrams of arrows” ([18, p. 1]). Recall 
that a category is a class of abstract objects pairwise related by morphisms (arrows). The 
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precise definition takes just a few lines: a category C consists of a class of objects Ob C and 
a class of morphisms Mor C endowed with the following operations. Firstly, two objects are 
associated with each morphism f: a domain (arrow source) dom f and a codomain (target) 
codom f, so that the pair of equalities dom f = A and codom f = B is depicted as an arrow  

f : A  B. Secondly, for any pair of morphisms f, g that satisfies the condition codom f = 

dom g, the composition of morphisms g ◦ f : dom f  codom g is defined, and it is 
associative: for any three morphisms f, g, h such that codom f = dom g and codom g =  
dom h, the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f holds. Thirdly, any object A has an associated 
identity morphism 1A : A  A such that f ◦ 1A = 1B ◦ f = f for any morphism f : A  B. A 
classic example of a category is Set that consists of all sets and all maps between sets: the 
composition law for maps is defined by the standard substitution, and the identity map of a 
set sends each element to itself. 

The axioms of a category are inherently symmetrical with regard to swapping dom with 
codom along with reversing the order of composing morphisms: the category obtained this 
way from C is called dual of C and denoted by Cop. The axioms also tolerate restriction to 
subclasses, so the notion of subcategory is defined: a subcategory of C is a pair consisting of 
a subclass of Ob C and a subclass of Mor C that are closed with respect to operations 
inherited from C. A subcategory of C is called full if it contains any C-morphism whose 
domain and codomain are contained in it. 

Together with category, the concept of functor is routinely introduced, which is a 
structure-preserving map between categories. Specifically, a functor fun : C  D from 

category C to D is a pair of maps fun : Ob C  Ob D (an object function) and  

fun : Mor C  Mor D (a morphism function) that satisfies the following conditions for any 
C-morphisms f, g and C-object A: (i) fun(dom f) = dom fun(f), fun(codom f) = codom fun(f); 
(ii) fun(g ◦ f) = fun(g) ◦ fun(f) whenever the composition g ◦ f is defined; (iii) fun(1A) = 1fun(A). 
Obviously, all categories and all functors comprise a (formal) category denoted by CAT. To 
explore relationships between functors, the following construction is introduced: the natural 
transformation  of a functor fun : C  D to a functor fun' : C  D is a function that assigns 
to each C-object A a D-morphism A : fun(A)  fun'(A) in such a way that B ◦ fun(f) =  
fun'(f) ◦ A for any C-morphism f : A  B. 

 

 

Categories are routinely constructed from graphs: any directed multigraph induces a 
category with vertices as objects and finite paths as morphisms. Indeed, the domain and the 
codomain of a path are its source and target, respectively; composition of morphisms acts as 
concatenation of paths; the identity morphism of a vertex is an empty “path” from the vertex 
to itself. This construction leads to the fundamental notion of a diagram in C, viz. a functor 
of the kind  : X  C where X is a category generated by some graph called the shape of the 
diagram. A diagram is visually depicted as a graph that generates X, endowed with labels 
from C: each vertex a is labeled by the C-object (a) and each edge k is labeled by the  
C-morphism (k). All diagrams in C comprise a category denoted by DC (a covariant 
modification of a “super-comma” category introduced in [18, Exercise V.2.5]), in which a 
morphism from a diagram  : X  C to  : Y  C is a pair , fd consisting of a functor  
fd : X  Y and a natural transformation  :    ◦ fd; the composition law for morphisms is 
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specified as follows: , fd ◦ , gd = gd(–) ◦ , fd ◦ gd. Category theory provides a number 
of algebraic techniques for construction and analysis of diagrams. 

The effectiveness of employing category theory as a mathematical framework for model-
based enterprise stems from the observation that a catalog of models and actions introduced 
in Section 2 is nothing but a category. Indeed, the catalog has composite morphisms 
(sequential execution of actions) and identity morphisms (idle “doing nothing” action with 
any model). For example, in solid body modeling of mechanical products, a model is 
algebraically represented as a subset of ℝ3 which is bounded, regular (i.e., it coincides with 
the closure of its interior wrt the standard topology), and semi-analytical (i.e., it admits a 
representation as a finite Boolean combination of sets of the kind {(x, y, z) | F1(x, y, z)  0, 
F2(x, y, z)  0, …} where Fi : ℝ

3  ℝ is a real analytic function for any index i) [14]. In 
order to support specifications of assembly procedures such as gluing bodies together by 
surface fragments, all bounded regular semi-analytical subsets of ℝn, 0  n  3, are 
considered as valid solid body models. Then, the quotient is formed: any two such sets that 
can be turned into one another by a composition of affine isometries and stretches are 
identified with one another. Morphisms of such equivalence classes, which describe 
assembly actions of complex mechanical products, are generated by isometric embeddings 
and stretches. This way, the subcategory of Set emerges, which we will denote by SBM 
(from Solid Body Modeling). 

For many well-known MBSE techniques, formal description of the model catalog 
produces a category of sets endowed with some structure, e.g., algebraic systems, topological 
spaces, graphs, etc. Morphisms in such categories are maps of sets compatible with the 
structure. A canonical functor to Set acts on such a category by “forgetting” the structure. An 
example is the following algebraic representation of discrete-event simulation. A scenario is 
represented by a set of events partially ordered by causal dependencies and labeled by event 
types. Since neither events nor dependencies, nor labels could be “lost” when composing a 
complex system behavior scenario from components behavior scenarios, actions involved 
into assembling scenarios are described as maps that preserve the order and the labeling [19]. 
All scenarios and all such actions form a category called Pomset and equipped with a functor 
to Set that forgets the order and the labeling. 

Let C be a category that represents some model catalog. A product structure and related 
graphs are diagrams in C, so the category DC represents the respective catalog of such 
graphs and actions involved into product structure development. We show how to rigorously 
solve various problems of assembling products by means of the category theoretical 
framework provided by DC. For instance, the solution to the direct problem is represented by 
the following universal construction called the colimit of the diagram. Denote by 1 the 
singleton category that consists of one object 0 and one morphism 10. For any category X, 
there exists a unique functor from X to 1, denoted by !X : X  1, which sends any X-object to 
0 (in other words, 1 is a terminal CAT-object). There is a full embedding (i.e., an injective 

functor onto a full subcategory of its codomain) ┌–┐ : C ↪ DC that takes a C-object Q to the 

singleton diagram ┌Q┐ : 1  C : 0 ↦ Q. A DC-morphism with a singleton diagram as the 
codomain is called a cocone. This name is justified by visual representation: a cocone , !X : 
  ┌Q┐ over a diagram  : X  C can be depicted by adding an extra vertex Q and 

associated edges a : (a)  Q, a  Ob X, to the graph of the base diagram . If the extra 
edges were directed reversely (dually), i.e., from Q to vertices of , then category theorists 
would call this picture by the familiar word “cone”, hence they apply the prefix “co-” to 
indicate the duality. 

A colimit (named as a dual to a limit) of  is a cocone colim  :   ┌R┐ that is 
universal in the following sense: for any C-object T and any cocone  :   ┌T┐ there exists 

a unique C-morphism w : R  T that satisfies the equality  = ┌w┐ ◦ colim . It is easy to see 



LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 57 

Copyright ©2020 ASSA.                                                                                    Adv. in Systems Science and Appl. (2020) 

 

that this universality condition is precisely the structural criterion from Section 2 which 
determines the model R of the target product built from the configuration . Thus, given a 
product configuration represented as a diagram, rigorous analysis and verification of the 
product assembly process amounts to checking that the diagram has a colimit and calculating 
its vertex and associated edges. 

For example, a vertex of a colimit of a discrete diagram is known as a sum of objects that 
label the diagram’s vertices, and its edges are called injections. Another useful kind of a 

colimit is that of a diagram consisting of a parallel pair of morphisms  ⇉ . The colimit 
edge that starts from the right vertex of the diagram is called a coequalizer of the pair; it 
generalizes the set-theoretical concept of a quotient. A morphism is called a regular 
epimorphism whenever there exists a parallel pair that it coequalizes. 

Yet another fundamental type of a colimit is constructed as follows. Let V be a span-
shaped two-arrow graph      and  : V  C be a V-shaped diagram populated by a 
pair of C-morphisms f : P  G  S : g. The colimit of , called a pushout (or a universal 
square) of the pair, is specified by the vertex R and the pair of edges p : P  R  S : s that 
satisfy the following two conditions: the equality p ◦ f = s ◦ g holds (it establishes naturality 
of the pushout and determines the colimit edge directed from G to R), and, for any object T 
and a pair of morphisms u : P  T  S : v such that u ◦ f = v ◦ g, there exists a unique 
morphism w : R  T that satisfies the equalities w ◦ p = u and w ◦ s = v (this is the 
universality condition). 
 

 

 
Clearly, a pushout provides a solution to the direct non-intrusive gluing problem stated in 

Section 2. A pushout can be constructed via a sum and a coequalizer provided that they exist 
[18, Exercise III.3.2]. Let p = q ◦ inP and s = q ◦ inS, where inP : P  P  S  S : inS are 
injections of the components into the sum and q is the coequalizer of the following parallel 
pair of morphisms: 

inP ◦ f, inS ◦ g : G ⇉ P  S. 

For the pushout constructed in such a way, the naturality condition (q ◦ inP) ◦ f = (q ◦ inS) 
◦ g and the universality condition directly follow from the definition of a coequalizer. In the 
category Set, the sum is the disjoint union of sets P and S, and the coequalizer is its quotient 
map modulo the equivalence relation generated by the set of pairs {(f(x), g(x)) | x  G}. So 
the edge map p takes each element of the set P to the element’s equivalence class, and the 
map s acts similarly on S. If maps f and g are injective, then they establish that G is the 
intersection of the sets P and S, and the pushout produces precisely the union of the sets. It 
often occurs at modeling a mechanical product assembly by means of the category SBM. 
Illustrative examples are shown in Fig. 1 as assembly tasks M1-M4. For instance, the task 
M3 consists in actions depicted by dashed arrows of the commutative square shown in Fig. 4 
(drawn upside-down in accordance with IEC 81346). It is easy to verify directly that this 
square is a pushout in SBM. Observe that the glue is represented by means of SBM as a 
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parts’ contact 2D surface on which thin layer of a red-colored chemical adhesive is applied to 
fix parts together. 

 

 

Fig. 4. Non-intrusive gluing as a pushout 

Non-intrusive gluing is also widely used as a method of producing laminated composite 
materials. The database used in digital design and verification of the composite properties is 
outlined schematically in Fig. 3 above. An interested reader with some background in 
materials science may construct example pushouts and evaluate properties of composites 
over them following [16], as an exercise. 

The construction of a pushout in Set admits generalization to many familiar categories of 
sets with structure. For example, any V-shaped diagram in the category of discrete-event 
simulation Pomset has a pushout. However, if it were constructed literally as in Set, then the 
order on the vertex inherited from base components might turn into a preorder, so an extra 
quotient may apply to restore the partial order on the vertex in a standard way. The real-
world example that includes a pushout in Pomset is shown in Fig. 5 below. 

A colimit of any diagram in any category can be constructed via a sequence of sums and 
pushouts provided that it exists (for example, the whole process shown in Fig. 1 amounts to 
assembling the product from parts A, B, and C via a sequence of pushouts in SBM). 
Furthermore, in practical applications simplifying the shape of a diagram helps to calculate 
colimits. We present the following result to pursue this direction. 

 
Theorem 1: 

Let  : X  C be a diagram, Y be a full reflective subcategory of X, and  

isc : Y ↪ X be an embedding. For each cocone  :  ◦ isc  ┌S┐, there exists a unique 
cocone ' :   ┌S┐ such that  = ' ◦ 1 ◦ isc, isc. Moreover, the cocone  is a colimit of the 
diagram  ◦ isc if and only if the cocone ' is a colimit of the diagram . 

 

Proof. Recall that a subcategory Y of X is called reflective if the embedding isc : Y ↪ X 
has a left adjoint functor isc* : X  Y called a reflector [18, § IV.3]. Specifically, there exists 
a natural transformation  : 1X  isc ◦ isc*, called the reflection unit, that consists of 
universal arrows. The unit induces a DC-morphism (), isc* :    ◦ isc. By definition 
of the cocone, for each X-object i the edge f : (i)  S of the desired cocone ' satisfies the 
condition f = h ◦ (i) where h : (isc(isc*(i)))  S is an edge of the cocone , so ' =  
 ◦ (), isc*. 

Assume that  is a colimit, and consider an arbitrary cocone  :   ┌T┐. Let w : S  T 
be a canonical C-morphism that satisfies the condition  ◦ 1 ◦ isc, isc = ┌w┐ ◦ . Hence,  
┌w┐ ◦ ' =  ◦ 1 ◦ isc, isc ◦ (), isc* =  and, in addition, if some C-morphism w̃ : S  T 
satisfies the condition  = ┌w̃┐ ◦ ', then  ◦ 1 ◦ isc, isc = ┌w̃┐ ◦ ' ◦ 1 ◦ isc, isc = ┌w̃┐ ◦ , so 
w̃ = w. We conclude that ' is a colimit of the diagram . 

Conversely, assume that ' is a colimit, and consider an arbitrary cocone  
 :  ◦ isc  ┌U┐. Let u : S  U be a canonical C-morphism that satisfies the condition ' = 
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┌u┐ ◦ ' where ' =  ◦ (), isc*. Hence, ┌u┐ ◦  =  ◦ (), isc* ◦ 1 ◦ isc, isc =  and, in 
addition, if some C-morphism ũ : S  U satisfies the condition  = ┌ũ┐ ◦ , then ' =  
┌ũ┐ ◦  ◦ (), isc* = ┌ũ┐ ◦ ', so ũ = u. We conclude that  is a colimit of the diagram  
 ◦ isc. □ 

 
As an application of Theorem 1, consider the direct general gluing problem. Its solution 

amounts to constructing a colimit of a diagram with the following shape that we will denote 
by M. 
 

 

 

There exists an embedding iv : V ↪ M that maps V onto a full subcategory of M with a 
set of object {b, c, b'}. This subcategory is reflective, with the reflector iv* taking a to b, a' to 
b', and other vertices to themselves, so that two outer arrows a  b and a'  b' are the 
reflection unit components associated with objects a and a', respectively. By Theorem 1, the 
colimit of a diagram  : M  C is determined one-to-one by the pushout of the diagram  
 ◦ iv : V  C comprised from two central arrows of M. Real-world examples of colimits of 
this kind can be constructed in the category SBM by representing “intrusive” means of 
joining mechanical parts, such as riveting. Yet another example is inspired by the right half 
of Fig. 1: the production process simulation can be glued from simulations of robot A, robot 
B, and the conveyor. According to the production graph, the conveyor acts as a “process 
glue” between two robots, delivering parts and assembly task results from one to another. 
One possible production scenario consisting of tasks M3 and M4 performed by robots B and 
A, respectively, is represented in Fig. 5 by a colimit of an M-shaped diagram in the category 
Pomset. 
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Fig. 5. Constructing a production process simulation via a colimit 

We conclude this Section with the following remarks. A colimit of an arbitrary diagram  

is unique up to an isomorphism provided that it exists: a cocone of the kind ┌i┐ ◦ colim  is a 
colimit of  if and only if i is a C-isomorphism. Moreover, colimits allow to represent 
assembling products from configurations as a functor. Still further, the construction of the 
category of diagrams DC induces a monad in CAT whose associated category of algebras 
contains instances of the colimit functor and other functors that are relevant for mathematical 
framework of MBSE. Therefore, this monad is regarded as the MBSE metamodel [10]. 

4. INVERSE ASSEMBLY PROBLEMS AND SOLUTIONS 

To explore inverse product assembly problems, the following technical concept of a 
subcocone is needed. A cocone  is called a subcocone of a cocone  if there exists a  

DC-morphism , iy : dom   dom  such that the natural transformation  consists of 
identity C-morphisms, the functor iy is injective, and  ◦ , iy = . The inverse problem is 
stated mathematically as follows. Given a cocone  (that represents the known fragment of 
the target product structure) and a class Cd of diagrams (that represents the space of all 
practically feasible configurations), evaluate the subclass Cds  Cd consisting of all 
diagrams from Cd with a colimit that contains  as a subcocone. 

The subclass Cds is precisely the assembly design space across which (sub-, Pareto-) 
optimal configurations are sought. Category theory may improve the search as follows. Let Q 
be a linearly ordered set in which some search objective function takes values (most often, Q 
is the set of all real or integer numbers). Obviously, Q can be regarded as a category, since 
any ordered set can be depicted as a directed graph. Of particular interest is the situation 
where the objective function acts as an object function of a functor that takes values in the 
category Q and arguments in a subcategory of DC (or of the dual category (DC)op) which has 
Cds as class of objects and enough non-identity morphisms. In this case, optimization 
algorithms of gradient descent type can be employed, which navigate along morphisms of 
this subcategory, calculating the path by means of computer algebra. Performant computer 
algebra packages for such category theory calculations are available [20]. 

For example, consider the inverse gluing problem stated in Section 2. Here, the class Cd 
from the general configuration recovery problem statement consists of all M-shaped 
diagrams with a colimit in C. The cocone  can easily be reconstructed from the product 

structure presented in Fig. 2 above: the cocone base is the diagram  : a ↦ P, a' ↦ S with the 
two-vertex discrete shape {a, a'}  M, and the cocone vertex is the target product R, so the 
cocone is specified as a pair of C-morphisms p : P  R  S : s. This problem is solved as 
follows. 

 
Proposition 1: 

For any C-objects P, S, R and any pair of C-morphisms p : P  R  S : s, there exists a 
diagram  : M  C with a colimit , !M :   ┌R┐ that satisfies the equalities a = p and 
a' = s. This diagram is unique up to a DC-isomorphism if and only if the pair consists of 
isomorphisms and every epimorphism with the codomain R is an isomorphism. 

 
Proof. Construct a desired diagram  in two steps. First, choose an arbitrary factorization 

of the kind p = o ◦ q in order to label the outer arrow a  b of  by the morphism q, along 
with the similar factorization s = o' ◦ q'. Second, having that, as established in Section 3 by 
Theorem 1, a colimit of an M-shaped diagram amounts to a pushout, find a diagram  
 : V  C that has a pushout specified by edges o and o', and use it to label two central 
arrows of  (i.e., to satisfy the equality  ◦ iv = ). 
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Consider trivial factorizations with o = o' = 1R. A C-morphism e with the codomain R is 
an epimorphism if and only if the equality 1R ◦ e = 1R ◦ e determines a pushout [18, Exercise 
III.4.4]. Hence, we shall take the following M-shaped diagram, which we will denote by e, 
as  provided that e is an epimorphism. 
 

 

 
In particular, with e = 1R we obtain somewhat paradoxical formal solution to the glue 

finding problem: if the complex product R that includes parts P and S is already specified, 
then let it serve as a glue fixing these parts together! 

If p is not an isomorphism, then another solution (non-isomorphic to the above) is 
obtained by changing the factorization of p to another trivial one with q = 1P, so that the part 
P plays the role of a glue as follows. 
 

 

 
Other pairs of morphisms that have a pushout specified by edges p and 1R lead to other 

solutions. “Symmetrical” solutions are obtained from factorizations with o = 1R and q' = 1S 
provided that s is not an isomorphism. Other factorizations may produce yet other solutions. 

If both p and s are isomorphisms, then morphisms o and o' are epimorphisms with the 
codomain R [21, Proposition 7.42]. If any such epimorphism is an iso, then the target 
diagram  is essentially unique: it can be comprised solely from isomorphisms. Otherwise, at 
least two non-isomorphic diagrams of the kind e exist. □ 

 
For example, in the category Set the uniqueness criterion of the glue finding problem 

solution is equivalent to the condition that the set R is empty. If this is not the case, then any 
larger set can be mapped onto R, so the target class Cds contains at least infinitely many 
pairwise non-isomorphic M-shaped diagrams of the kind e. 

The stepwise glue finding procedure executed to prove Proposition 1 admits 
generalization for recovering configurations with more complicated shapes than M. Such a 
general procedure essentially amounts to “unwinding” the construction of a colimit from 
sums and pushouts. Crucial steps of the procedure consist in recovering a pushout from its 
edges. This is the case for an inverse non-intrusive gluing problem. Indeed, the class Cd in 
this problem’s statement consists of all V-shaped diagrams with a colimit in C, while the 
cocone  has a discrete base consisting of two outer vertices of V and is specified by a pair of 
C-morphisms with the same codomain. This pushout recovery problem is quite difficult to 
solve. We start with solving it in the category Set as follows. 
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Proposition 2: 

Let P, S, R be sets and p : P  R  S : s be a pair of maps.  

(1) A pair of maps that has a pushout specified by edges p and s exists if and only if the 
following condition holds for each r  R: 

(|p–1(r)| = 0  |s–1(r)| = 1)  (|s–1(r)| = 0  |p–1(r)| = 1). 

(2) Let prP : P  P × S  S : prS be a cartesian product of sets equipped with projections 
and [p, s] : P  S  R be the canonical map that acts as p on P and as s on S. A pair 
of maps f : P  G  S : g has a pushout specified by edges p and s if and only if the 
map [p, s] is surjective and there exists a map h : G  P × S such that f = prP ◦ h,  
g = prS ◦ h, and the set h(G), considered as a binary relation on P  S, generates the 
equivalence relation that coincides with the kernel equivalence relation of the map  
[p, s].  

(3) There exists a unique pair of maps that has a pushout specified by edges p and s if 
and only if the map [p, s] is bijective. 

 
Proof. 
(1) Assume that the maps p and s specify the pushout of some pair of maps  

f : P  G  S : g. From the construction of pushout in Set described explicitly in Section 3, 
it is easy to see that if the set p–1(r)  P is empty for some r  R, then the element r has been 
brought into R from the set S \ g(G): there exists a unique y  S such that s(y) = r. The case 
for empty set s–1(r)  S is considered similarly. 

Conversely, assume that p and s satisfy the condition (1); in particular, p(P)  s(S) = R. 
Construct a pullback (a limit, viz. a universal construction dual to a pushout) of the  
Vop-shaped diagram in Set populated by the pair [18, § III.4]: let 

G0 = {(x, y) | p(x) = s(y)}  P × S,  

f0 : G0  P : (x, y) ↦ x, g0 : G0  S : (x, y) ↦ y. 

The equality p ◦ f0 = s ◦ g0 holds and determines the pullback; we claim that it also 
determines a pushout of the pair of pullback edges f0 : P  G0  S : g0. Indeed, construct the 
pushout of this pair in a standard way, with p' : P  R'  S : s' being its edges. Define the 
map i : R  R' as follows: for each r  R, if r  p(P), then let i(r) = p'(x) for an arbitrary  
x  p

–1(r) (obviously, the value i(r) doesn’t depend upon the choice of x); otherwise, let i(r) = 
s'(y) where y is a unique element of the set S such that s(y) = r (such an element exists by 
assumption). It is easy to see that i is a bijection, p = i–1 ◦ p', and s = i–1 ◦ s', so the maps p and 
s are edges of a pushout of the pair consisting of f0 and g0. 

(2) For a map h : G  P × S, the requirement that the map [p, s] is surjective and its 
kernel equivalence relation is generated by h(G) is equivalent to the condition that [p, s] is a 
coequalizer of the following parallel pair of maps: 

inP ◦ prP ◦ h, inS ◦ prS ◦ h : G ⇉ P  S. 

If h satisfies this condition, then, by the construction of a pushout via a coequalizer, the 
maps p and s specify the pushout of the pair 

prP ◦ h : P  G  S : prS ◦ h. 

Conversely, assume that p and s specify the pushout of some pair of maps  
f : P  G  S : g. Let 

h = f, g : G  P × S : x ↦ (f(x), g(x)). 
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(3) If the map [p, s] is bijective, than its kernel equivalence relation is discrete (coincides 
with the identity). Hence, a pair of maps, constructed from a map h : G  P × S composed 
with projections as in the proof of (2) above, may have a pushout with such edges p and s 
only if the set h(G) is empty, which implies that G itself is empty. Indeed, the pair of empty 
maps P    S is the only one that has a pushout with such edges. 

Conversely, assume that the map [p, s] is not bijective. If the condition (1) doesn’t hold, 
then no pushout exists with edges p and s. Otherwise, the set G0 constructed above is non-
empty, so any larger set can be mapped onto it. In this case, infinitely many pairwise non-
isomorphic V-shaped diagrams exist that have a pushout specified by edges p and s: by (2), 
each of these diagrams is populated with a pair of maps of the kind 

f0 ◦ e : P  G  S : g0 ◦ e, 

where e : G  G0 is an epimorphism (surjection). □ 
 

If the maps p and s are injective, then the maps f0 and g0 constructed via the pullback in 
the proof of Proposition 2 are injective as well [21, Proposition 11.18]. Hence, the method of 
the proof in many cases allows to recover gluing configurations in the category of solid body 
modeling SBM. For instance, recovering the glue for the assembly task M3 from Fig. 1 by 
the pullback yields a pushout isomorphic to the one shown in Fig. 4. 

Proposition 2 can also be adapted for many familiar categories of sets with structure. In 
such a category, the solution existence condition stated for a pair p : P  R  S : s in 
Proposition 2(1) is augmented with a suitable structure preservation requirement. One 
possible form of such a requirement is the following regularity condition: the canonical 
morphism [p, s] is a regular epimorphism. At least, by the construction of a pushout via a 
coequalizer, the regularity condition is necessary for morphisms p and s to be edges of some 
pushout in any category where the sum P  S exists. The glue can be constructed, as in Set, 
via the pullback of the pair: the statement dual of [21, Lemma 11.15(1)] implies that in any 
category, if a pair of morphisms with the same codomain admits both pushout recovery and a 
pullback, then the latter is the former, i.e., the pullback is at the same time a pushout, so it 
provides a solution to the pushout recovery problem. Other glues can be constructed 
similarly to Proposition 2(2) that, restated in terms of coequalizer as in its proof, holds in any 
category where both the product P × S and the sum P  S exist. Analogues of Proposition 
2(3) can be obtained as well. 

The above considerations apply for the category of discrete-event simulation Pomset. For 
a pair of maps p : P  R  S : s that preserve the order and the labeling, the pushout 
recovery problem has a solution if and only if the pair satisfies both the condition of 
Proposition 2(1) and the regularity condition. The example glue is the set G0 constructed as 
in the proof of Proposition 2 and endowed with the order and the labeling inherited from the 
product P × S. In enterprise simulation, such a glue represents a plant control system that 
ensures coherent operation of manufacturing equipment units P and S jointly executing the 
target process R. The construction of the glue demonstrates how category theory can be 
leveraged to automate control system programming. This kind of automation is in demand 
for the emerging approach to production planning and operation on the basis of a digital  
twin [22]. For example, recovering a glue of two upper maps from Fig. 5 by the pullback 
yields a control program specification isomorphic to the conveyor simulation shown at the 
bottom. 

5. CONCLUSION 

Category theory demonstrates significant potential in improving model-based enterprise 
performance. In particular, the theory provides mathematically rigorous solutions to direct 
and inverse problems associated with assembling products. A number of real-world 
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examples of such problems can be found in the cited literature and elsewhere. Yet, theorems 
and proofs are of little utility to engineers: in order to hand category theoretical techniques 
over to industry, they shall be implemented in appropriate software tools. The tools, given 
requirements to the target product (e.g., a 3D-model) and to the manufacturing plant (e.g., a 
factory simulation), would represent and evaluate them by means of category theory as 
described above, and then automatically synthesize the production plan that is optimal wrt 
specified objective functors. Provided that such synergy between computer algebra and 
optimization algorithms will be achieved, the tools will open new horizons in automatic 
production planning and generative design. Development and deployment of the tools is a 
major area for further theoretical and applied research. 
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