
Adv Syst Sci Appl 2020; 01; 50-65

Published online at http://ijassa.ipu.ru/index.php/ijassa/article/view/781

Leveraging Category Theory in Model Based Enterprise

Serge P. Kovalyov*

V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Moscow, Russia

E-mail: kovalyov@sibnet.ru

Abstract: A mathematical framework based on category theory is proposed to formally describe
and explore procedures of modeling engineering products and processes that comprise operation
of a model-based enterprise. The framework is intended to provide interoperability across a
variety of engineering modeling languages and tools, supplying them with a common abstract
foundation capable to represent, generate, and verify diverse design and production knowledge.
The framework is leveraged via algebraic representation of product configurations as diagrams in
categories with models as objects and descriptions of actions involved into products assembly as
morphisms. Relevance of the framework is justified by appealing to systems engineering
standards such as IEC 81346. Category theoretical methods for solving direct assembly problems
that consist in constructing a product model from a given configuration are presented.
Specifically, solutions are obtained via the universal construction called a colimit of a diagram.
Much attention is then paid to stating and solving inverse assembly problems that consist in
recovery and subsequent optimization of the configuration from the product model and assembly
actions. Inverse problem solving is in demand for generative design, viz. an emerging fully
automatic product development and manufacturing technology. Example solutions to direct and
inverse problems are described in categories that represent two major areas of model-based
enterprise operation: solid body geometric modeling of mechanical products and discrete-event
simulation of production processes.

Keywords: model-based enterprise, model-based systems engineering, assembly planning,
generative design, category theory, colimit

1. INTRODUCTION

A model-based enterprise is a type of industrial organization in which all product life
cycle processes are arranged around a digital 3D-model of the product annotated with
detailed product manufacturing information (PMI) [1]. Techniques and tools to develop and
leverage such a model, with applicability ranging from requirements elicitation and analysis
through design to manufacturing, maintenance, and disposal, are provided by model-based
systems engineering (MBSE). More than a decade has passed since the introduction of the
model-based enterprise concept, during which it gradually matured to an industrial level of
readiness for implementation, with supporting standards, neutral formats, techniques, and
software tools for maintaining PMI. Recently, in the emerging Industry 4.0 context, new
challenges arise, associated with upgrading a product model to the level of a digital twin, viz.
a virtual copy of the product that reliably reproduces and imposes the structure, state, and
behavior of the physical original in real time [2]. The degree of design and production
automation is increased steadily, up to complete elimination of human intervention in the so-
called generative design cycle [3].

At the same time, the core problem of specifying the product model in a neutral form that
guarantees complete undistorted access to it for all life cycle participants and tools cannot be

* Corresponding author: kovalyov@sibnet.ru

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 51

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

considered solved [4]. There are many specific modeling languages, techniques, and tools
that are poorly compatible with each other. A natural, albeit “difficult”, approach to make
them interoperable consists in supplying them with a common abstract formal framework of
reference that is capable to represent, generate, and verify diverse design and production
knowledge. The highest level of formality, generality, and verification power is achievable
by leveraging appropriate mathematics. In this paper, following a recent trend [5, 6, 7],
category theory is employed as such a framework. Models are treated as objects of suitable
categories, in which morphisms describe actions involved into assembling complex products.
Category theoretical constructions that represent MBSE techniques on abstract conceptual
level are defined and studied. Considerable amount of experience in such a study has been
gathered previously in model-based software engineering [8] and is now being transferred to
systems engineering in general. Specifically, a product configuration is established to be
represented as the diagram in a category of models, and the assembly procedure is formally
described by a universal construction called the colimit of this diagram [9]. In the context of
generative design, the inverse assembly problems are stated, solving of which amounts to
reconstructing a diagram from a fragment of its colimit [10].

Some approaches to “categorify” the engineering domain are presented in the literature.
For example, the framework for ontology and database design is proposed, where objects of
the categories represent information entities that specify various aspects (facets) of products;
and morphisms describe functional relationships like “has” or “contains” that connect entities
to meaningful databases [11]. In [12], a symmetric monoidal category is constructed whose
associated graphical language is capable to represent signal-flow diagrams of control theory:
control system state spaces, comprised by finite vectors of signals, are objects of the category,
and signal processing devices are represented by morphisms. Our approach differs from
these and others in strong adhering to the model-based paradigm, where models and
manipulations with them are taken for primary entities and thus represented by objects and
morphisms, respectively.

The paper is composed as follows. Section 2 is devoted to overview of problems
pertaining to assembling products in model-based setting. In Sections 3 and 4, category
theoretical means to solve direct and inverse assembly problems are presented, respectively.
Some conclusions and directions for further research are outlined in Section 5.

2. DIRECT AND INVERSE PROBLEMS OF ASSEMBLING PRODUCTS

In MBSE, products, parts, and equipment are represented by formalized models of
various types: digital images of geometric shapes and bodies, numerical approximations of
differential equations, labeled graphs, databases, etc. Herewith, the internal structure of
models is not so much necessary to be known at decomposing the product into assembly
units and planning the production process. The range of model capabilities to connect with
other models is more important in order to create a hierarchy of assembly unit models. In
other words, the models are usually considered as “black boxes” with known behavior with
respect to other models, and are combined into structural schematics of complex products
and processes, as shown in Fig. 1 [13]. Hence, model-based production planning procedures
and software tools operate over a virtual catalog of models and descriptions of possible
actions involved into composing assembly units.

This point of view is substantiated by systems engineering standards such as IEC 81346
“Industrial systems, installations and equipment and industrial products—Structuring
principles and reference designations”. This standard prescribes to represent the complex
product structure as a directed graph of the hierarchy of units that are denoted by reference
designations. The structure and related labeled graphs of various other types routinely occur
while performing various MBSE procedures [10]. A graph that consists of models of

52 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

constituents of a certain unit, which are related by the unit assembly actions, is called the unit
configuration.

Fig. 1. Assembly planning [13]

As an example that is particularly relevant to mechanical design, consider a mechanical
product consisting of rigid solid parts (see the left half of Fig. 1). For such a product, models
of parts and assembly units are geometric bodies that can be represented for computer
processing by various means: Constructive Solid Geometry (CSG), finite array of small
spatial cells (voxels), boundary representation (BRep) [14]. Representations of particular
product parts or assembly units are obtained from such models by affine isometries and
stretches. For instance, the model of a barbell (heavy sporting equipment) consists of several
cylinders of different sizes. In the barbell structure graph, the cylinders are represented by
different vertices, although all of them are generated by the same geometric model. So the
solid body model catalog contains a cylinder, with which several different actions of
inclusion into the barbell are associated.

Another example of modeling technique, widely used in production planning, is discrete-
event simulation (see the right half of Fig. 1). Its widespread support is regarded among the
most significant achievements of MBSE. Here, a model represents an operational scenario,
viz. a fragment of the imagined history of the simulated object behavior described as a
discrete sequence of events of various types. Some events may trigger others or prevent
others from occurring, inducing causal relations between some events within a scenario.
Descriptions of actions used to build scenarios of the complex systems behavior reflect the
contribution of the components. Specifically, the operational scenario of the model-based
enterprise plant is composed from operational scenarios of plant equipment units that interact
with each other in the course of the production process. So, in discrete-event simulation, a
structure graph represents the process hierarchy.

The direct product assembly problem is stated as follows. Given a product configuration,
the model of the product as a whole needs to be constructed along with actions involved into
assembling it, to complete the hierarchical product structure graph. The principle of
constructing the target product model is easy to see from the structure representation: the
model should be located at precisely one hierarchical level above the level of largest

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 53

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

constituent units. In other words, the product model should include all constituents’ models
respecting their relations within the configuration, and nothing more in a sense that it should
be included into any model that include all constituents’ models respecting the configuration
relations.

This principle is easy to explain on a simple example. Suppose that a product should be
assembled from two given parts P and S, and a manufacturing engineer has decided to join
them by means of a certain glue, viz. the intermediate part G that can be directly applied on
both P and S. Action of the glue is described by the following configuration: parts G and P
comprise an intermediate unit PG produced as a result of applying the glue on P, and
similarly, parts G and S comprise a unit SG. The model of the target product R assembled by
gluing P and S with G is selected among candidate models that contain units PG and SG and
respect the glue G in a sense that tracing the glue inclusion through either one of the two
units amounts to the same action. The selection obeys the following structural criterion: R
should be unambiguously identifiable within any candidate model T. This criterion is shown
schematically in Fig. 2 [15], where models included into the IEC 81346 compliant product
structure graph are colored in yellow and tagged by reference designations, and the glue is
appended as a manufacturing information annotation.

Fig. 2. Schematics of gluing [15]

Provided that such a model R exists, it clearly represents the product that is assembled by
gluing two parts without any extra changes or augmentations. Moreover, it is easy to see that
such model is unique in a sense that any two such models, by definition, contain each other.
On the contrary, if the model R doesn’t exist (cannot be found in the model catalog), then the
wrong glue was chosen: G is incapable to connect P with S.

Notice that the gluing configuration is significantly simplified in case when influence of
the glue on parts is negligible, so we can assume that PG = P and SG = S. In this case, the
configuration takes a shape of a span, viz. a graph consisting of two edges with the same
source: P G S. We will refer to this kind of gluing as non-intrusive. In real world, it
routinely occurs in solid body modeling: applying thin layer of a glue leaves the shape of a
part unchanged. For example, non-intrusive gluing is intended to fix parts together at
assembly tasks M1-M4 shown in Fig. 1.

Let’s return to the general setting. If models contain values of some parameters, and
descriptions of assembly actions contain rules for transforming the values, then the structure
graph allows to calculate values of the parameters for the target product, including geometry,
topology, dimensions, tolerances, etc. Emergent parameters that can’t be attributed to any
particular unit can also be calculated. Examples of calculations of this kind are known in the
field of composite materials design [16]. The averaged (effective) physical properties of a
composite, such as a Young’s modulus and a Poisson’s ratio, depend in a complex way on
properties of components and methods of manufacturing the composite from them. Using
elasticity theory methods, these dependencies are specified as linearized matrix relations that
label arrows of the composite material structure graph. Then it becomes possible to predict

54 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

the properties of the material virtually by computation over a database of components shown
in Fig. 3, avoiding costly physical experiments.

Fig. 3. Materials database [16]

Although direct calculation of the product model by its configuration is so much
important, it plays only a secondary, instrumental role in preparing a large complex product
for manufacturing. According to the standards like IEC 81346 and manufacturing practices,
the assembly process is routinely designed in a top-down fashion, from the product as a
whole to progressively smaller units. Therefore, a typical assembly planning problem has
inverse rather than direct character: given the unit model, it is needed to determine (recover)
the configuration from which the unit can be effectively assembled. The assortment of
theoretically possible configurations is unimaginably huge, but in practice, it is severely
constrained by plant capabilities, stakeholders’ requirements, suppliers’ offers, engineers’
preferences, and other factors. So, the primary assembly planning procedure consists in
identification of the class of all configurations that produce the given unit and satisfy all
constraints imposed by practical factors. Once this class is identified, search for the final unit
configuration is performed across it aiming to optimize conventional process objective
functions, such as cost, duration, and complexity [17]. For this reason, we will call this class
the assembly design space. Developing algorithms and tools to explore the space on a solid
mathematical basis powered by computer algebra and artificial intelligence would allow to
automate the design for manufacturability (DfM) practices. The ultimate target is the end-to-
end generative design cycle of complex products in model-based enterprise environment.

For example, the inverse problem of gluing is stated as follows. In accordance with the
IEC 81346 standard, the structure of the target product R is specified as a graph consisting of
three models P, S, R and two actions P R, S R. An admissible gluing configuration is
any combination of five models and four actions that comprise the “zigzag” shape
highlighted by solid arrows in Fig. 2. Among all such configurations, those are of interest for
which solving the direct problem produces specified actions P R and S R as two-step
inclusions of the two outer models into the target product. In particular, outer models
themselves are required to be precisely P and S, and the target product model is required to
be R.

3. CATEGORY THEORY IN PRODUCT ASSEMBLY MODELING

As stated in the Introduction, the natural source of mathematical means for representation,
generation, and verification of product structure graphs is category theory, viz. a branch of
higher algebra that “starts with the observation that many properties of mathematical systems
can be unified and simplified by a presentation with diagrams of arrows” ([18, p. 1]). Recall
that a category is a class of abstract objects pairwise related by morphisms (arrows). The

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 55

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

precise definition takes just a few lines: a category C consists of a class of objects Ob C and
a class of morphisms Mor C endowed with the following operations. Firstly, two objects are
associated with each morphism f: a domain (arrow source) dom f and a codomain (target)
codom f, so that the pair of equalities dom f = A and codom f = B is depicted as an arrow

f : A B. Secondly, for any pair of morphisms f, g that satisfies the condition codom f =

dom g, the composition of morphisms g ◦ f : dom f codom g is defined, and it is
associative: for any three morphisms f, g, h such that codom f = dom g and codom g =
dom h, the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f holds. Thirdly, any object A has an associated
identity morphism 1A : A A such that f ◦ 1A = 1B ◦ f = f for any morphism f : A B. A
classic example of a category is Set that consists of all sets and all maps between sets: the
composition law for maps is defined by the standard substitution, and the identity map of a
set sends each element to itself.

The axioms of a category are inherently symmetrical with regard to swapping dom with
codom along with reversing the order of composing morphisms: the category obtained this
way from C is called dual of C and denoted by Cop. The axioms also tolerate restriction to
subclasses, so the notion of subcategory is defined: a subcategory of C is a pair consisting of
a subclass of Ob C and a subclass of Mor C that are closed with respect to operations
inherited from C. A subcategory of C is called full if it contains any C-morphism whose
domain and codomain are contained in it.

Together with category, the concept of functor is routinely introduced, which is a
structure-preserving map between categories. Specifically, a functor fun : C D from

category C to D is a pair of maps fun : Ob C Ob D (an object function) and

fun : Mor C Mor D (a morphism function) that satisfies the following conditions for any
C-morphisms f, g and C-object A: (i) fun(dom f) = dom fun(f), fun(codom f) = codom fun(f);
(ii) fun(g ◦ f) = fun(g) ◦ fun(f) whenever the composition g ◦ f is defined; (iii) fun(1A) = 1fun(A).
Obviously, all categories and all functors comprise a (formal) category denoted by CAT. To
explore relationships between functors, the following construction is introduced: the natural
transformation of a functor fun : C D to a functor fun' : C D is a function that assigns
to each C-object A a D-morphism A : fun(A) fun'(A) in such a way that B ◦ fun(f) =
fun'(f) ◦ A for any C-morphism f : A B.

Categories are routinely constructed from graphs: any directed multigraph induces a
category with vertices as objects and finite paths as morphisms. Indeed, the domain and the
codomain of a path are its source and target, respectively; composition of morphisms acts as
concatenation of paths; the identity morphism of a vertex is an empty “path” from the vertex
to itself. This construction leads to the fundamental notion of a diagram in C, viz. a functor
of the kind : X C where X is a category generated by some graph called the shape of the
diagram. A diagram is visually depicted as a graph that generates X, endowed with labels
from C: each vertex a is labeled by the C-object (a) and each edge k is labeled by the
C-morphism (k). All diagrams in C comprise a category denoted by DC (a covariant
modification of a “super-comma” category introduced in [18, Exercise V.2.5]), in which a
morphism from a diagram : X C to : Y C is a pair , fd consisting of a functor
fd : X Y and a natural transformation : ◦ fd; the composition law for morphisms is

56 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

specified as follows: , fd ◦ , gd = gd(–) ◦ , fd ◦ gd. Category theory provides a number
of algebraic techniques for construction and analysis of diagrams.

The effectiveness of employing category theory as a mathematical framework for model-
based enterprise stems from the observation that a catalog of models and actions introduced
in Section 2 is nothing but a category. Indeed, the catalog has composite morphisms
(sequential execution of actions) and identity morphisms (idle “doing nothing” action with
any model). For example, in solid body modeling of mechanical products, a model is
algebraically represented as a subset of ℝ3 which is bounded, regular (i.e., it coincides with
the closure of its interior wrt the standard topology), and semi-analytical (i.e., it admits a
representation as a finite Boolean combination of sets of the kind {(x, y, z) | F1(x, y, z) 0,
F2(x, y, z) 0, …} where Fi : ℝ

3 ℝ is a real analytic function for any index i) [14]. In
order to support specifications of assembly procedures such as gluing bodies together by
surface fragments, all bounded regular semi-analytical subsets of ℝn, 0 n 3, are
considered as valid solid body models. Then, the quotient is formed: any two such sets that
can be turned into one another by a composition of affine isometries and stretches are
identified with one another. Morphisms of such equivalence classes, which describe
assembly actions of complex mechanical products, are generated by isometric embeddings
and stretches. This way, the subcategory of Set emerges, which we will denote by SBM
(from Solid Body Modeling).

For many well-known MBSE techniques, formal description of the model catalog
produces a category of sets endowed with some structure, e.g., algebraic systems, topological
spaces, graphs, etc. Morphisms in such categories are maps of sets compatible with the
structure. A canonical functor to Set acts on such a category by “forgetting” the structure. An
example is the following algebraic representation of discrete-event simulation. A scenario is
represented by a set of events partially ordered by causal dependencies and labeled by event
types. Since neither events nor dependencies, nor labels could be “lost” when composing a
complex system behavior scenario from components behavior scenarios, actions involved
into assembling scenarios are described as maps that preserve the order and the labeling [19].
All scenarios and all such actions form a category called Pomset and equipped with a functor
to Set that forgets the order and the labeling.

Let C be a category that represents some model catalog. A product structure and related
graphs are diagrams in C, so the category DC represents the respective catalog of such
graphs and actions involved into product structure development. We show how to rigorously
solve various problems of assembling products by means of the category theoretical
framework provided by DC. For instance, the solution to the direct problem is represented by
the following universal construction called the colimit of the diagram. Denote by 1 the
singleton category that consists of one object 0 and one morphism 10. For any category X,
there exists a unique functor from X to 1, denoted by !X : X 1, which sends any X-object to
0 (in other words, 1 is a terminal CAT-object). There is a full embedding (i.e., an injective

functor onto a full subcategory of its codomain) ┌–┐ : C ↪ DC that takes a C-object Q to the

singleton diagram ┌Q┐ : 1 C : 0 ↦ Q. A DC-morphism with a singleton diagram as the
codomain is called a cocone. This name is justified by visual representation: a cocone , !X :
 ┌Q┐ over a diagram : X C can be depicted by adding an extra vertex Q and

associated edges a : (a) Q, a Ob X, to the graph of the base diagram . If the extra
edges were directed reversely (dually), i.e., from Q to vertices of , then category theorists
would call this picture by the familiar word “cone”, hence they apply the prefix “co-” to
indicate the duality.

A colimit (named as a dual to a limit) of is a cocone colim : ┌R┐ that is
universal in the following sense: for any C-object T and any cocone : ┌T┐ there exists

a unique C-morphism w : R T that satisfies the equality = ┌w┐ ◦ colim . It is easy to see

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 57

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

that this universality condition is precisely the structural criterion from Section 2 which
determines the model R of the target product built from the configuration . Thus, given a
product configuration represented as a diagram, rigorous analysis and verification of the
product assembly process amounts to checking that the diagram has a colimit and calculating
its vertex and associated edges.

For example, a vertex of a colimit of a discrete diagram is known as a sum of objects that
label the diagram’s vertices, and its edges are called injections. Another useful kind of a

colimit is that of a diagram consisting of a parallel pair of morphisms ⇉ . The colimit
edge that starts from the right vertex of the diagram is called a coequalizer of the pair; it
generalizes the set-theoretical concept of a quotient. A morphism is called a regular
epimorphism whenever there exists a parallel pair that it coequalizes.

Yet another fundamental type of a colimit is constructed as follows. Let V be a span-
shaped two-arrow graph and : V C be a V-shaped diagram populated by a
pair of C-morphisms f : P G S : g. The colimit of , called a pushout (or a universal
square) of the pair, is specified by the vertex R and the pair of edges p : P R S : s that
satisfy the following two conditions: the equality p ◦ f = s ◦ g holds (it establishes naturality
of the pushout and determines the colimit edge directed from G to R), and, for any object T
and a pair of morphisms u : P T S : v such that u ◦ f = v ◦ g, there exists a unique
morphism w : R T that satisfies the equalities w ◦ p = u and w ◦ s = v (this is the
universality condition).

Clearly, a pushout provides a solution to the direct non-intrusive gluing problem stated in

Section 2. A pushout can be constructed via a sum and a coequalizer provided that they exist
[18, Exercise III.3.2]. Let p = q ◦ inP and s = q ◦ inS, where inP : P P S S : inS are
injections of the components into the sum and q is the coequalizer of the following parallel
pair of morphisms:

inP ◦ f, inS ◦ g : G ⇉ P S.

For the pushout constructed in such a way, the naturality condition (q ◦ inP) ◦ f = (q ◦ inS)
◦ g and the universality condition directly follow from the definition of a coequalizer. In the
category Set, the sum is the disjoint union of sets P and S, and the coequalizer is its quotient
map modulo the equivalence relation generated by the set of pairs {(f(x), g(x)) | x G}. So
the edge map p takes each element of the set P to the element’s equivalence class, and the
map s acts similarly on S. If maps f and g are injective, then they establish that G is the
intersection of the sets P and S, and the pushout produces precisely the union of the sets. It
often occurs at modeling a mechanical product assembly by means of the category SBM.
Illustrative examples are shown in Fig. 1 as assembly tasks M1-M4. For instance, the task
M3 consists in actions depicted by dashed arrows of the commutative square shown in Fig. 4
(drawn upside-down in accordance with IEC 81346). It is easy to verify directly that this
square is a pushout in SBM. Observe that the glue is represented by means of SBM as a

58 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

parts’ contact 2D surface on which thin layer of a red-colored chemical adhesive is applied to
fix parts together.

Fig. 4. Non-intrusive gluing as a pushout

Non-intrusive gluing is also widely used as a method of producing laminated composite
materials. The database used in digital design and verification of the composite properties is
outlined schematically in Fig. 3 above. An interested reader with some background in
materials science may construct example pushouts and evaluate properties of composites
over them following [16], as an exercise.

The construction of a pushout in Set admits generalization to many familiar categories of
sets with structure. For example, any V-shaped diagram in the category of discrete-event
simulation Pomset has a pushout. However, if it were constructed literally as in Set, then the
order on the vertex inherited from base components might turn into a preorder, so an extra
quotient may apply to restore the partial order on the vertex in a standard way. The real-
world example that includes a pushout in Pomset is shown in Fig. 5 below.

A colimit of any diagram in any category can be constructed via a sequence of sums and
pushouts provided that it exists (for example, the whole process shown in Fig. 1 amounts to
assembling the product from parts A, B, and C via a sequence of pushouts in SBM).
Furthermore, in practical applications simplifying the shape of a diagram helps to calculate
colimits. We present the following result to pursue this direction.

Theorem 1:

Let : X C be a diagram, Y be a full reflective subcategory of X, and

isc : Y ↪ X be an embedding. For each cocone : ◦ isc ┌S┐, there exists a unique
cocone ' : ┌S┐ such that = ' ◦ 1 ◦ isc, isc. Moreover, the cocone is a colimit of the
diagram ◦ isc if and only if the cocone ' is a colimit of the diagram .

Proof. Recall that a subcategory Y of X is called reflective if the embedding isc : Y ↪ X
has a left adjoint functor isc* : X Y called a reflector [18, § IV.3]. Specifically, there exists
a natural transformation : 1X isc ◦ isc*, called the reflection unit, that consists of
universal arrows. The unit induces a DC-morphism (), isc* : ◦ isc. By definition
of the cocone, for each X-object i the edge f : (i) S of the desired cocone ' satisfies the
condition f = h ◦ (i) where h : (isc(isc*(i))) S is an edge of the cocone , so ' =
 ◦ (), isc*.

Assume that is a colimit, and consider an arbitrary cocone : ┌T┐. Let w : S T
be a canonical C-morphism that satisfies the condition ◦ 1 ◦ isc, isc = ┌w┐ ◦ . Hence,
┌w┐ ◦ ' = ◦ 1 ◦ isc, isc ◦ (), isc* = and, in addition, if some C-morphism w̃ : S T
satisfies the condition = ┌w̃┐ ◦ ', then ◦ 1 ◦ isc, isc = ┌w̃┐ ◦ ' ◦ 1 ◦ isc, isc = ┌w̃┐ ◦ , so
w̃ = w. We conclude that ' is a colimit of the diagram .

Conversely, assume that ' is a colimit, and consider an arbitrary cocone
 : ◦ isc ┌U┐. Let u : S U be a canonical C-morphism that satisfies the condition ' =

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 59

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

┌u┐ ◦ ' where ' = ◦ (), isc*. Hence, ┌u┐ ◦ = ◦ (), isc* ◦ 1 ◦ isc, isc = and, in
addition, if some C-morphism ũ : S U satisfies the condition = ┌ũ┐ ◦ , then ' =
┌ũ┐ ◦ ◦ (), isc* = ┌ũ┐ ◦ ', so ũ = u. We conclude that is a colimit of the diagram
 ◦ isc. □

As an application of Theorem 1, consider the direct general gluing problem. Its solution

amounts to constructing a colimit of a diagram with the following shape that we will denote
by M.

There exists an embedding iv : V ↪ M that maps V onto a full subcategory of M with a
set of object {b, c, b'}. This subcategory is reflective, with the reflector iv* taking a to b, a' to
b', and other vertices to themselves, so that two outer arrows a b and a' b' are the
reflection unit components associated with objects a and a', respectively. By Theorem 1, the
colimit of a diagram : M C is determined one-to-one by the pushout of the diagram
 ◦ iv : V C comprised from two central arrows of M. Real-world examples of colimits of
this kind can be constructed in the category SBM by representing “intrusive” means of
joining mechanical parts, such as riveting. Yet another example is inspired by the right half
of Fig. 1: the production process simulation can be glued from simulations of robot A, robot
B, and the conveyor. According to the production graph, the conveyor acts as a “process
glue” between two robots, delivering parts and assembly task results from one to another.
One possible production scenario consisting of tasks M3 and M4 performed by robots B and
A, respectively, is represented in Fig. 5 by a colimit of an M-shaped diagram in the category
Pomset.

60 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

Fig. 5. Constructing a production process simulation via a colimit

We conclude this Section with the following remarks. A colimit of an arbitrary diagram

is unique up to an isomorphism provided that it exists: a cocone of the kind ┌i┐ ◦ colim is a
colimit of if and only if i is a C-isomorphism. Moreover, colimits allow to represent
assembling products from configurations as a functor. Still further, the construction of the
category of diagrams DC induces a monad in CAT whose associated category of algebras
contains instances of the colimit functor and other functors that are relevant for mathematical
framework of MBSE. Therefore, this monad is regarded as the MBSE metamodel [10].

4. INVERSE ASSEMBLY PROBLEMS AND SOLUTIONS

To explore inverse product assembly problems, the following technical concept of a
subcocone is needed. A cocone is called a subcocone of a cocone if there exists a

DC-morphism , iy : dom dom such that the natural transformation consists of
identity C-morphisms, the functor iy is injective, and ◦ , iy = . The inverse problem is
stated mathematically as follows. Given a cocone (that represents the known fragment of
the target product structure) and a class Cd of diagrams (that represents the space of all
practically feasible configurations), evaluate the subclass Cds Cd consisting of all
diagrams from Cd with a colimit that contains as a subcocone.

The subclass Cds is precisely the assembly design space across which (sub-, Pareto-)
optimal configurations are sought. Category theory may improve the search as follows. Let Q
be a linearly ordered set in which some search objective function takes values (most often, Q
is the set of all real or integer numbers). Obviously, Q can be regarded as a category, since
any ordered set can be depicted as a directed graph. Of particular interest is the situation
where the objective function acts as an object function of a functor that takes values in the
category Q and arguments in a subcategory of DC (or of the dual category (DC)op) which has
Cds as class of objects and enough non-identity morphisms. In this case, optimization
algorithms of gradient descent type can be employed, which navigate along morphisms of
this subcategory, calculating the path by means of computer algebra. Performant computer
algebra packages for such category theory calculations are available [20].

For example, consider the inverse gluing problem stated in Section 2. Here, the class Cd
from the general configuration recovery problem statement consists of all M-shaped
diagrams with a colimit in C. The cocone can easily be reconstructed from the product

structure presented in Fig. 2 above: the cocone base is the diagram : a ↦ P, a' ↦ S with the
two-vertex discrete shape {a, a'} M, and the cocone vertex is the target product R, so the
cocone is specified as a pair of C-morphisms p : P R S : s. This problem is solved as
follows.

Proposition 1:

For any C-objects P, S, R and any pair of C-morphisms p : P R S : s, there exists a
diagram : M C with a colimit , !M : ┌R┐ that satisfies the equalities a = p and
a' = s. This diagram is unique up to a DC-isomorphism if and only if the pair consists of
isomorphisms and every epimorphism with the codomain R is an isomorphism.

Proof. Construct a desired diagram in two steps. First, choose an arbitrary factorization

of the kind p = o ◦ q in order to label the outer arrow a b of by the morphism q, along
with the similar factorization s = o' ◦ q'. Second, having that, as established in Section 3 by
Theorem 1, a colimit of an M-shaped diagram amounts to a pushout, find a diagram
 : V C that has a pushout specified by edges o and o', and use it to label two central
arrows of (i.e., to satisfy the equality ◦ iv =).

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 61

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

Consider trivial factorizations with o = o' = 1R. A C-morphism e with the codomain R is
an epimorphism if and only if the equality 1R ◦ e = 1R ◦ e determines a pushout [18, Exercise
III.4.4]. Hence, we shall take the following M-shaped diagram, which we will denote by e,
as provided that e is an epimorphism.

In particular, with e = 1R we obtain somewhat paradoxical formal solution to the glue

finding problem: if the complex product R that includes parts P and S is already specified,
then let it serve as a glue fixing these parts together!

If p is not an isomorphism, then another solution (non-isomorphic to the above) is
obtained by changing the factorization of p to another trivial one with q = 1P, so that the part
P plays the role of a glue as follows.

Other pairs of morphisms that have a pushout specified by edges p and 1R lead to other

solutions. “Symmetrical” solutions are obtained from factorizations with o = 1R and q' = 1S
provided that s is not an isomorphism. Other factorizations may produce yet other solutions.

If both p and s are isomorphisms, then morphisms o and o' are epimorphisms with the
codomain R [21, Proposition 7.42]. If any such epimorphism is an iso, then the target
diagram is essentially unique: it can be comprised solely from isomorphisms. Otherwise, at
least two non-isomorphic diagrams of the kind e exist. □

For example, in the category Set the uniqueness criterion of the glue finding problem

solution is equivalent to the condition that the set R is empty. If this is not the case, then any
larger set can be mapped onto R, so the target class Cds contains at least infinitely many
pairwise non-isomorphic M-shaped diagrams of the kind e.

The stepwise glue finding procedure executed to prove Proposition 1 admits
generalization for recovering configurations with more complicated shapes than M. Such a
general procedure essentially amounts to “unwinding” the construction of a colimit from
sums and pushouts. Crucial steps of the procedure consist in recovering a pushout from its
edges. This is the case for an inverse non-intrusive gluing problem. Indeed, the class Cd in
this problem’s statement consists of all V-shaped diagrams with a colimit in C, while the
cocone has a discrete base consisting of two outer vertices of V and is specified by a pair of
C-morphisms with the same codomain. This pushout recovery problem is quite difficult to
solve. We start with solving it in the category Set as follows.

62 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

Proposition 2:

Let P, S, R be sets and p : P R S : s be a pair of maps.

(1) A pair of maps that has a pushout specified by edges p and s exists if and only if the
following condition holds for each r R:

(|p–1(r)| = 0 |s–1(r)| = 1) (|s–1(r)| = 0 |p–1(r)| = 1).

(2) Let prP : P P × S S : prS be a cartesian product of sets equipped with projections
and [p, s] : P S R be the canonical map that acts as p on P and as s on S. A pair
of maps f : P G S : g has a pushout specified by edges p and s if and only if the
map [p, s] is surjective and there exists a map h : G P × S such that f = prP ◦ h,
g = prS ◦ h, and the set h(G), considered as a binary relation on P S, generates the
equivalence relation that coincides with the kernel equivalence relation of the map
[p, s].

(3) There exists a unique pair of maps that has a pushout specified by edges p and s if
and only if the map [p, s] is bijective.

Proof.
(1) Assume that the maps p and s specify the pushout of some pair of maps

f : P G S : g. From the construction of pushout in Set described explicitly in Section 3,
it is easy to see that if the set p–1(r) P is empty for some r R, then the element r has been
brought into R from the set S \ g(G): there exists a unique y S such that s(y) = r. The case
for empty set s–1(r) S is considered similarly.

Conversely, assume that p and s satisfy the condition (1); in particular, p(P) s(S) = R.
Construct a pullback (a limit, viz. a universal construction dual to a pushout) of the
Vop-shaped diagram in Set populated by the pair [18, § III.4]: let

G0 = {(x, y) | p(x) = s(y)} P × S,

f0 : G0 P : (x, y) ↦ x, g0 : G0 S : (x, y) ↦ y.

The equality p ◦ f0 = s ◦ g0 holds and determines the pullback; we claim that it also
determines a pushout of the pair of pullback edges f0 : P G0 S : g0. Indeed, construct the
pushout of this pair in a standard way, with p' : P R' S : s' being its edges. Define the
map i : R R' as follows: for each r R, if r p(P), then let i(r) = p'(x) for an arbitrary
x p

–1(r) (obviously, the value i(r) doesn’t depend upon the choice of x); otherwise, let i(r) =
s'(y) where y is a unique element of the set S such that s(y) = r (such an element exists by
assumption). It is easy to see that i is a bijection, p = i–1 ◦ p', and s = i–1 ◦ s', so the maps p and
s are edges of a pushout of the pair consisting of f0 and g0.

(2) For a map h : G P × S, the requirement that the map [p, s] is surjective and its
kernel equivalence relation is generated by h(G) is equivalent to the condition that [p, s] is a
coequalizer of the following parallel pair of maps:

inP ◦ prP ◦ h, inS ◦ prS ◦ h : G ⇉ P S.

If h satisfies this condition, then, by the construction of a pushout via a coequalizer, the
maps p and s specify the pushout of the pair

prP ◦ h : P G S : prS ◦ h.

Conversely, assume that p and s specify the pushout of some pair of maps
f : P G S : g. Let

h = f, g : G P × S : x ↦ (f(x), g(x)).

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 63

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

(3) If the map [p, s] is bijective, than its kernel equivalence relation is discrete (coincides
with the identity). Hence, a pair of maps, constructed from a map h : G P × S composed
with projections as in the proof of (2) above, may have a pushout with such edges p and s
only if the set h(G) is empty, which implies that G itself is empty. Indeed, the pair of empty
maps P S is the only one that has a pushout with such edges.

Conversely, assume that the map [p, s] is not bijective. If the condition (1) doesn’t hold,
then no pushout exists with edges p and s. Otherwise, the set G0 constructed above is non-
empty, so any larger set can be mapped onto it. In this case, infinitely many pairwise non-
isomorphic V-shaped diagrams exist that have a pushout specified by edges p and s: by (2),
each of these diagrams is populated with a pair of maps of the kind

f0 ◦ e : P G S : g0 ◦ e,

where e : G G0 is an epimorphism (surjection). □

If the maps p and s are injective, then the maps f0 and g0 constructed via the pullback in
the proof of Proposition 2 are injective as well [21, Proposition 11.18]. Hence, the method of
the proof in many cases allows to recover gluing configurations in the category of solid body
modeling SBM. For instance, recovering the glue for the assembly task M3 from Fig. 1 by
the pullback yields a pushout isomorphic to the one shown in Fig. 4.

Proposition 2 can also be adapted for many familiar categories of sets with structure. In
such a category, the solution existence condition stated for a pair p : P R S : s in
Proposition 2(1) is augmented with a suitable structure preservation requirement. One
possible form of such a requirement is the following regularity condition: the canonical
morphism [p, s] is a regular epimorphism. At least, by the construction of a pushout via a
coequalizer, the regularity condition is necessary for morphisms p and s to be edges of some
pushout in any category where the sum P S exists. The glue can be constructed, as in Set,
via the pullback of the pair: the statement dual of [21, Lemma 11.15(1)] implies that in any
category, if a pair of morphisms with the same codomain admits both pushout recovery and a
pullback, then the latter is the former, i.e., the pullback is at the same time a pushout, so it
provides a solution to the pushout recovery problem. Other glues can be constructed
similarly to Proposition 2(2) that, restated in terms of coequalizer as in its proof, holds in any
category where both the product P × S and the sum P S exist. Analogues of Proposition
2(3) can be obtained as well.

The above considerations apply for the category of discrete-event simulation Pomset. For
a pair of maps p : P R S : s that preserve the order and the labeling, the pushout
recovery problem has a solution if and only if the pair satisfies both the condition of
Proposition 2(1) and the regularity condition. The example glue is the set G0 constructed as
in the proof of Proposition 2 and endowed with the order and the labeling inherited from the
product P × S. In enterprise simulation, such a glue represents a plant control system that
ensures coherent operation of manufacturing equipment units P and S jointly executing the
target process R. The construction of the glue demonstrates how category theory can be
leveraged to automate control system programming. This kind of automation is in demand
for the emerging approach to production planning and operation on the basis of a digital
twin [22]. For example, recovering a glue of two upper maps from Fig. 5 by the pullback
yields a control program specification isomorphic to the conveyor simulation shown at the
bottom.

5. CONCLUSION

Category theory demonstrates significant potential in improving model-based enterprise
performance. In particular, the theory provides mathematically rigorous solutions to direct
and inverse problems associated with assembling products. A number of real-world

64 S.P. KOVALYOV

Copyright ©2020 ASSA Adv. in Systems Science and Appl. (2020)

examples of such problems can be found in the cited literature and elsewhere. Yet, theorems
and proofs are of little utility to engineers: in order to hand category theoretical techniques
over to industry, they shall be implemented in appropriate software tools. The tools, given
requirements to the target product (e.g., a 3D-model) and to the manufacturing plant (e.g., a
factory simulation), would represent and evaluate them by means of category theory as
described above, and then automatically synthesize the production plan that is optimal wrt
specified objective functors. Provided that such synergy between computer algebra and
optimization algorithms will be achieved, the tools will open new horizons in automatic
production planning and generative design. Development and deployment of the tools is a
major area for further theoretical and applied research.

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research (Grant 19-011-
00799).

REFERENCES

1. Frechette S. (2011). Model Based Enterprise for manufacturing. NIST, [Online].
Available: https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=908343

2. Madni A. M., Madni C. C. & Lucero S. D. (2019). Leveraging digital twin technology
in model-based systems engineering, Systems, 7(1), 7,
https://doi.org/10.3390/systems7010007

3. Kowalski J. (2016). CAD is a lie: generative design to the rescue. Autodesk, [Online].
Available: https://www.autodesk.com/redshift/generative-design/

4. Harris G. A., Abernathy D., Whittenburg R., Holden A. & Still A. (2018). Issues in
implementing a Model Based Enterprise. Proc. 9th Model-Based Enterprise Summit
(MBE 2018). NIST, 34–38. https://doi.org/10.6028/NIST.AMS.100-22

5. Mabrok M. A. & Ryan M. J. (2017). Category theory as a formal mathematical
foundation for model-based systems engineering, Applied Math. and Information Sci.,
11(1), 43–51. https://doi.org/10.18576/amis/110106

6. Luzeaux D. (2015). A formal foundation of systems engineering. In Boulanger F.,
Krob D., Morel G. & Roussel J. C. (Eds.), Complex Systems Design & Management
(pp. 133–148). Springer, Cham. https://doi.org/10.1007/978-3-319-11617-4_10

7. Wisnesky R., Breiner S., Jones A., Spivak D. I. & Subrahmanian E. (2017). Using
category theory to facilitate multiple manufacturing service database integration, J.
Computing and Information Sci. in Engineering, 17(2), 021011.
https://doi.org/10.1115/1.4034268

8. Kovalyov S. P. (2016). Category-theoretic approach to software systems design, J.
Math. Sci., 214(6), 814–853. https://doi.org/10.1007/s10958-016-2814-1

9. Ginali S. & Goguen J. (1978). A categorical approach to general systems. In Klir G. J.
(Ed.), Conf. (Intl.) on Applied General Systems Research Proc. (pp. 257–270). NATO
conference ser., 5, Plenum Press. https://doi.org/10.1007/978-1-4757-0555-3_18

10. Kovalyov S. P. (2018). Category theory as a mathematical pragmatics of model-based
systems engineering, Inform. Appl., 12(1), 95–104.
https://doi.org/10.14357/19922264180112

11. Spivak D. & Kent R. (2012). Ologs: a categorical framework for knowledge
representation, PloS one, 7, e24274. https://doi.org/10.1371/journal.pone.0024274

12. Baez J. C. & Erbele J. (2015). Categories in control, Theory and Applications of
Categories, 30(24), 836–881. http://www.tac.mta.ca/tac/volumes/30/24/30-24.pdf

LEVERAGING CATEGORY THEORY IN MODEL BASED ENTERPRISE 65

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

13. Michniewicza J., Reinhart G. & Boschert S. (2016). CAD-based automated assembly
planning for variable products in modular production systems, Procedia CIRP, 44, 44–
49. https://doi.org/10.1016/j.procir.2016.02.016

14. Requicha A. G. (1980). Representations for rigid solids: theory, methods, and systems,
J. ACM Computing Surveys, 12(4), 437–464. https://doi.org/10.1145/356827.356833

15. Kovalyov S. P. (2017). Methods of category theory in model-based systems
engineering, Inform. Appl., 11(3), 42–50. https://doi.org/10.14357/19922264170305

16. Giesa T., Spivak D. I. & Buehler M. J. (2012). Category theory based solution for the
building block replacement problem in materials design, Advanced Engineering
Materials, 14(9), 810–817. https://dspace.mit.edu/handle/1721.1/77560

17. Bozhko A. N. & Karpenko A. P. (2018). Computer-aided subassembly generation. In
Proc. 5th Intl. Workshop IWCI 2018 (pp. 7–12). Advances in Intelligent Systems
Research ser., 158, Atlantis Press. https://doi.org/10.2991/iwci-18.2018.2

18. Mac Lane S. (1998). Categories for the working mathematician. 2nd Ed. New York,
NY: Springer.

19. Pratt V. R. (1986). Modeling concurrency with partial orders, Int. J. Parallel Prog.,
15(1), 33–71. https://doi.org/10.1007/BF01379149

20. Gross J., Chlipala A. & Spivak D. I. (2014). Experience implementing a performant
category-theory library in Coq. In Klein G. & Gamboa R. (Eds.), 5th Conf. (Intl.) on
Interactive Theorem Proving Proceedings (pp. 275–291). Lecture notes in computer
science ser., 8558, Springer. https://doi.org/10.1007/978-3-319-08970-6

21. Adámek J., Herrlich H. & Strecker G. E. (1990). Abstract and concrete categories.
New York, NY: John Wiley.

22. Liu Q., Zhang H., Leng J. & Chen X. (2019). Digital twin-driven rapid individualised
designing of automated flow-shop manufacturing system, Intl. J. Production Research,
57:12, 3903–3919. https://doi.org/10.1080/00207543.2018.1471243

