
Adv Syst Sci Appl 2020; 04; 1-10

Published online at https://ijassa.ipu.ru.

An Algorithm to Search for All Minimal Cuts in a Flow

Network

Majid Forghani-elahabad1*, Nezam Mahdavi-Amiri2

1) Centro de Matemática, Computação e Cognição – CMCC, Universidade Federal do

ABC – UFABC, Santo André, SP, Brazil

E-mail: m.forghani@ufabc.edu.br
2) Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

E-mail: nezamm@sharif.edu

Abstract: Reliability evaluation approaches exploit a variety of tools for system modeling and

calculation of reliability indices. Most proposed approaches in the literature are in terms of

minimal cuts (MCs) or minimal paths. Hence, finding all the MCs in a network is an attractive

problem in network flow and reliability theory. Here, investigating some works related to the MC

problem, we first point out a number of defects in certain proposed algorithms, and present

certain new techniques to rectify the flaws in two algorithms. Moreover, we present some

techniques to improve the algorithms. Using our results, we propose an improved algorithm for

finding all the MCs in a flow network. A benchmark network example is used to illustrate the

performance of the algorithm. The proposed algorithm is shown to be correct. Finally, after

establishing the complexity results, we demonstrate the proposed algorithm to be more efficient

than some existing algorithms.

Keywords: minimal cut, network flow, algorithm, reliability

1. INTRODUCTION

Most proposed algorithms for evaluating the reliability of a flow network make use of

minimal cuts (MCs) [3, 4, 9, 10, 16-18, 19, 20] or minimal paths [5, 6, 7, 8, 11, 12, 14, 15,

22]. In the algorithms based on MCs, we usually need to know all the MCs in advance. This

has promoted the MC problem that is, finding all the MCs in a network, as one of the most

attractive problems in network flow and reliability theory. A cut is a set of edges whose

removal from the network results in disconnection between the source (s) and sink (t) nodes.

An MC is a cut with none of its proper subsets being a cut. The MC problem is an NP-hard

problem [20]. Several algorithms have been proposed to obtain all the MCs in both

undirected flow networks [1, 2, 13, 25, 26] and directed flow networks [1, 21]. To determine

all the MCs, Fard and Lee [2] considered both link and node failures and proposed an

algorithm for finding all the MCs of such networks by the use of networks having perfect

nodes. The algorithm adopts the concept of common-cause failure and does not re-enumerate

MCs for the additional supposition of node failures. Yeh [25] defined an MC using a node

set (called MCV), and then proposed a simple algorithm to find all the MCVs between the

two special nodes s and t. Unfortunately, the algorithm of [25] turned to be faulty and thus

might not find all the MCVs of a network [13]. Gomes and Fernandes [13] tried to identify

some but not all the existing defects of [25]. In fact, the modified algorithm of [13] has still

some flaws which we will point out later on. Yeh et al. [26] proposed an algorithm for the

problem of finding all the MCs in a modified network. They showed the algorithm to be

more efficient than the existing algorithms. A number of available related algorithms in the

* Corresponding author: m.forghani@ufabc.edu.br, phone: +55(11)4996-8330.

2 M. FORGHANI-ELAHABAD, N. MAHDAVI-AMIRI

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

literature were stated in [1]. Assuming nodes with k-out-of-n property, Tan [21] extended the

traditional directed s-t networks and presented an approach for finding all the MCs for all the

nodes by using the definition of MC for the nodes and starting with the source node s and

ending with the sink node t.

Here, the techniques of [13] for modifying the proposed algorithm of Yeh [25] are

improved. We note that the algorithms of [13] and [25] first determine all the MCVs. Then,

the algorithms transform each MCV to an MC by determining all the existing arcs between

the two associating node sets of the MCV by using the adjacency matrix of the network. This

may be a very time consuming step for large networks. Here, some new techniques are

presented to improve upon the existing algorithms. Before that, we first state all the flaws of

the algorithms of [13] and [25].

In the remainder of our work, in Section 2 we provide the required definitions and state

the flaws in the algorithms of [13, 25]. In Section 3, some more efficient techniques are

presented to modify the algorithm of [25]. Then, an approach with less time complexity is

presented to transform each MCV to an MC. Afterwards, an improved algorithm is proposed

to determine all the MCs in a network flow by using the presented results. The correctness

and complexity results are provided in Section 3. Section 4 gives our concluding remarks.

2. FINDING ALL THE MINIMAL CUTS

The required notations are first described, and then the algorithm of [25] is exposed to

explain its flaws in finding all the MCs. We also state some flaws of the modified algorithm

of [13]. For brevity, here we only state the proposed algorithm of [25] and do not show the

details of the algorithm of [13].

2.1. Problem description

We use the same notations, nomenclature, and assumptions of [13, 25]. Let G(V, E) be a

connected network with the set of nodes V ={s, 1, 2, …, n-2, t} and the set of edges E, where

s and t are the source and sink nodes, respectively, and euv ∈ E denotes an edge between

nodes u and v. For an arbitrary set of nodes ,U V let ,U V U= − E(U) = {euv∈E | u, v ∈ U}

be the associated edges with the set of nodes U, G(U, E(U)) be the sub network of G(V, E)

including only the set of nodes U and its associated edges, and MC(U) = {euv ∈ E | u ∈ U and

}v U be the corresponding cut. An MCV candidate is a subset of nodes whose removal will

cause a disconnection of nodes s and t. An MCV candidate in G(V, E), say U, is an MCV

when MC(U) is a minimal cut. Let σ be the number of MCVs (or MCs), and for each i=1,

2, …, σ, Ci=MC(Ui) be the associated MC with MCV, Ui. Moreover, for each MCV, U, and

each node ,v U let E(v,U) = {evu ∈ E | u ∈ U}.

2.2. Flaws in the existing algorithms

Here, all the flaws in the algorithm of [25] are explained. For convenience, we rewrite the

proposed algorithm of [25] as ‘Algorithm 1’ below.

Algorithm 1

The algorithm of [25] for finding all the MCVs in a network G(V, E).

Step 0. Let i = k = 0, S = U0 ={s}, T = V−{s}, N0 ={t}, and P=ϕ.

Step 1. If there is a node u ∈ T–Ni adjacent to S, then S ∪ {u} is an MCV candidate and go to

Step 2, else go to Step 4.

Step 2. If G(T−{u}, E(T−{u})) is a connected network then S ∪{u} is an MCV and go to

Step 3, else any node set containing S ∪{u} is not an MCV.

Step 3. Let i = i+1, k = k+1, Uk = S = S ∪{u}, P = P ∪{Uk }, T = T−{u}, Ni = Ni-1, and go

to Step 1.

 AN ALGORITHM TO SEARCH FOR ALL MINIMAL CUTS IN A FLOW NETWORK 3

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

Step 4. If i = 1 then stop, else remove the last node, say v, in S, let i = i−1, Ni = Ni ∪ {v}, T

= T ∪ {v}, and go to Step 1.

We first use a similar example as the one given in [25] to show how “Algorithm 1” fails in

some cases, and also its obtained solution depends on the order of node selection in Step 1.

Example 1. Consider Fig. 1 as a network, and find all its MCVs by using ‘Algorithm 1’.

Solution:

Step 0. Let i = k = 0, S = U0 = {s}, T = V−{s}, N0 ={t}, and P=ϕ.

Step 1. Since T − N0 = {1, 2, 3, 4}, node 2 is selected and transfer is made to Step 2.

Step 2. Since G({1, 3, 4, t}, E({1, 3, 4, t})) is connected, {s,2} is found as an MCV, and

transfer is made to Step 3.

Step 3. Let i = 1, k = 1, U1= S ={s,2}, P = {U1}, T = {1, 3, 4, t}, N1 = {t}, and transfer is

made to Step 1.

Step 1. Since T – N1 = {1, 3, 4}, node 4 is selected and transfer is made to Step 2.

Step 2. Since G({1, 3, t}, E({1, 3, t})) is not connected, the algorithm deduces that any set

containing the set {s, 2, 4} is not an MCV.

Fig. 1. A benchmark network

Next, if transfer is made to Step 1, the algorithm may select node 4 recursively, and the

algorithm does not terminate. If transfer is made to Step 3, ‘Algorithm 1’saves the set {s, 2, 4}

as an MCV which is an incorrect result. If transfer is made to Step 4, since i = 1, the

algorithm stops without finding the other MCVs. Hence, in any case, the algorithm leads to

an incorrect result, and consequently it cannot find all the MCVs. It should be noted that if in

the first place one selects node 1 instead of node 2, the algorithms end up with a very

different final result. In fact, the obtained solutions by “Algorithm 1” depend on the order of

node selection in Step 1.

Example 1 illustrated some flaws in ‘Algorithm 1’. In the sequel, we mention all the

defects in this algorithm in detail.

(1) During steps 1-4, ‘Algorithm 1’ never determines the MCV={s}, and so we should

consider it as an initial input in Step 0. To address this flaw, we can replace “P= ϕ”

with “P = {U0}” in Step 0.

(2) As seen in Example 1, there is an ambiguity in the second part of Step 2 in

‘Algorithm 1’, where G(T−{u}, E(T−{u})) is not connected. In fact, in such a case, it

is not clear how the algorithm should proceed.

(3) In Step 2 of ‘Algorithm 1’, when G(T−{u}, E(T−{u})) is not connected, the algorithm

leads to a wrong result, namely, “any node set containing S ∪ {u} is not an MCV”.

To see this more clearly, we note that in Example 1, since G({1, 3, t}, E({1, 3, t})) is

not connected, the algorithm concludes that any set containing the set {s, 2, 4} is not

4 M. FORGHANI-ELAHABAD, N. MAHDAVI-AMIRI

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

an MCV, whereas it is apparent that the sets {s, 1, 2, 4} and {s, 1, 2, 3, 4} contain the

set {s, 1, 3} and are indeed MCVs.

(4) The stopping criterion for the algorithm, i.e., i = 1, is not appropriate and may lead to

the loss of some MCVs. In fact, with this stopping condition, the algorithm may stop

before determining all the MCVs.

Although Goems and Fernandes [13] stated the flaws (1), (2), and (4), but the algorithm of

[13] still contained the flaws (3) and (4); see lines 15 (Step 2) and 27 (Step 4) in the proposed

algorithm of [13]. To rectify the stated defect (2), the authors of [13] used a new set D in

their proposed algorithm and added lines 4, 16, and 17 to the algorithm. Even though this

way they removed the flaw, but there is room for improvement. In fact, the proposed

algorithm of [13], in such a case (flaw (2)), removes the node u form the set D (see line 16 of

the algorithm of [13]) and does not change the sets T and Ni. In this case, the algorithm may

again add the node u to the set D going through lines 5-7, 11-13, 19-24, and 4. Hence, the

algorithm of [13] may check a node several times in a time consuming process, deteriorating

the efficiency of the algorithm.

Furthermore, a common inefficiency of both algorithms of [13] and [25] is that both

algorithms first determine all the MCVs and then transform each MCV into the associated

MC. However, as we state in the next section, if one determines an MC, whenever the

associated MCV is obtained, then the computing time would decrease.

3. NEW RESULTS

Here, we first make some proposals to modify the flaws in the proposed algorithm of [25],

and then present some results to improve the efficiency of the algorithm. An improved

algorithm is presented and shown to be correct. The complexity results are also provided.

3.1. Modifications and improvements

To address flaw (1), as we mentioned in Section 2.2, we can simply replace “P= ϕ” with “P

= {U0}” in Step 0. To address flaw (2), we use a new set B and make some more changes in

steps 0-2 as given in the proposed algorithm below, Algorithm 2. To address the flaw (3), we

just need to remove the wrong assertion, “any node set containing S ∪ {u} is not an MCV”,

from Step 2. To address flaw (4), the stopping criterion for the algorithm is replaced by i = 0.

In addition to these modifications, we also make some improvements. We note that the

final aim of the algorithm is to determine all the MCs in a flow network. For this, the

algorithms of [13] and [25] first find all the MCVs and then transform each MCV into an

MC by determining all the arcs between the two associated node sets. Let U be an MCV. It is

vivid that the associated MC with U, i.e., MC(U), given by

() (,).
u U

MC U E u U


= (3.1)

For each ,u U the time complexity of obtaining (,)E u U is O(n). Since n is an upper

bound for the number of nodes in U, the time complexity of determining each MC is O(n2),

and consequently the time complexity for determining all the MCs is O(n2σ). However, if

one determines each MC, whenever a new MCV is obtained, then the time complexity can be

lessened to O(nσ). We note that a new MCV is obtained by adding to or removing some

nodes from the current MCV in the algorithm, and hence considering this, we can determine

the associated MC by adding and removing some edges to the current MC. Let U be an MCV

with the associated MC, MC(U), and { }W U v= be another MCV. In this case, we have

() () (, { }) (,).MC W MC U E v U v E v U= − − Similarly, when we remove a node, say u, from

 AN ALGORITHM TO SEARCH FOR ALL MINIMAL CUTS IN A FLOW NETWORK 5

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

MCV, U, we should add the edges of the set (,)E u U to and remove the edges of the set

(, { })E u U u− from the associated MC to update the MC. For this, corresponding to each

node, the time complexity for updating the MC is O(n). As a result, the time complexity for

determining all the MCs is O(nσ).

In the next section, using the stated modifications, an improved algorithm is proposed to

find all the MCs in a flow network.

3.2. Proposed algorithm

Here, we propose an improved algorithm to solve the MC problem, and then provide its

correctness and complexity results. Note that since in our algorithm, Algorithm 2 below, all

the MCs are obtained straightforwardly, there is no need to save the MCVs.

Algorithm 2

An improved algorithm for finding all the MCs in a network G(V, E).

Step 0. Let i = k = 0, S = {s}, T = V−{s}, A = C0 = D0 = E(s, T), N0 = {t}, B = ϕ, and P =

{C0}.

Step 1. If there is a node v ∈ T – {B ∪ Ni} adjacent to S then go to Step 2, else go to Step 4.

Step 2. If G(T−{v}, E(T−{v})) is a connected network then let B = ϕ and go to Step 3, else

let B = B ∪ {v} and go to Step 1.

Step 3. Let i=i+1, k=k+1, T = T − {v}, (,) (,),i kA D C A E v T E v S= = = − S = S ∪ {v}, P =

P ∪ {Ck}, Ni = Ni-1, and go to Step 1.

Step 4. If i = 0 then stop, else remove the last node, v, in S, let i=i−1, A = Di, Ni = Ni ∪ {v},

T = T ∪ {v}, and go to Step 1.

For a more convenient description of Algorithm 2, a flowchart of the algorithm is given in

Fig. 2. Next, we use a benchmark network named modified ARPANET as given in Fig. 1 to

illustrate Algorithm 2, and also show how our introduced changes turn the algorithm to work

correctly with reasonable efficiency.

Fig. 2. A flowchart of Algorithm 2

Solution:

Step 0. Let i = k = 0, S ={s}, T = {1, 2, 3, 4, t}, A = C0 = E(s, T) = {es1, es2} , N0 = {t}, B = ϕ,

and P = {C0}.

Step 1. Since T − {B ∪N0} = {1, 2, 3, 4}, node v = 1 is selected and transfer is made to Step

2.

Step 2. Since G({2, 3, 4, t}, E({2, 3, 4, t})) is connected, B = ϕ and transfer is made to Step 3.

6 M. FORGHANI-ELAHABAD, N. MAHDAVI-AMIRI

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

Step 3. Let i = 1, k = 1, T = {2, 3, 4, t}, A = D1 = C1 = 1 2 12 14 1{ , } { , } { }s s se e e e e− =

2 12 14{ , , },se e e S = {s, 1}, P = {C0, C1}, N1 = N0 = {t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N1} = {2, 3, 4}, node v = 2 is selected and transfer is made to Step 2.

Step 2. Since G({3, 4, t}, E({3, 4, t})) is connected, B = ϕ and transfer is made to Step 3.

Step 3. Let i = 2, k = 2, T = {3, 4, t}, A = D2 = C2 = {e14, e24, e23}, S = {s, 1, 2}, P = {C0, C1,

C2}, N2 = {t} and transfer is made to Step 1.

Step 1. Since T − {B ∪ N2} = {3, 4}, node v = 3 is selected and transfer is made to Step 2.

Step 2. Since G({4, t}, E({4, t})) is connected B = ϕ and transfer is made to Step 3.

Step 3. Let i = 3, k = 3, T = {4, t}, A = D3 = C3 = {e14, e24, e34, e3t}, S = {s, 1, 2, 3}, P = {C0,

C1, C2, C3}, N3 = {t} and transfer is made to Step 1.

Step 1. Since T −{B ∪ N3} = {4}, node v = 4 is selected and transfer is made to Step 2.

Step 2. Since G({t}, E({t})) is connected B = ϕ and transfer is made to Step 3.

Step 3. Let i = 4, k = 4, T = {t}, A = D4 = C4 ={e4t, e3t}, S = {s, 1, 2, 3, 4}, P={C0, C1, C2, C3,

C4}, N4 ={t} and transfer is made to Step 1.

Step 1. Since T − {B ∪ N4} = ϕ, transfer is made to Step 4.

Step 4. Since i = 4 ≠ 0, let v = 4, S = S − {4} = {s, 1, 2, 3}, i = i − 1 = 3, A = D3 = {e14, e24,

e34, e3t}, N3 = {4, t}, T = {4, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N3} = ϕ, transfer is made to Step 4.

Step 4. Since i = 3 ≠ 0, let v = 3, S = S − {3} = {s, 1, 2}, i = i − 1 = 2, A = D2 = {e14, e24,

e23}, N2 = N2 ∪ {3} = {3, t}, T = {3, 4, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N2} = {4}, node v = 4 is selected and transfer is made to Step 2.

Step 2. Since G({3, t}, E({3, t})) is connected B = ϕ and transfer is made to Step 3.

Step 3. Let i = 3, k = 5, T = {3, t}, A = D3 = C5 ={e23, e34, e4t}, S = {s, 1, 2, 4}, P = {C0, C1,

C2, C3, C4, C5}, N3 = {3, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N3} = ϕ, transfer is made to Step 4.

Step 4. Since i = 3 ≠ 0, let v = 4, S = S − {4} = {s, 1, 2}, i = i − 1 = 2, A = D2 = {e14, e24,

e23}, N2 = N2 ∪ {4} = {3, 4, t}, T = {3, 4, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N2} = ϕ, transfer is made to Step 4.

Step 4. Since i = 2 ≠ 0, let v = 2, S = S − {2} = {s, 1}, i = i − 1 = 1, A = D1 = {es2, e12, e14},

N1 = N1 ∪ {2} = {2, t}, T = {2, 3, 4, t}, and transfer is made to Step 1.

Step 1. Since T −{B ∪ N1} = {3, 4}, node v = 3 is selected and transfer is made to Step 2.

Step 2. Since G({2, 4, t}, E({2, 4, t})) is disconnected, B = {3}, and transfer is made to Step

1.

Step 1. Since T −{B ∪ N1} = {4}, node v = 4 is selected and transfer is made to Step 2.

Step 2. Since G({2, 3, t}, E({2, 3, t})) is connected B = ϕ, and transfer is made to Step 3.

Step 3. Let i = 2, k = 6, T = {2, 3, t}, A = D2 = C6 = {es2, e12, e24, e34, e4t}, S = {s, 1, 4}, P =

{C0, C1, C2, C3, C4, C5, C6}, N2 = {2, t}, and transfer is made to Step 1.

Step 1. Since T −{B ∪ N2} = {3}, node v = 3 is selected and transfer is made to Step 2.

Step 2. Since G({2, t}, E({2, t})) is disconnected, B = {3}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N2} = ϕ, transfer is made to Step 4.

Step 4. Since i = 2 ≠ 0, let v = 4, S = S − {4} = {s, 1}, i = i − 1 = 1, A = D1 = {es2, e12, e14},

N1 = N1 ∪ {4} = {2, 4, t}, T = {2, 3, 4, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N1} = ϕ, transfer is made to Step 4.

Step 4. Since i = 1 ≠ 0, let v = 1, S = S − {1} = {s}, i = i − 1 = 0, A = D0 = {es1, es2}, N0 = N0

∪ {1} = {1, t}, T = {1, 2, 3, 4, t}, and transfer is made to Step 1.

Step 1. Since T −{B ∪ N0} = {2, 4}, node v = 2 is selected and transfer is made to Step 2.

Step 2. Since G({1, 3, 4, t}, E({1, 3, 4, t})) is connected B = ϕ and transfer is made to Step 3.

Step 3. Let i = 1, k = 7, T = {1, 3, 4, t}, A = D1 = C7 = {es2, e12, e24, e23}, S = {s, 2}, P = {C0,

C1, C2, C3, C4, C5, C6, C7}, N1 = {1, t} and transfer is made to Step 1.

Step 1. Since T −{B ∪ N1} = {3, 4}, node v = 3 is selected and transfer is made to Step 2.

Step 2. Since G({1, 4, t}, E({1, 4, t})) is connected B = ϕ and transfer is made to Step 3.

 AN ALGORITHM TO SEARCH FOR ALL MINIMAL CUTS IN A FLOW NETWORK 7

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

Step 3. Let i = 2, k = 8, T = {1, 4, t}, A = D2 = C8 = {es1, e12, e24, e34, e3t}, S = {s, 2, 3}, P =

{C0, C1, C2, C3, C4, C5, C6, C7, C8}, N2 = {1, t}, and transfer is made to Step 1.

Step 1. Since T −{B ∪ N2} = {4}, node v = 4 is selected and transfer is made to Step 2.

Step 2. Since G({1, t}, E({1, t})) is disconnected, B = {4} and transfer is made to Step 1.

Step 1. Since T − {B ∪ N2} = ϕ, transfer is made to Step 4.

Step 4. Since i = 2 ≠ 0, let v = 3, S = S − {3} = {s, 2}, i = i − 1 = 1, A = D1 = {es1, e12, e24,

e23}, N1 = N1 ∪ {3} = {1, 3, t}, T = {1, 3, 4, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N1} = ϕ, transfer is made to Step 4.

Step 4. Since i = 1 ≠ 0, let v = 2, S = S − {2} = {s}, i = i − 1 = 0, A = D0 = {es1, es2}, N0 = N0

∪ {2} = {1, 2, t}, T = {1, 2, 3, 4, t}, and transfer is made to Step 1.

Step 1. Since T − {B ∪ N0} = {3}, there is no node adjacent to S and transfer is made to Step

4.

Step 4. Since i = 0, the algorithm terminates.

We see that Algorithm 2 found all the 8 MCs in Fig. 1.

3.3. The correctness and complexity results

The following theorem demonstrates the correctness of Algorithm 2.

Theorem 1: Algorithm 2 determines all the MCs in a connected flow network.

Before presenting the proof, we note that in the proof below, Ci is an MC with two

corresponding node sets Ui and iU such that i iU V U= − and Ci = MC(Ui) =

{ | , }.iuv ie u U v U  Moreover, () { | }.i i i uv iV V C u U e C= =   It is clear that ,i iV U and

one can name this as the extreme nodes in Ui.

Proof. It is vividly seen that Algorithm 2 finds 0 { }svC e E=  as the first MC in Step 0.

Now, to the contrary, assume that there are some MCs missed by the algorithm. Without loss

of generality, let Ci be a missed MC with its corresponding node set Ui having a minimal

number of nodes. It is clear that Vi is not empty, and so consider a .i ij V U  According to

definition of the set Vi, we know that there is at least one ik U so that ejk ∈ Ci, and

consequently, G (Ui − {j}, E (Ui − {j})) and ({ }, ({ }))i iG U j E U j are connected. Hence,

{ }i iU U j = − is an MCV. Because Ui is the corresponding node set with a missed MC by the

algorithm having a minimal number of nodes, the MC associated with the node set ,iU  i.e.,

,iC  is found by the algorithm. It is observed that Algorithm 2 finds MCs in Step 3, and then

goes to Step 1 to find the next possible one. Therefore, if Algorithm 2 finds iC  in Step 3,

then it will determine Ci in the subsequent iterations by selecting j as a node adjacent to

.iS U = This contradicts the earlier assumption that Ci is a missed MC, and thus completes

the proof. ■

Now, we compute the time complexity of Algorithm 2. The time complexity of Step 0 is

O(n). The time complexity for the construction of each MCV through the steps 1-4 is

O(n+m), and as explained in Section 3.1, the time complexity for updating an MC is O(n).

Thus, considering σ as the number of all the MCVs (or MCs) in the network, the time

complexity of Algorithm 2 to determine all the MCs is O(n+(m+n)σ), and since in a

8 M. FORGHANI-ELAHABAD, N. MAHDAVI-AMIRI

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

connected flow network we have () ()O n O m [1], the time complexity of Algorithm 2 is

O(mσ). Thus, we have the following result.

Theorem 2: The time complexity of Algorithm 2 for determining all the MCs is O(mσ),

where m and σ are respectively the number of edges and the number of MCs in the network.

We note that Theorem 2 shows that Algorithm 2 is as efficient as the recently algorithm of

[26] and is more efficient than the algorithms of [13, 25].

5. CONCLUDING REMARKS

There are a number of algorithms for finding all the minimal cuts in different types of

networks such as directed or undirected networks, network with node failures, link failures,

or both node and link failures, networks with k-out-of-n nodes, cyclic or acyclic networks,

etc. Here, two available algorithms in the literature were investigated and their flaws were

stated. Certain efficient techniques were proposed to modify the flaws and some new

techniques were also developed. Using the presented results, an improved algorithm was

proposed to solve the MC problem and its correctness was established. The established

complexity results showed the algorithm to be more efficient than some available algorithms.

ACKNOWLEDGEMENTS

The second author thanks Sharif University of Technology for supporting this work.

REFERENCES

1. Ahuja, R.K., Magnanti, T.L. and Orlin J.B. (1993). Network flows theory, algorithms,

and applications. New Jersey: Englewood Cliffs, Prentice-Hall, Int.

2. Fard, N.S., and Lee, T.H. (1999). Cutset Enumeration of Network Systems with Link

and Node Failures. Reliability Engineering and System Safety, 65: 141–146.

3. Forghani-elahabad, M., and Mahdavi-Amiri, N. (2010). Finding all the upper

boundary points of a stochastic-flow network with budget constraints, The CSI

Journal on Computer Science and Engineering, 8(2): 42–50.

4. Forghani-elahabad, M., and Mahdavi-Amiri, N. (2016a). An Improved Algorithm for

Finding All Upper Boundary Points in A Stochastic-Flow Network. Applied

Mathematical Modelling, 40: 3221–3229.

5. Forghani-elahabad, M., and Mahdavi-Amiri, N. (2016b). An efficient method for

generating all minimal vectors for the q SMPs reliability problem with time and

budget constraints. IEEE Transactions on Reliability, 65(2): 828–842.

6. Forghani-elahabad, M. and Bonani, L. (2017). Finding all the lower boundary points

in a multistate two-terminal network. IEEE Transactions on Reliability 66(3): 677–

688.

7. Forghani-elahabad, M. and Kagan, N. (2019a). Reliability evaluation of a stochastic-

flow network in terms of minimal paths with budget constraint, IISE Transactions,

51(5): 547–558.

8. Forghani-elahabad, M. and Kagan, N. (2019b). A simple improved algorithm to find

all the lower boundary points in a multiple-node-pair multistate flow network,

Advances in Systems Science and Applications, 19(1): 1–11.

 AN ALGORITHM TO SEARCH FOR ALL MINIMAL CUTS IN A FLOW NETWORK 9

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

9. Forghani-elahabad, M. and Kagan, N. (2019c). An approximate approach for

reliability evaluation of a multistate flow network in terms of minimal cuts, Journal

of Computational Science, 33: 61–67.

10. Forghani-elahabad, M. and Kagan, N. (2019d). Assessing reliability of multistate

flow networks under cost constraint in terms of minimal cuts, International Journal

of Reliability, Quality and Safety Engineering, 26(05), 1950025.

11. Forghani-elahabad, M., Kagan, N. and Mahdavi-Amiri, N. (2019e) An MP-based

approximation algorithm on reliability evaluation of multistate flow networks,

Reliability Engineering and System Safety, 191, 106566.

12. Forghani-elahabad, M., Mahdavi-Amiri, N. and Kagan, N. (2020) On multi-state two

separate minimal paths reliability problem with time and budget constraints.

International Journal of Operational Research, 37(4), 479–490.

13. Gomes, T., and Fernandes, L. (2011). A Note on “A simple algorithm to search all

MCs in networks”. No. 11, Available at: http://www.inescc.pt/documentos/11-

2010.PDF.

14. Lin, Y.K. (2003). Flow Assignment of a Stochastic Flow Network with Multiple

Node Pairs. International Journal of Industrial Engineering, 10: 167–174.

15. Lin, Y.K. (2009). A MP-Based Algorithm for A Multicommodity Stochastic-Flow

Network with Capacity Weights. International Journal of Industrial Engineering,

16(4), 282–292.

16. Niu, Y.F., Gao, Z.Y. and Lam, W.H.K. (2017) Evaluating the reliability of a

stochastic distribution network in terms of minimal cuts. Transportation Research

Part E, 100, 75–97.

17. Niu, Y.F., Gao, Z.Y. and Lam, W.H.K. (2017) A new efficient algorithm for finding

d-minimal cuts in multi-state networks. Reliability Engineering and System Safety, 66,

151–163.

18. Niu, Y.F., and Xu, X.Z. (2019) A new solution algorithm for the multi-state minimal

cut problem. IEEE Transactions on Reliability, DOI:10.1109/TR.2019.2935630.

19. Padmavathy, N. and Chaturvedi, S.K. (2013). Evaluation of mobile ad hoc network

reliability using propagation-based link reliability model. Reliability Engineering and

System Safety, 15: 1–9.

20. Provan, J.S., and Ball, M.O. (1983). The Complexity of Counting Cuts and of

Computing the Probability That A Graph Is Connected. SIAM Journal of Computing,

12: 777–788.

21. Tan, Z. (2003). Minimal Cut Sets of s-t Networks with k-out-of-n Nodes. Reliability

Engineering and System Safety, 82: 49–54.

22. Wu, W.W., Ning, A. and Ning, X.X. (2008). Evaluation of the reliability of transport

networks based on the stochastic flow of moving objects. Reliability Engineering and

System Safety, 93: 838–44.

23. Xu, X.Z., Niu, Y.F. and Li, Q. (2019). Efficient enumeration of d-minimal paths in

reliability evaluation of multistate networks. Complexity, DOI:

https://doi.org/10.1155/2019/4561845.

24. Xu, X.Z., Niu, Y.F. and Li, Q. (2018). Performance Assessment of a Freight Network

with Stochastic Capacities. Complexity, Article ID 9142542, DOI:

https://doi.org/10.1155/2018/9142542.

http://www.inescc.pt/documentos/11-2010.PDF
http://www.inescc.pt/documentos/11-2010.PDF
https://doi.org/10.1155/2019/4561845
https://doi.org/10.1155/2018/9142542

10 M. FORGHANI-ELAHABAD, N. MAHDAVI-AMIRI

Copyright ©2020 ASSA. Adv. in Systems Science and Appl. (2020)

25. Yeh, W.C. (2006). A Simple Algorithm to Search for All MCs in Networks.

European Journal of Operational Research, 174: 1694–1705.

26. Yeh, W.C., Ho, H.C., Chen, Y.C., and Yeh, Y.M. (2012). A New Algorithm for

Finding All Minimal Cuts in Modified Network. International Journal of Innovative

Computing, Information and Control, 8(1): 419–430.

	1. INTRODUCTION
	2. Finding all the minimal cuts
	2.1. Problem description
	2.2. Flaws in the existing algorithms

	3. New results
	3.1. Modifications and improvements
	3.2. Proposed algorithm
	3.3. The correctness and complexity results

	5. CONCLUding remarks
	ACKNOWLEDGEMENTS

