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Abstract: The article proposes the models of optimization with constraints under conditions of
parametric mixed uncertainty — aleatory and epistemic. We model parameters with aleatory
uncertainty by random values with probability distribution functions obtained from statistical data.
We model parameters with epistemic uncertainty by uncertain values introduced in the uncertainty
theory of Liu B. Experts define the uncertainty distribution functions. We model a function of
random and uncertain parameters by uncertain-random value, interpreted as epistemic value
parameterized by random values. Optimization criteria (deterministic duplicates of objective
functions) are combination of different characteristics of random and uncertain values, which
allows both to average objective functions and to take into account risks or reliability arising from
the variability of random and uncertain values. Using the proposed models of uncertain-random
programming, we formalized as a two-criterion optimization problem with constraints and solved
the task of preliminary aerodynamic design in the conditions of parametric mixed uncertainty —
calculation of aircraft weight parameters. The uncertainty theory makes possible under certain
conditions (for sufficiently wide class of functions) to obtain analytical expressions for
characteristics of uncertain functions, that significantly reduces computational costs. To calculate
weight parameters of aircraft, we use multicriteria genetic algorithm and statistical modeling. We
investigate the dependence of the optimization result on the given probability levels for random
values and the expert belief degree for epistemic values reflecting the reliability of the obtained
solution.

Keywords: aleatory uncertainty, epistemic uncertainty, uncertain-random quantity, deterministic
duplicate, uncertain-random programming, mixed uncertainty.

1. INTRODUCTION

Aleatory (objective) and epistemic (subjective) uncertainties are two types of uncertainty,
reflecting nondeterminism. In the context of modeling technical objects and decision making
aleatory uncertainty occurs when information about a stochastic parameter is accumulated in
statistical data and parameters are modeled by random variables with certain distributions.
Epistemic uncertainty arises when information about a parameter is obtained from experts,
while the parameter may be either stochastic, but there are no or insufficient statistical data, or
deterministic, but its value is unknown to date. The parameters with epistemic uncertainty are
modeled by fuzzy, possibilistic, uncertain [1], and others values.

Decision making in the design of technical objects, as a rule, occurs under conditions of
mixed uncertainty, when there are parameters both aleatory and epistemic. The existing
methods and design tools do not take into account the presence of parameters with epistemic
uncertainty. However if we consider the epistemic parameters as random variables, it can lead
to errors, which is associated with the nonadditivity of expert judgments (the measure of
uncertainty is nonadditive in contrast to the probabilistic measure).
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It is important to note that in construction of optimization models in conditions of
uncertainty, transition from nondeterministic objective functions and restrictions to their
deterministic duplicates is necessary. Deterministic duplicates of objective functions are their
numerical characteristics (mean, variance, quantile, etc.).

Let f(&,® )be a function of epistemic values & and aleatory values @, i.e. a value with

mixed uncertainty. There are two known approaches to modeling a value with mixed
uncertainty and its characteristics (deterministic duplicates) based on different interpretations
of a value with mixed uncertainty [1-4].

The first approach considers f (£, )as random value parameterized by epistemic values.

We determine the characteristic of function f(Z,@) in two stages. First, we calculate the

numerical characteristic of the function as a random quantity for each implementation of
epistemic quantities. This characteristic does not depend on random quantities and, as a
function of epistemic quantities, is an epistemic quantity. Then we calculate the characteristic
of this epistemic quantity, which is the characteristic of the function with mixed uncertainty.

The second approach considers f(&,@ ) as epistemic value parameterized by random

values. We determine the characteristic of function (&, ) in two stages. First, we calculate

the characteristic of the function as an epistemic quantity for each implementation of random
quantities. This characteristic does not depend on epistemic quantities and, as a function of
random quantities, is a random quantity. Then we calculate the numerical characteristic of this
random quantity, which is the characteristic of the function with mixed uncertainty.

Calculating characteristics of mixed uncertainty values is very expensive, especially in
absence of explicit formulas for epistemic and/or random characteristics [2-4]. In this regard,
it is relevant to highlight conditions under which there are analytical expressions of
characteristics.

Thus, in [4] in framework of the first approach, the authors investigate values with mixed
uncertainty, where possibilistic values model epistemic values, while possibilistic-random
values have a shift-scale representation: f (&, ) =a(w)+a(w)- f(&), where a(w) and a(w) are
random values, f(&) is a possibilistic value. The authors obtain formulas for calculating the
characteristics of the weighted sum of the possibilistic-random values of the shift-scale form
with a certain type distribution for the possibilistic and random values.

Uncertainty theory makes possible for wider class of functions to obtain analytical
expressions for characteristics of uncertain functions. That significantly reduces computational
costs. In this paper, we model epistemic values by uncertain values introduced in theory of
uncertainty [1]. Further, we will call uncertain only such values.

Chance theory [1] introduces uncertain-random value, where uncertain values model
epistemic values. The chance is a measure of mixed uncertainty. Uncertain-random value is a
real function on uncertain-random space with chance measure and have distribution function
of chance measure (Definitions 10-12, Appendix). Characteristics of uncertain-random values,
defined as the characteristics of the chance measure distribution function (for example,
Definition 13, Appendix), will always be averaged epistemic characteristics, since chance
measure is the mathematical expectation of uncertain measure (Definition 1, Appendix).
Characteristics are actually determined as in the second approach, where at the first stage the
epistemic characteristic is calculated, at the second stage the mathematical expectation is
always calculated [1]. Thus, use of chance theory in solving optimization problems leads to
models with averaging criteria, i.e. the solution will be effective only “on average”, while risk
of unwanted solutions is not considered. When modeling constraints using a chance measure,
fulfillment of constraints is required only “on average” and risk of not fulfilling the constraints
is not considered [1].

The paper proposes the models of uncertain-random programming, that is, the optimization
models with constraints under conditions of parametric mixed uncertainty within the
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framework of the second approach, which makes it possible to use analytical expressions for
sufficiently wide class of functions of uncertain values. The choice of duplicates of objective
functions and constraints allows to take into account risk and reliability requirements.

Section 2 describes the models of uncertain-random programming. In Section 3 the task of
calculating the weight parameters of an aircraft under conditions of parametric mixed
uncertainty is formalized as a multicriteria optimization problem with constraints. We use two
proposed models: with averages and with quantiles. The method for solving the task of
calculating weight parameters and the results of calculations are given. The appendix contains
definitions and statements from the theory of uncertainty and chance theory.

2. MODELS OF UNCERTAIN-RANDOM PROGRAMMING

Let f(X,&,@)be the objective function, X is solution vector, &, i =1, ..., n, are uncertain
values, wj, j = 1, ..., m, are random values that is, f(X,&,@)is uncertain-random value for

each X . We interpret f(X,&,@ )as the uncertain value parameterized by the random values
in the framework of second approach. We determine the characteristic of the function
f(X,&,®) in two stages. First, we calculate the characteristic of uncertain function

f(X,&,@ ), where random values are parameters. Then, we calculate the characteristic of this

random value, which is characteristic of the function f(X,&,® )with mixed uncertainty.

Mathematical expectation/expected value, quantile (Definition 9, Appendix), variance,
probability/ belief degree of non-exceedance of a given value by the function can be chosen as
characteristics of random and uncertain values. Using combination of characteristics, you can
build different optimization models. The choice of the optimization criterion depends on the
specific task, reliability requirements and is the prerogative of the decision maker.

The optimization model with mathematical expectation/expected value criteria, averaging
the objective function, gives an effective solution “on average”, while risk or reliability is not
taken into account. In robust optimization, when it is necessary to ensure the least variability
of the objective function, the variance is used. In tasks of optimal control and design of aircraft
under conditions of aleatory uncertainty, quantile and the probability of not exceeding (while
minimizing) the objective function of a given threshold value have become widespread, since
they are aimed at making optimal decisions based on risk or reliability requirements.

We consider some models of uncertain-random programming and reduce them to
mathematical or stochastic programming models.

Let f(X,&,@) be the objective function, X be the solution vector, &, &, ..., & be

independent uncertain values with uncertainty distribution functions &1, @», ..., &, , having
inverse distribution functions, wi, ..., wm be independent random values with probability

distribution functions %1, ¥, ..., ¥ Let f(X,&,®) be a continuous strictly increasing

function with respect to &, ..., & and a strictly decreasing function with respect to &x1, ..., &n.
For the model 1 (EE), we will select expected value EM as characteristic at first stage, and
mathematical expectation as characteristic at second stage. Then the model 1 is:

min E° (E" ( (x. @)).

Expected value of function f(X,&,@) where random values @ are parameters is
(Theorem 2, Appendix):

1
EM(f(X,&,0)) :jf(z,cbl—l(a),...,qﬁgl(a),@;11(1—05),...,@;1(1—04),a)da ()
0
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Mathematical expectation of random value EM( f(X,&,@))is:

EPEM (f(x.Z.@) =

1
j jf(x,@l—l(a),...,q)k—l(a),<pk—11(1—a),...,cpn—la—a),a)dadyjl...dy/m.

RMO
The model 1 has the form:

1
min j j f (X, 0 H@), O (@), O L (- )., @3 U - @), @) dad yy . Ay

X RM 0

Thus, we have reduced the model 1 to a deterministic model of mathematical programming.
For the model 2 (QE), we use expected value as characteristic at first stage, and quantile of
the random variable as characteristic at second stage. Then the model 2 has the form:

mKin r,
where
P(EM (f(X,&,@))<r)>,05<B<],
or (according to the formula (1)):
miin r,

where
P((j f(X, 0. ()., D (), D, 1~ ),..., D, (- ), @)da) <1) > 3,0< <1,

Thus, we reduce the model 2 to stochastic model with quantile criterion.
For the model 3 (EQ), we use quantile as characteristic at first stage, and mathematical
expectation as characteristic at second stage. Then the model 3 has the form:

min E” (inf , (f (X,£,@))) ,
where in accordance with Theorem 2 (d) of the Appendix:
inf, (f(%,&,@)) = f (X, 21 (), O (@), O 1 L-Q),... Oy (L~ 0), D). (2)

Thus, we have reduced the model 3 to a deterministic model of mathematical programming.
For the model 4 (QQ), we use quantile of uncertain value as characteristic at first stage,
and quantile of random value as characteristic at second stage. Then the model 4 has the form:

min r,
X

where
P (inf( f(X,£,@))<r}>p 0< B <1.

Thus, we reduce the model 4 to stochastic model with quantile criterion (formula (2)).
Consider representation of duplicate for constraint g(X,&,@ )< 0, where g is an uncertain-

random value, and X is the solution vector, &1, &, ..., & are independent uncertain values with
uncertainty distribution functions @1, @», ..., @n, having inverse functions, w1, ..., wm are
independent random values with probability distribution functions ¥, ¥, ..., ¥m.
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In the case of hard constraint, the constraint must be satisfied for any implementation of
random and uncertain values, and duplicate value has form:

max 9(X,&,@)<0 .

In the case of soft constraint, the constraint performs with guaranteed belief degree and
probability.

We will build duplicate of soft constraint. We interpret g(X,&,@ ) as uncertain value
parameterized by random values. Then in the first stage, where random variables are
parameters, the duplicate of constraint g(X,&,@ )<0has the form: M(g(X,&,0)<0)>«,
where M is the degree of expert confidence (see Appendix), a is given by the designer. If
9(X,&,@) is continuous strictly increasing function with respect to &, ..., & and a strictly

decreasing function with respect to ¢s1,..., &, then the inequality M(g(X,&,@)<0)>a is
equivalent to the inequality (theorem 2, Appendix):

9(X, 27 (@),.. D (@), @ A-),... D, (1-a), @) <0.

At the second stage, we replace this inequality containing random values by the probability
that this inequality is satisfied:

P(9(X, 2, (a),... 0 (@), D L (L-),... D (L-a), @) <0) > S,

where f is the confidence level of probability specified by the designer.

Thus, we reduced constraint with uncertain-random value to probabilistic constraint.

Reducing the model of uncertain-random programming to a deterministic model of
mathematical programming greatly simplifies the solution. Reducing model of uncertain-
random programming to model of stochastic programming simplifies solution, but in general
case they remain quite complicated. This is due to complexity of finding the analytical form
of probabilistic criterion and constraint, and, in absence of one, complexity of numerical
solution methods. In particular cases, deterministic equivalents of probabilistic criteria and
constraints can be found [5, 6].

3. CALCULATION OF AIRCRAFT WEIGHT PARAMETERS

3.1. Models

We formalize the one of the tasks of calculating weight parameters of passenger aircraft as
optimization problem with constraints under conditions of mixed uncertainty based on the
method of calculating the weight report of passenger aircraft [7]. In the original form, the
functions for calculating the basic weight parameters of aircraft at the preliminary design stage
are:

Ivlfuel = MO _Mairframe_Mch _Mpp _Mec _Mrae -M payload_l\/I

|V|0 =7a (Va _Vpc) +M payload T M pe
Ivlairframe: (1+ Km)quNet
Qs = kqsO + (kqsl +lg Va) IgVa

Mehn = 0.3M airframeKeq

V
M pp yengT(kengO + kengl A\N_aet)

pe
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where M is takeoff mass; M i ame IS @irframe mass; M, is equipment mass for control
and hydraulics; M, is power plant mass; M g is fuel mass; M, is weight of crew and
equipment; M, is mass of board radioelectronic equipment; M ;1,4 is commercial load;
M . is passenger equipment; 7, is the average density of aircraft; V, is aircraft volume; V
is volume of the passenger compartment; K., is composites utilization coefficient; q; is
specific weight per square meter of airframe; A, is area of washed surface of aircraft; kqsO
is statistical coefficient; Ky is statistical coefficient; K, is coefficient taking into account
production technology; 7., is technological coefficient, which shows the ratio of weight of

engine to maximum thrust at H = 0, V = 0 (H, V are height and speed, respectively); T is
required thrustat H = 0, V = 0; Kgngo and K,y are statistical coefficients.

To calculate the optimal design parameters we select optimization criteria that affect the
fulfillment of specified technical requirements: operating costs and flight range. We minimize
takeoff weight to reduce fuel consumption, as the main part of operating costs consists of fuel
costs. On the other hand, we maximize the fuel supply, which increases the range of the aircraft.

In this regard, the task of weight calculation is formalized and presented in form of
following optimization model:

min My, max M ¢4 ,

400 < y, <500, (1)
MO -0.8M fuel <M landing

Based on the study of technical requirements, the designer choices the design parameters.
The design parameters are Aye, Va, M papi0a0 M pes M 5. The available information about

the parameters determines the separation of the parameters into random and uncertain.
Statistics provide information on random parameters. Experts provide information on
uncertain parameters. The parameters with epistemic uncertainty are K, Keq, Voo, Mg, 7,
. The parameters with aleatory uncertainty are Ky, Ky, Kengor Kengts Zeng: T-

The expression My —0.8M o) < M,p4ing determines the constraint on landing weight of
aircraft, associated with length of run during landing.

Let @,*, cD\]j Dy cbgiq , @, be inverse uncertainty distribution functions of

uncertainty for parameters 7., V., Mg, Kegy Kpys l//kqso, '//kqsl ’l’//kenQO’ l//kengl, W7/eng
, W be probability distribution functions of uncertainty for parameters K., Ko, Kengo

|(engll 7eng' T.

To solve this problem, as well as to compare the results and study the models, we construct
two two-criterion models based on the single-criterion models proposed in section 2. In model
A, for each criterion, select the "averaging” model (EE). In model B, for each criterion we
choose the "quantile” model (QQ).

Model A:

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)
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min E[Mo], max E[M fuel ]1

M (7, <500) > afa ,
M (7, >400) > o,
P(M (MO -0.8M fuel <M landing ) 2 aMIanding ) 2 PMIanding ) PMIanding € [O, 1],
where M is measure of uncertainty (expert belief degree), o , o , « are levels of

7a' 77a’ 7 Mianding

belief degrees that the inequalities in question are satisfied, P is level of probability

Mianding

that belief degree in the implementation of inequality My —0.8M g,o < M),p4ing Will be greater
than aMIanding '
< >

Va' a?’a ! aMIanding ! I:)Mlanding . Then the multi-

criteria optimization algorithm is applied. For each combination of design parameters varied
in process of optimization, we calculate expected values of objective functions according to
the formulas:

To solve this task, first the designer sets «

1
E[M 0] = J.(@;:; (a)(va - CDV_;C (1_ 0!)) +M payload +M pe)dav
0

1
E[M fuel ] = .[ (I(MO - I\/lairframe - Mch -M pp _cphjllec (1—0() -
RM 0

rae M payload ~ M pe )da)d quso d l//kqsld l'//keng 0 d V/kengld W}’eng d Y1,
Mo = @, (0)(Va ~ Dy, (1)) + M
Mg = 0.3M jirtrame @E; 1-a);

M irframe = @+ @E,ln - a))qs Avet-

-M

payload +M pe;

Model B:

min infaMO [Mg], maxr,

P(sup ,,, . Mualzr)2Py. Py, €[0.1]
M (7, <500) > afa ,

M (7, > 400) >« _,

P(M(Mg —0.8M g < M apging) 2 @ )=PR

> P
Mianding * * Mlanding

€10, 1],

Mianding

where Py, is level of probability that sup,,, ol [Mtyel]=r, @My is level of expert

belief degree for quantile criterion.
As the objective functions are used:

: 1 1
'nfaMO [Mol= ¢},a (am,)Va _@Vpc (A=amy)) +M payioad + M pe

r,
subject to
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P(M(I) -M airframe |Vlch -M pp @l\_/llec (aM fuel ) -

-M . —M

payload — pe = I') PM fuel

' -1 -1
Mo =2, (1-an fuel )Va - Q)Vpc (e fuel )+ Mpaioag +Mpe

Mg, = 0.3M jirtrame Cpiiq (am fuel );
Mirtrame = A+ dlei1 (aM fuel ))qs Avet -
Note that the first criterion does not depend on random variables and is deterministic.
We account for constraints for both models as follows. The constraint M (y, <500) > afa

rae

is equivalent to @,'(a; )<500 . The constraint M(y, >400)>a; is equivalent to
-1 >
@11 aZ,) > 400,

To check constraint on landing weight of aircraft, we calculate probability that belief
degree in constraint performing will be greater than the specified level:

>
) - PM landing )

PM(Mg —0.8M g <M gnging) 2 @

M landing

This inequality is equivalent to inequality (Theorem 2d, Appendix):
P(MO -0.8M fuel — M landing < O) 2 PMIanding )
M - @_1( Mlandmg )(Va _@J;c (-

)) +M payload +M pe
IVlfuel =|\/IO_Mairframe_Mch_'\/Ipp_@l\_/llec -M

aMIanding

payload ~ M

(aMIanding )-M rag pe:

Mg =0.3M airframe@lziq (aMIanding )
M airframe — (1+ @IZ; (aMIanding ))qs Awet :

To calculate weight parameters of aircraft, we use multicriteria genetic algorithm and
statistical modeling.

3.2. Methods and results

ay, P
Ya' TMg ' T Mgp
given by the designer. We calculate the probabilistic characteristic of uncertain-random values
based on the Monte Carlo statistical modeling method. As an example, we present the
calculation algorithm for model A presented in Section 3.1. For each combination of variable

design parameters, we calculate the values of objective functions using following formulas:

We apply a genetic algorithm of multicriteria optimization with values a7 , o

E[M]= j (@, (@)Va = DL (1= @) + M piong +M . )dar,

1 N1 _
E[M fuel ] - 1J.(MO airframe — I\/Ich -M pp _@Mlec (1—0() -
i=10
-M rae M payload — pe)da’
MO = Q;:al (a)(va - @\/7;(; (1_ a)) +M payload +M pe
Mg, = O'SI\/IairframeQIZ:q 1-a),

M airframe — (1+ CD (1_ a))qu\Net'
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Qs :{kqso}i +({kqsl}i +Igva)|gva1
V
M pp {7/eng }i{T}i ({keng O}i +{kengl}i _a)_

et
where @', @)t | o)t |, @, ol are inverse uncertainty distributions for the
7a pc ec eq m

parameters 7,, Vi, M, Ky, Kys N is number of value combinations for parameter kg,

eq’
Kgsts Kengos Kengt» 7eng» T While we form the values of the parameters in accordance with the

specified probability distributions; {e}i is the i-th element of value set for parameter {e}
formed by statistical modeling.

The constraint M(y, 3500)20‘2 is equivalent to diy‘al(afa)SSOO. The constraint

M (y, = 400) 2afa is equivalent to CD;al(l—afa) >400. To check the restrictions on the
landing weight, an approximate probability value is calculated:

1 N
) =1 2 1[Mg —0.8Mgq]

P(M (MO —-0.8M fuel = Mlanding) za = W ]
i=

Mianding
where

LM, -0.8M¢ <M i
|[M0 _0'8Mfuel]:{ 0 fuel landing ,

0, unaue
My = my_; (aMlanding )Va _¢\/_;c (1_aMIanding )+ M pajicad + M e,
M e = Mg —Mirsrame =M —M —@r\_/llec (aM|anding )~ Mize =M pioas —M e,
M, =0.3M girframe Picqg (g )
Mirtrame = (L+ @y, (@M anging 1) ds Avet
The constraint is satisfied subject to

P(M (MO_O'SMfueI SI\/Ilanding)zat )>P

Mianding / — * Mianding ~

Data on uncertain and random parameters obtained from experts and statistics collection
are approximated by uncertainty and probability distribution functions. Normal distributions
are most often used in the design of technical objects for approximation. We will conduct
research for these types of distribution of uncertainty and probability.

To generate the values of each random parameter, we used the standard normal distribution.

2 X
1 (X— t(e)) 1 7 2
a(X)==|1+erf| ——=2— ||, erff(X)=—= e dt.
V() (0= 2 (x) \/Eg

For each epistemic parameter, we set the normal uncertainty distribution function:

-1
(o) — Oe..
72(E(e) =) o N a)=e) + €) .
30, Vs l-«o
(*)

D(e)(X) =] 1+ex
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We used the nominal (mean) values of random and epistemic parameters as the s, and

€.) respectively. We set the standard deviations o, = and o, as a percentage of 4, and

He) (=)

o)
(*)
We investigate the influence of model parameters that reflect the characteristics of
uncertainty and preferences of design maker.
We present in Fig. 1 and 2 the results of applying the optimization models A and B for

different variants of the initial data: standard deviations of parameters T ey Tere) ! and

- .- < >
values related to reliability Mianding * P Mg+ AN » Fu el * Frar U The upper

Mianding ’
line in Fig. 1-3 is the result of applying the optimization model with deterministic values of
uncertain and random parameters equal to their average values. The Pareto-front, which is the
result of the application of model A, practically coincides with the upper line, but narrows with

increasing reliability. The values M janding ,PMlanding s OMg s OM e+ PV afa, afa are

equal and vary from 0.6 to 0.9 with a step of 0.1 (bottom four lines in Fig. 1 and 2).

Set for all random parameters O'u(.):0,03,u(,) , for all epistemic parameters

Oere) = 0,03e(,,. Then we obtained the Pareto fronts shown in Fig.1.

13000

12000 -

11000 -

10000 -

9000 -

Fuel mass, M,

8000 -

7000 -

—— Deterministic values of parameters

6000 — 0,6 Values of:
0,7
P-Vfcndms' P—“’fm" E Mlanding*
— 038 o o e
0,9 Mo "Mpusi “rar Tra

5000 1 I I L
14 156 16 17 18 19 2 21 22

Takeoff mass, M, <

Fig. 1. Pareto fronts for model B at ey = 0,03 44yand ey = 0,03e(, ) (the parameters are random and

epistemic)

Set for all random parameters O, =005, for all epistemic parameters

= < >
=0,05¢,,. The parameters P, » Mg+ OMigye 1 Py v O, €

Ge(.) landing ’ PM fuel ’ aMIanding
equal and vary from 0.6 to 0.9 with a step of 0.1. Then we obtained the Pareto fronts shown in

Fig.2.
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13000 T T T T T

12000 -

11000

10000 -

9000

Fuel mass, My,

8000

7000 -

6000 —

—— Deterministic values of parameters
L — 0,6] Values of:
5000 07| p P

Mianding” £ M fust* ChMianding
— 0,8 < 2
Ay, - Oy,

09 Bty - Cpt -

1 1 1 1
4 15 16 17 18 19 2 21

Takeoff mass, M, oot

4000
]

Fig. 2. Pareto fronts for model B at Oty = 0,054, and Ge( = 0,05e(,) (the parameters are random and

epistemic)

The figures show that the Pareto-fronts obtained as a result of performing optimization

calculations using the model B with increasing Pt anding Put tuer UMianging * FMg + M gl

<

a,. afa are shifted to the region of the worst values of the objective functions. While

ensuring high reliability of the solution (P and « close to 1) at fixed take-off weight the
difference in fuel mass can reach more than 4000 kg.

For comparison, consider the case where the parameters K,,, Keq, Vpc, M, 7a’kqso’

Kqst Kengor Kengts Zeng: T are random. We use the following optimization model:
min r;, maxr,,
P(Mo <1)>P, . P, €[0,1],

P(M  21,) 2P, P, [0,1],

M fuel ’
P(y, <500)> P} , P> €[0,1],
P(y, 2400)>P> , P~ <[0,1],

P(MO -0.8M fuel <M landing ) > P € [01 1]-

P
Mianding * * Mlanding

Let for all random parameters T o) = 0,034, . The parameters P, 0 PM fanding Pu el

P, P> are equal and vary from 0.6 to 0.9 with a step of 0.1 (bottom four lines). Then we

obtained the Pareto fronts shown in Fig.3. The upper line in Figures 3 is the result of applying
the optimization model with deterministic values of uncertain and random parameters equal to
their average values.
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13000

12000 -

11000 -

3
=4
E 10000 -
“
%]
o}
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Fig. 3. Pareto fronts at Oy = 0,034y (all parameters are random)

Pareto fronts also move to the area of the worst values of the objective functions, but less
than in Fig. 1 and 2.

The explorations show that the greater the degree of uncertainty and the greater the level
of reliability, the more conservative obtained solutions. The obtained results do not contradict
the experience and intuition of the designer, which confirms the adequacy of the models.

5. CONCLUSION

The models of the optimization problem with constraints under conditions of parametric mixed
uncertainty are proposed. Uncertain values introduced in the theory of uncertainty models
parameters with epistemic uncertainty. Under certain conditions (for rather wide class of
functions), optimization models with mixed uncertainty are reduced to deterministic models
or to stochastic programming models with probabilistic criteria. We formalize and solve the
task of preliminary aerodynamic design in conditions of parametric mixed uncertainty using
the proposed models.
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APPENDIX [1]
Definition 1:

Let 7" be a nonempty set, let A be a c-algebra over I, and let M be an uncertain measure.
Then the triplet (', L, M) is called an uncertainty space.

A number M{A4} will be assigned to each event 4 to indicate the belief degree with which
we believe 4 will happen. The measure of uncertainty M is dual, subadditive, the measure of
the product of events is equal to the minimum of the measures of these events.

Definition 2:

An uncertain variable is a function & from I"to the set of real numbers such that {y
|&(y)€ B}is an event for any Borel set B of real numbers.

Definition 3:

The uncertainty distribution of an uncertain variable £ is defined by @(x) = M {& < x} for
any real number x.

Definition 4:

An uncertainty distribution @(x) is said to be regular if it is a continuous and strictly
increasing function with respect to x at which 0 < &(x) < 1, and

lim ®(x) =0, lim d(x) =1.

Definition 5:

Let & be an uncertain variable with regular uncertainty distribution &(x). Then the inverse
function @' () is called the inverse uncertainty distribution of &.

Definition 6:
The uncertain variables &1, &, ..., & are said to be independent if

M{N(E €B)}= A M(& <B)
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for any Borel sets By, Ba, ..., Bn of real numbers.

Theorem 1:

Let &, &, ..., & be uncertain variables, and let f be a real-valued measurable function.
Then f(&,¢&,,..., & )is an uncertain variable.

Definition 7:
Let ¢ be an uncertain variable. Then the expected value of ¢ is defined by

+o0 0
E[£]= [M{& 2 r}dr— [M{& <rldr.
0 —o0

Definition 8:

Let & be an uncertain variable with finite expected value E[¢]. Then the variance of £ is

VI = El(¢ - ELDP

Theorem 2:

Let f(&1, &, ..., &) be continuous, strictly increasing with respect to &1, &, ...,&m continuous,
strictly decreasing with respect to &m+1, En+a,.., &n. If &1, &, ..., & are independent uncertain
variables with regular uncertainty distributions @1, @», ..., @, respectively, then:

a) & = f(&, & . &) is uncertain variable with inverse uncertainty distribution:

&) = (@), BNQ), .. D), Byt (- a), ... @ {1-)),
b) E[£]= [ f(2]1(@), @1 (@),- D (@), Dy (1= )., B, (L— 2))er,

1
¢) VIE= [(f(@] (@), ®;}(@),.... O (@), Pis (A=), ... D (- @)~ E[£]) e,
0

d) forany « € [0, 1]
M{f(¢1, & .., &) <0} > @

IS equivalent
f(@ (), D, (),... D, (@), Dy (- ),..., D (1-a)) < 0.

Definition 9:

a) The quantiles of the random variable &:

supa[&] = sup{r | Pr { > r} > a} — a-optimistic value,
inf,[¢]=inf{r | Pr{£<r}>a} — a-pessimistic value,
a € [0, 1],

b) The quantiles of the uncertain variable &:

supe[& ] = sup{r | M{ & > r} > a} — a-optimistic value,
inf[E] =Inf{r [ M{ £ <r} >a} — a-pessimistic value,
a e [0,1].

Definition 10:

Let (2, A, Pr) be a probability space and (I, 4, M) be an uncertainty space. Then the
product (I" x Q, 4 x A, M x Pr) is called a chance space, where I"' x Q ={(y, w)|y €, @ €
Q}. Then the chance measure of an event ® of A x A is:
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1
Ch{@}:jPr{w e QMfy e IN(y,w) € 0} > x}dx .
0

M{y €I’ |(y, ®) € B} is just the uncertain measure of cross section of @ at . Since M{y €
I'|(y, ®) € ®} can be regarded as a function from the probability space (2, A, Pr) to [0, 1], it
is a random variable. Thus the chance measure Ch{®} is just the expected value (i.e., average
value) of this random variable. The chance-measure is monotonous, dual and subadditive.

Definition 11:

An uncertain random variable is a function & from I" x Q to the set of real numbers such
that {(y, w)|y €T, v €Q|E(y, w) € B} isaneventin L x A for any Borel set B of real numbers.

Definition 12:

Let & be an uncertain-random variable. Then its chance distribution is defined by
@(x) = Ch{& < x} for any real x.

Definition 13:
The expected value of uncertain-random variable £ is:

E[£]= TCh{é: > xJdx — TCh{g < x}dx

provided that at least one of the two integrals is finite.

Theorem 3:

Let 51, 72, ..., #m be independent random variables with probability distributions ¥1, ¥,
., Pm, andletzy, 1o, ..., 7o be independent uncertain variables with uncertainty distributions
Y1, Yo, ..., Yo, respectively. If (51, 52, ... , #m, 11, 72, ... , T0) IS @ measurable function, then has
an expected value E[£] is:

EL {1, ot Trren 1= [ G¥are Y )AZ4 0 )0V ¥ )

Rm
where G(y,, --Yyn) = ELf (Yy0es Yins Ty 7, )] — 18 the expected value of the uncertain variable
f(Yyrr YisTyrn 7,) TOr any real numbers vy;.,...,y,, and is determined by Y1, Yo, ..., Yn.
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