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Abstract: The article proposes the models of optimization with constraints under conditions of 

parametric mixed uncertainty ‒ aleatory and epistemic. We model parameters with aleatory 

uncertainty by random values with probability distribution functions obtained from statistical data. 

We model parameters with epistemic uncertainty by uncertain values introduced in the uncertainty 

theory of Liu B. Experts define the uncertainty distribution functions. We model a function of 

random and uncertain parameters by uncertain-random value, interpreted as epistemic value 

parameterized by random values. Optimization criteria (deterministic duplicates of objective 

functions) are combination of different characteristics of random and uncertain values, which 

allows both to average objective functions and to take into account risks or reliability arising from 

the variability of random and uncertain values. Using the proposed models of uncertain-random 

programming, we formalized as a two-criterion optimization problem with constraints and solved 

the task of preliminary aerodynamic design in the conditions of parametric mixed uncertainty ‒ 

calculation of aircraft weight parameters. The uncertainty theory makes possible under certain 

conditions (for sufficiently wide class of functions) to obtain analytical expressions for 

characteristics of uncertain functions, that significantly reduces computational costs. To calculate 

weight parameters of aircraft, we use multicriteria genetic algorithm and statistical modeling. We 

investigate the dependence of the optimization result on the given probability levels for random 

values and the expert belief degree for epistemic values reflecting the reliability of the obtained 

solution.  

Keywords: aleatory uncertainty, epistemic uncertainty, uncertain-random quantity, deterministic 

duplicate, uncertain-random programming, mixed uncertainty. 

1. INTRODUCTION 

Aleatory (objective) and epistemic (subjective) uncertainties are two types of uncertainty, 

reflecting nondeterminism. In the context of modeling technical objects and decision making 

aleatory uncertainty occurs when information about a stochastic parameter is accumulated in 

statistical data and parameters are modeled by random variables with certain distributions. 

Epistemic uncertainty arises when information about a parameter is obtained from experts, 

while the parameter may be either stochastic, but there are no or insufficient statistical data, or 

deterministic, but its value is unknown to date. The parameters with epistemic uncertainty are 

modeled by fuzzy, possibilistic, uncertain [1], and others values. 

Decision making in the design of technical objects, as a rule, occurs under conditions of 

mixed uncertainty, when there are parameters both aleatory and epistemic. The existing 

methods and design tools do not take into account the presence of parameters with epistemic 

uncertainty. However if we consider the epistemic parameters as random variables, it can lead 

to errors, which is associated with the nonadditivity of expert judgments (the measure of 

uncertainty is nonadditive in contrast to the probabilistic measure). 
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It is important to note that in construction of optimization models in conditions of 

uncertainty, transition from nondeterministic objective functions and restrictions to their 

deterministic duplicates is necessary. Deterministic duplicates of objective functions are their 

numerical characteristics (mean, variance, quantile, etc.). 

Let ),(f  be a function of epistemic values  and aleatory values , i.e. a value with 

mixed uncertainty. There are two known approaches to modeling a value with mixed 

uncertainty and its characteristics (deterministic duplicates) based on different interpretations 

of a value with mixed uncertainty [1-4]. 

The first approach considers ),(f  as random value parameterized by epistemic values. 

We determine the characteristic of function ),(f   in two stages. First, we calculate the 

numerical characteristic of the function as a random quantity for each implementation of 

epistemic quantities. This characteristic does not depend on random quantities and, as a 

function of epistemic quantities, is an epistemic quantity. Then we calculate the characteristic 

of this epistemic quantity, which is the characteristic of the function with mixed uncertainty.   

The second approach considers ),(f   as epistemic value parameterized by random 

values. We determine the characteristic of function ),(f   in two stages. First, we calculate 

the characteristic of the function as an epistemic quantity for each implementation of random 

quantities. This characteristic does not depend on epistemic quantities and, as a function of 

random quantities, is a random quantity. Then we calculate the numerical characteristic of this 

random quantity, which is the characteristic of the function with mixed uncertainty. 

Calculating characteristics of mixed uncertainty values is very expensive, especially in 

absence of explicit formulas for epistemic and/or random characteristics [2-4]. In this regard, 

it is relevant to highlight conditions under which there are analytical expressions of 

characteristics. 

 Thus, in [4] in framework of the first approach, the authors investigate values with mixed 

uncertainty, where possibilistic values model epistemic values, while possibilistic-random 

values have a shift-scale representation: f (ξ, ω) =α(ω)+σ(ω)∙ β(ξ), where α(ω) and σ(ω) are 

random values, β(ξ) is a possibilistic value. The authors obtain formulas for calculating the 

characteristics of the weighted sum of the possibilistic-random values of the shift-scale form 

with a certain type distribution for the possibilistic and random values. 

Uncertainty theory makes possible for wider class of functions to obtain analytical 

expressions for characteristics of uncertain functions. That significantly reduces computational 

costs. In this paper, we model epistemic values by uncertain values introduced in theory of 

uncertainty [1]. Further, we will call uncertain only such values. 

Chance theory [1] introduces uncertain-random value, where uncertain values model 

epistemic values. The chance is a measure of mixed uncertainty. Uncertain-random value is a 

real function on uncertain-random space with chance measure and have distribution function 

of chance measure (Definitions 10-12, Appendix). Characteristics of uncertain-random values, 

defined as the characteristics of the chance measure distribution function (for example, 

Definition 13, Appendix), will always be averaged epistemic characteristics, since chance 

measure is the mathematical expectation of uncertain measure (Definition 1, Appendix). 

Characteristics are actually determined as in the second approach, where at the first stage the 

epistemic characteristic is calculated, at the second stage the mathematical expectation is 

always calculated [1]. Thus, use of chance theory in solving optimization problems leads to 

models with averaging criteria, i.e. the solution will be effective only “on average”, while risk 

of unwanted solutions is not considered. When modeling constraints using a chance measure, 

fulfillment of constraints is required only “on average” and risk of not fulfilling the constraints 

is not considered [1]. 

The paper proposes the models of uncertain-random programming, that is, the optimization 

models with constraints under conditions of parametric mixed uncertainty within the 
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framework of the second approach, which makes it possible to use analytical expressions for 

sufficiently wide class of functions of uncertain values. The choice of duplicates of objective 

functions and constraints allows to take into account risk and reliability requirements. 

Section 2 describes the models of uncertain-random programming. In Section 3 the task of 

calculating the weight parameters of an aircraft under conditions of parametric mixed 

uncertainty is formalized as a multicriteria optimization problem with constraints. We use two 

proposed models: with averages and with quantiles. The method for solving the task of 

calculating weight parameters and the results of calculations are given. The appendix contains 

definitions and statements from the theory of uncertainty and chance theory. 

2. MODELS OF UNCERTAIN-RANDOM PROGRAMMING 

Let ),(  ,xf be the objective function, x  is solution vector, ξi, i = 1, …, n, are  uncertain 

values, ωj, j = 1, ..., m, are random values that is, ),(  ,xf is uncertain-random value for 

each x . We interpret ),x(f  , as the uncertain value parameterized by the random values 

in the framework of second approach. We determine the characteristic of the function 

),x(f  ,  in two stages. First, we calculate the characteristic of uncertain function

),x(f  , , where random values are parameters. Then, we calculate the characteristic of this 

random value, which is characteristic of the function ),x(f  , with mixed uncertainty.  

Mathematical expectation/expected value, quantile (Definition 9, Appendix), variance, 

probability/ belief degree of non-exceedance of a given value by the function can be chosen as 

characteristics of random and uncertain values. Using combination of characteristics, you can 

build different optimization models. The choice of the optimization criterion depends on the 

specific task, reliability requirements and is the prerogative of the decision maker. 

The optimization model with mathematical expectation/expected value criteria, averaging 

the objective function, gives an effective solution “on average”, while risk or reliability is not 

taken into account. In robust optimization, when it is necessary to ensure the least variability 

of the objective function, the variance is used. In tasks of optimal control and design of aircraft 

under conditions of aleatory uncertainty, quantile and the probability of not exceeding (while 

minimizing) the objective function of a given threshold value have become widespread, since 

they are aimed at making optimal decisions based on risk or reliability requirements. 

We consider some models of uncertain-random programming and reduce them to 

mathematical or stochastic programming models. 

Let )x(f  ,,  be the objective function, x  be the solution vector, ξ1, ξ2, …, ξn  be 

independent uncertain values with uncertainty distribution functions Φ1, Φ2, …, Φn , having 

inverse distribution functions, ω1, …, ωm be independent random values with probability 

distribution functions Ψ1, Ψ2, …, Ψm. Let )x(f  ,,  be a continuous strictly increasing 

function with respect to ξ1, …, ξk  and a strictly decreasing function with respect to ξk+1, …, ξn. 

For the model 1 (EE), we will select expected value EM as characteristic at first stage, and 

mathematical expectation as characteristic at second stage. Then the model 1 is:  

))).(((min  ,,xfEE MP

x
 

Expected value of function )x(f  ,,  where random values   are parameters is 

(Theorem 2, Appendix):   

 dxf,,xfE nkk
M )),1(),...,1(),(),...,(,())((

1
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Mathematical expectation of random value ))x(f(E M  ,, is: 

....)),1(),...,1(),(),...,(,(
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1
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1 m
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The model 1 has the form:  
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nkk
x

dddxf
m
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Thus, we have reduced the model 1 to a deterministic model of mathematical programming.  

For the model 2 (QE), we use expected value as characteristic at first stage, and quantile of 

the random variable as characteristic at second stage. Then the model 2 has the form: 

,10.5 ,))),,(((

where

,min

  rxfEP

r
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x

 

or (according to the formula (1)): 

.10,)))),1(),...,1(),(),...,(,(((
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nk
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Thus, we reduce the model 2 to stochastic model with quantile criterion.  

For the model 3 (EQ), we use quantile as characteristic at first stage, and mathematical 

expectation as characteristic at second stage. Then the model 3 has the form: 

))),(((infmin  ,xfE P

x
, 

where in accordance with Theorem 2 (d) of the Appendix: 

).),1(),...,1(),(),...,(,()),(( 11
1

11
1   




nkk
xf,xfinf      (2) 

Thus, we have reduced the model 3 to a deterministic model of mathematical programming.   

For the model 4 (QQ), we use quantile of uncertain value as characteristic at first stage, 

and quantile of random value as characteristic at second stage. Then the model 4 has the form: 

          ,min r
x

 

where 

 P (infα( ),,( xf ) < r} > β, 1 0 . 

Thus, we reduce the model 4 to stochastic model with quantile criterion (formula (2)).  

Consider representation of duplicate for constraint 0,, )x(g  , where g  is an uncertain-

random value, and x  is the solution vector, ξ1, ξ2, …, ξn are independent uncertain values with 

uncertainty distribution functions Φ1, Φ2, …, Φn, having inverse functions, ω1, …, ωm are 

independent random values with probability distribution functions Ψ1, Ψ2, …, Ψm.   
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In the case of hard constraint, the constraint must be satisfied for any implementation of 

random and uncertain values, and duplicate value has form:  

0)(max
,




,,xg  . 

In the case of soft constraint, the constraint performs with guaranteed belief degree and 

probability. 

We will build duplicate of soft constraint. We interpret )x(g  ,, as uncertain value          

parameterized by random values. Then in the first stage, where random variables are 

parameters, the duplicate of constraint 0,, )x(g  has the form:   ))x(g(M 0,, , 

where M is the degree of expert confidence (see Appendix), α is given by the designer. If 

)x(g  ,,  is continuous strictly increasing function with respect to ξ1, …, ξk  and a strictly 

decreasing function with respect to ξk+1,…, ξn, then the inequality   ))x(g(M 0,, is 

equivalent to the inequality (theorem 2, Appendix):  

0)),1(),...,1(),(),...,(,( 11
1

11
1  


  nkkxg . 

At the second stage, we replace this inequality containing random values by the probability 

that this inequality is satisfied:  

,)0)),1(),...,1(),(),...,(,(( 11
1

11
1   




nkkxgP  

where β is the confidence level of probability specified by the designer.  

Thus, we reduced constraint with uncertain-random value to probabilistic constraint. 

Reducing the model of uncertain-random programming to a deterministic model of 

mathematical programming greatly simplifies the solution. Reducing model of uncertain-

random programming to model of stochastic programming simplifies solution, but in general 

case they remain quite complicated. This is due to complexity of finding the analytical form 

of probabilistic criterion and constraint, and, in absence of one, complexity of numerical 

solution methods. In particular cases, deterministic equivalents of probabilistic criteria and 

constraints can be found [5, 6]. 

3. CALCULATION OF AIRCRAFT WEIGHT PARAMETERS 

3.1. Models 

We formalize the one of the tasks of calculating weight parameters of passenger aircraft as 

optimization problem with constraints under conditions of mixed uncertainty based on the 

method of calculating the weight report of passenger aircraft [7]. In the original form, the 

functions for calculating the basic weight parameters of aircraft at the preliminary design stage 

are: 

pepayloadraeecppchairframefuel MMMMMMMMM  0  

pepayloadpcaa MMVVM  )(0   

wetsmairframe AqKM )1(   

aaqsqss VVkkq lg)lg( 10   

eqairframech KMM 3.0  

)( 10

wet

a
engengengpp

A

V
kkTM    
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where 0M  is takeoff mass; airframeM  is airframe  mass; chM is equipment mass for control 

and hydraulics; ppM  is  power plant mass; fuelM  is fuel mass; ecM  is weight of crew and 

equipment; raeM  is mass of board radioelectronic equipment; payloadM  is commercial load;  

peM  is passenger equipment; a  is the average density of aircraft; aV  is aircraft volume; pcV

is volume of the passenger compartment; mK  is composites utilization coefficient; sq is  

specific weight per square meter of airframe; wetA  is area of washed surface of aircraft; 0qsk  

is statistical coefficient; 1qsk  is statistical coefficient; eqK  is coefficient taking into account  

production technology; eng  is technological coefficient, which shows the ratio of weight of 

engine to maximum thrust at H = 0, V = 0 (H, V are height and speed, respectively);  T is 

required thrust at H = 0, V = 0;  0engk  and 1engk are statistical coefficients.  

To calculate the optimal design parameters we select optimization criteria that affect the 

fulfillment of specified technical requirements: operating costs and flight range. We minimize 

takeoff weight to reduce fuel consumption, as the main part of operating costs consists of fuel 

costs. On the other hand, we maximize the fuel supply, which increases the range of the aircraft. 

In this regard, the task of weight calculation is formalized and presented in form of 

following optimization model: 













landingfuel0

a

fuel0

MMM

M M

8.0

,500400

,max,min

              (1) 

Based on the study of technical requirements, the designer choices the design parameters. 

The design parameters are wetA , aV , payloadM , peM , raeM . The available information about 

the parameters determines the separation of the parameters into random and uncertain. 

Statistics provide information on random parameters. Experts provide information on 

uncertain parameters. The parameters with epistemic uncertainty are mK , eqK , pcV , ecM , a

. The parameters with aleatory uncertainty are 0qsk , 1qsk , 0engk , 1engk , eng , T. 

The expression landingfuel0 MMM  8.0  determines the constraint on landing weight of 

aircraft, associated with length of run during landing.  

Let 1

a
 , 

1

pcV , 1

ecM , 
1

eqK , 1

mK  be inverse uncertainty distribution functions of 

uncertainty for parameters a , pcV , ecM , eqK , mK ; 0qsk , 1qsk , 0engk , ,
1engk

eng

, T  be probability distribution functions of uncertainty for parameters 0qsk , 1qsk , 0engk , 

1engk , eng , T.  

To solve this problem, as well as to compare the results and study the models, we construct 

two two-criterion models based on the single-criterion models proposed in section 2. In model 

A, for each criterion, select the "averaging" model (EE). In model B, for each criterion we 

choose the "quantile" model (QQ). 

Model A: 
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
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where M is measure of uncertainty (expert belief degree), 


a
 , 



a
 , 

landingM
  are  levels of 

belief degrees that the inequalities in question are satisfied, 
landingM

P  is  level of probability 

that belief degree in the implementation of inequality landingfuel0 MMM  8.0  will be greater 

than  
landingM

 . 

To solve this task, first the designer sets 


a
 , 



a
 , 

landingM
 , .

landingM
P   Then the multi-

criteria optimization algorithm is applied. For each combination of design parameters varied 

in process of optimization, we calculate expected values of objective functions according to 

the formulas: 
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Model B: 


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where 
fuelM

P is level of probability that rM fuel
fuelM

][sup , fuelM  is level of expert 

belief degree for quantile criterion. 

As the objective functions are used: 

pepayloadMVaM MMVMinf
0pc0a0M

  ))1()((][ 11
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;)

)(( 1'
0
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Note that the first criterion does not depend on random variables and is deterministic.       

We account for constraints for both models as follows. The constraint 


aaM  )500(

is equivalent to 500)(1 

aa   . The constraint 

aaM  )400( is equivalent to 

.400)1(1  

aa      

To check constraint on landing weight of aircraft, we calculate probability that belief 

degree in constraint performing will be greater than the specified level: 

landinglanding MMlandingfuel0 PMMMMP  ))8.0((  . 

This inequality is equivalent to inequality (Theorem 2d, Appendix): 
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 To calculate weight parameters of aircraft, we use multicriteria genetic algorithm and 

statistical modeling. 

3.2. Methods and results 

We apply a genetic algorithm of multicriteria optimization with values 

a
 , 

a
 , 

sbM
 , 

sbM
P

given by the designer. We calculate the probabilistic characteristic of uncertain-random values 

based on the Monte Carlo statistical modeling method. As an example, we present the 

calculation algorithm for model A presented in Section 3.1. For each combination of variable 

design parameters, we calculate the values of objective functions using following formulas: 
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ecM , 
1

eqK , 1

mK  are inverse uncertainty distributions for the 

parameters a , pcV , ecM , eqK , mK ; N is number of value combinations for parameter 0qsk , 

1qsk , 0engk , 1engk , eng , T while we form the values of the parameters in accordance with the 

specified probability distributions; {●}i is the i-th element of value set for  parameter {●} 

formed by statistical modeling. 
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aa   . To check the restrictions on the 

landing weight, an approximate probability value is calculated: 
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The constraint is satisfied subject to 
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Data on uncertain and random parameters obtained from experts and statistics collection 

are approximated by uncertainty and probability distribution functions. Normal distributions 

are most often used in the design of technical objects for approximation. We will conduct 

research for these types of distribution of uncertainty and probability. 

To generate the values of each random parameter, we used the standard normal distribution. 
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We used the nominal (mean) values of random and epistemic parameters as the )(  and 

)e (  respectively. We set the standard deviations 
)(

  and 
)e (

  as a percentage of )(  and 

)e ( . 

We investigate the influence of model parameters that reflect the characteristics of 

uncertainty and preferences of design maker. 

We present in Fig. 1 and 2 the results of applying the optimization models A and B for 

different variants of the initial data: standard deviations of parameters 
)(

 , 
)e (

 ,  and 

values related to reliability 
landingM

 , 
landingM

P , 
0M , 

fuelM , 
fuelM

P , 

a
 , 

a
 . The upper 

line in Fig. 1-3 is the result of applying the optimization model with deterministic values of 

uncertain and random parameters equal to their average values. The Pareto-front, which is the 

result of the application of model A, practically coincides with the upper line, but narrows with 

increasing reliability. The values 
landingM

 ,
landingM

P , 
0M , 

fuelM , 
fuelM

P , 

a
 , 



a
  are 

equal and vary from 0.6 to 0.9 with a step of 0.1 (bottom four lines in Fig. 1 and 2). 

Set for all random parameters )) 
 ((

03,0  
, for all epistemic parameters 

))e
e 

 ((
03,0 . Then we obtained the Pareto fronts shown in Fig.1. 

 

 

Fig. 1. Pareto fronts for model B at )
)




(03,0
(




and  )e
e

)



(03,0

(
  (the parameters are random and 

epistemic) 

Set for all random parameters )(05,0
)( 


  , for all epistemic parameters 

.05,0 (( ))e
e 

  The parameters 
landingM

P , 
fuelM

P , 
landingM

 , 
0M , 

fuelM , 

a
 , 



a
 are 

equal and vary from 0.6 to 0.9 with a step of 0.1. Then we obtained the Pareto fronts shown in 

Fig.2. 
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Fig. 2. Pareto fronts for model B at )
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 and  )e
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)
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epistemic) 

The figures show that the Pareto-fronts obtained as a result of performing optimization 

calculations using the model B with increasing
landingM
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P , 
landingM

 , 
0M , 
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a
 , 



a
  are shifted to the region of the worst values of the objective functions. While 

ensuring high reliability of the solution (P and α close to 1) at fixed take-off weight the 

difference in fuel mass can reach more than 4000 kg.  

For comparison, consider the case where the parameters mK , eqK , pcV , ecM , a , 0qsk , 

1qsk , 0engk , 1engk , eng , T are random. We use the following optimization model: 
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Let for all random parameters )) 
 ((

03,0  
. The parameters 

0M
P , 

landingM
P , 

fuelM
P , 



a
P , 



a
P  are equal and vary from 0.6 to 0.9 with a step of 0.1 (bottom four lines). Then we 

obtained the Pareto fronts shown in Fig.3. The upper line in Figures 3 is the result of applying 

the optimization model with deterministic values of uncertain and random parameters equal to 

their average values. 
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Fig. 3. Pareto fronts at )
)




(03,0
(




 (all parameters are random) 

Pareto fronts also move to the area of the worst values of the objective functions, but less 

than in Fig. 1 and 2. 

The explorations show that the greater the degree of uncertainty and the greater the level 

of reliability, the more conservative obtained solutions. The obtained results do not contradict 

the experience and intuition of the designer, which confirms the adequacy of the models. 

5. CONCLUSION 

The models of the optimization problem with constraints under conditions of parametric mixed 

uncertainty are proposed. Uncertain values introduced in the theory of uncertainty models 

parameters with epistemic uncertainty. Under certain conditions (for rather wide class of 

functions), optimization models with mixed uncertainty are reduced to deterministic models 

or to stochastic programming models with probabilistic criteria. We formalize and solve the 

task of preliminary aerodynamic design in conditions of parametric mixed uncertainty using 

the proposed models.  
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APPENDIX [1] 

Definition 1:  

Let Γ be a nonempty set, let Λ be a σ-algebra over Γ, and let M be an uncertain measure. 

Then the triplet (Γ, L, M) is called an uncertainty space. 

A number M{Λ} will be assigned to each event Λ to indicate the belief degree with which 

we believe Λ will happen. The measure of uncertainty M is dual, subadditive, the measure of 

the product of events is equal to the minimum of the measures of these events. 

 

Definition 2:  

An uncertain variable is a function ξ from Γ to the set of real numbers such that                 {γ 

|ξ(γ)∈ B}is an event for any Borel set B of real numbers. 

 

Definition 3:  

The uncertainty distribution of an uncertain variable ξ is defined by Φ(x) = M {ξ ≤ x} for 

any real number x. 

 

Definition 4:  

An uncertainty distribution Φ(x) is said to be regular if it is a continuous and strictly 

increasing function with respect to x at which 0 < Φ(x) < 1, and  

 
 

Definition 5:  

Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then the inverse 

function Φ−1 (α) is called the inverse uncertainty distribution of ξ. 

 

Definition 6:  

The uncertain variables ξ1, ξ2, …, ξn are said to be independent if  
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for any Borel sets B1, B2, …, Bn of real numbers. 

 

Theorem 1: 

Let ξ1, ξ2, …, ξn be uncertain variables, and let f  be a real-valued measurable function. 

Then )...,,,( 21 nf  is an uncertain variable.  

 

Definition 7:  

Let ξ be an uncertain variable. Then the expected value of ξ is defined by 

.}{}{][

0

0

drrMdrrME 




   

 

Definition 8:  

Let ξ be an uncertain variable with finite expected value E[ξ]. Then the variance of ξ is 

V[ξ] = E[(ξ – E[ξ])]2. 

 

Theorem 2: 

Let f(ξ1, ξ2, …, ξn) be continuous, strictly increasing with respect to ξ1, ξ2, …,ξm continuous, 

strictly decreasing with respect to ξm+1, ξm+2,…, ξn. If  ξ1, ξ2, …, ξn are independent uncertain 

variables with regular uncertainty distributions Φ1, Φ2, …, Φn, respectively, then: 

a) ξ = f(ξ1, ξ2, …, ξn) is uncertain variable with inverse uncertainty distribution:  
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b) ,))1(),...,1(),(),...,(),((][ 11
1
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1
1  dfE nmm  


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c) ,])[))1(...,),1(),(),...,(),(((][

1
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211
1

11
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1
1  dEfV nmm  


  

d) for any    [0, 1]  

M{f(ξ1, ξ2, …, ξn) < 0} > α     

is equivalent 

.0))1(),...,1(),(),...,(),(( 11
1

11
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1
1  


  nmmf  

 

Definition 9:  

a) The quantiles of the random variable ξ:  

supα[ξ ] = sup{r | Pr { ξ > r} > α} – α-optimistic value, 

infα[ξ ] = inf{r | Pr { ξ < r} > α}  – α-pessimistic value, 

  [0, 1], 

b) The quantiles of the uncertain variable ξ:  

supα[ξ ] = sup{r | M{ ξ > r} > α} – α-optimistic value, 

infα[ξ ] = inf{r | M{ ξ < r} > α}  – α-pessimistic value, 

  [0, 1]. 

 

Definition 10:  

Let (Ω , A, Pr) be a probability space and (Γ, Λ, M) be an uncertainty space. Then the 

product (Γ × Ω, Λ × A, M × Pr) is called a chance space, where Γ × Ω  = {(γ, ω)| γ ∈ Γ, ω ∈ 

Ω}. Then the chance measure of an event Θ of Λ × A is:   
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 x}dxΘ}Γ|(γ,ω)Ω|M{γ{ω}Сh{Θ  
1

0

Pr . 

M{γ ∈ Γ |(γ, ω) ∈ Θ} is just the uncertain measure of cross section of Θ at ω. Since M{γ ∈ 

Γ |(γ, ω) ∈ Θ} can be regarded as a function from the probability space (Ω , A, Pr) to [0, 1], it 

is a random variable. Thus the chance measure Ch{Θ} is just the expected value (i.e., average 

value) of this random variable. The chance-measure is monotonous, dual and subadditive. 

 

Definition 11:  

An uncertain random variable is a function ξ from Γ ×Ω  to the set of real numbers such 

that {(γ, ω)| γ ∈ Γ, ω ∈ Ω |ξ (γ, ω) ∈ B} is an event in L × A for any Borel set B of real numbers. 

 

Definition 12:  

Let ξ be an uncertain-random variable. Then its chance distribution is defined by                          

Φ(x) = Ch{ξ ≤ x} for any real x. 

 

Definition 13:  

The expected value of uncertain-random variable ξ is: 








0

0

][ x}dxCh{dxx}Ch{E   

provided that at least one of the two integrals is finite. 

 

Theorem 3: 

Let η1, η2, … , ηm  be independent random variables with probability distributions Ψ1, Ψ2, 

… , Ψm,   and let τ1, τ2, … , τn  be independent uncertain variables with uncertainty distributions 

Y1, Y2, …, Yn, respectively. If  f(η1, η2, … , ηm, τ1, τ2, … , τn) is a measurable function, then has 

an expected value E[ξ] is: 

)(y)...dΨ(ydΨyyG),...,τ, τ, ...,ηf(ηE mmm

mR

nm 11111 ),...,(][  , 

where )],...,,,...,([) 111 nmm yyfE, ...,yG(y   − is the expected value of the uncertain variable

),...,,,...,( 11 nmyyf   for any real numbers  ,,...,1 myy  and is determined by Y1, Y2, …, Yn. 

 


