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Abstract: Data storage reliability and availability play important role for a wide range of services
and business processes. Manufacturers provide data storage systems that resistant to hardware and
software failures but not for all cases. Well-timed detection of these failures helps to recover the
system faster and prevent the failures before they occur. In this work a range of machine learning
and time series analysis algorithms for failures detection for data storage systems is considered.
The algorithms are applied and compared on the real system. Preliminary results show that binary
classification methods demonstrate high failure detection and low false alarm rates. Time series
prediction based approach shows similar results and outperforms one-class classification methods.

Keywords: machine learning, time series analysis, anomaly detection, data storage systems

1. INTRODUCTION

Modern data storage systems are built from hundreds of solid-state drives (SSDs) and hard
disk drives (HDDs), networks and controllers to handle and process incoming data. A lot of
data generated every day has to be properly saved for further usage. Storage systems have
to provide high availability and reliability. Any failure in these systems will negatively affect
any processes and applications that use the data and lead to significant revenue loss.

Any anomalous system behaviour can potentially be the result of a failure of its components
and data loss. It requires from the storage system operators to explore it and, if necessary, take
actions to resolve the problem. Timely anomaly detection allows to react on system failures
faster decreasing shutdown time and preventing data loss. Anomalies can be the result of the
system failures that have already happened or will happen in the near future. In the first case
anomalies detection allows to reduce time delay for corrective actions. In the second case it
gives time to take actions to prevent the failures and to reduce undesirable effects.

The paper has the following structure. Overview of related works is considered in Sec. 2.
Data storage system that is used in this work for anomalies detection is described in Sec. 3.
Discussion of different anomalies detection algorithms with examples and results is provided
in Sec. 4. Finally, conclusions of this work are presented in Sec. 5.
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2. RELATED WORKS

There are a variety of anomaly detection methods [1, 2] applied in different domains of
systems. These methods are the most widely used in computer networks to detect cyber
attacks [3–7] and web-traffic anomalies [8–10]. There are a set of works where system logs
of online service systems [11], supercomputers and distributed systems [12, 13] are analysed
to detect various failures and anomalies. Several approaches were presented to predict failure
of hard drives [14, 15] based on their SMART (Self-Monitoring, Analysis and Reporting
Technology) data. Interesting results were demonstrated at the European Organization for
Nuclear Research (CERN) where anomaly detection methods are used in data quality system
for monitoring quality of data generated in high energy physics detectors [16].

The most promising methods of failures detection are based on machine learning and
time series analysis algorithms. These approaches use clustering, one-class and binary
classification algorithms for anomalies detection. Clustering methods [1, 2] suppose that
normal and anomalous system behaviours form different clusters in some parameter space.
The methods learn boundaries of these clusters and use them to distinguish different system
states. This approach works well when the clusters are separable from each other. There are
variety of clustering algorithms [17]: K-Means, Hierarchical Clustering, Gaussian Mixtures,
DBSCAN and others.

Similarly, one-class methods learn system behaviour in the normal state. They suppose
that normal states form dense clusters in system parameter space and recognize boundaries
of these clusters. Everything that is beyond the boundaries is considered as an anomaly. The
most used algorithms are Isolation Forest [18], Elliptical Envelope [19], One-class SVM [20],
ASVDD [21] and WSVDD-CBA [22].

Binary classification [1, 2] is used when anomalies are known. It takes normal behaviour
and anomalies as two classes and learns separation rule between them in parameters space.
Then this rule is used to classify the system states. The most popular classifiers are Naive
Bayes, Logistic Regression, SVM, Decision Tree, Random Forest, Gradient Boosting over
Decision Trees and Artificial Neural Networks that are described in [17].

Time series analysis based methods [1, 2] are based on prediction of system parameters
values in time. They use previous values of the parameters to predict the current one. Large
deviations from the predictions indicate anomalies. There are a lot of predictive models for
time series [23]: ETS models, Autoregression (AR) and Moving Average (MA) models,
ARMA, ARIMA, Artificial Neural Networks and others. In this work several approaches
of anomaly detection for data storage systems are considered.

3. TATLIN STORAGE DESCRIPTION

The goal of this work is to develop the algorithm of automatic failure detection for
TATLIN [24] storage system. The system contains up to 4 storage controllers, Peripheral
Component Interconnect Express (PCIe) fabric controller and up to 16 drive enclosures as it is
shown in Fig. 3.1. Storage controllers are based on YADRO VESNIN [25] hardware platform.
They provide user access to data, perform computations and run the TATLIN software. Each
storage controller consists of 4 POWER8 Turismo SCM processors, 256 GB RAM, PCIe
fabric connection adapter for data transfer and 2 Gigabit Ethernet (GbE) switches for internal
network. Fabric controller integrates all components of the storage system and provides high
data operation performance using fast SSDs. It has up to 96 SSDs with capacity of 2 TB each,
2 TB RAM cache, shared among storage controllers, 4 PCIe fabric adapters, Gigabit Ethernet
switch for internal network and drive enclosure connection module. Drive enclosures host up
to 96 Serial Attached SCSI (SAS) disks with capacity of 12 TB each to provide storage space
for data that does not require high speed of operations, compared with SSD.

The storage reliability is provided by policies based on Reed-Solomon codes with minimal
redundancy. It uses 25% redundancy that supports simultaneous failure of 2 drivers in 8 data
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Fig. 3.1. TATLIN storage system.

+ 2 parity drives configuration. The fabric controllers provide shared access to the entire
storage space for all storage controllers. Shared RAM cache gives hardware improvement by
reducing CPU load in storage controllers for intensive data operations. The storage design
excludes one point failure.

4. ANOMALIES DETECTION

4.1. Collected data
Behaviour of each component of the storage system is described by a set of parameters, that
are used for anomalies detection. Examples of these parameters are CPUs and RAM usage,
CPUs temperatures and fan speed for storage controllers, input and output traffics for network
interfaces, SMART data for SSDs and SAS drives and others. Except hardware components
information about logical data volumes inside storage pools is collected. Each volume is
described by storage pool ID, capacity, state, read and write speed for each storage controller,
number of read and write operations, average request processing time, average request queue
size etc..

Several of known hardware failures for the all components are generated to test algorithms
of anomalies detection. Parameters are measured approximately every 20 seconds and saved
for the further analysis. For each measurement true state is recorded. There are two possible
states: normal and failure.

Measurements of a component parameter are represented as a time series {(ti, xi)}ni=1,
where xi is a measured parameter value and ti is a timestamp of the measurement. Each
time series is divided into time bins with defined width. All measurements inside one bin
are averaged. This aggregation helps to reduce noise of the measurements and to create time-
regular observations of the parameters for further steps of the analysis. An example of time
series after aggregation with width = 60s is demonstrated in Fig. 4.2.
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Fig. 4.2. (Top) Time series of percentage of CPU usage for one of the storage components of the storage system
after aggregation. (Middle) Residual errors for the time series prediction. (Bottom) CUSUM test values for the

anomalies detection.

4.2. Time series analysis
Consider time series analysis methods to detect anomalies. Time series analysis is used to
predict parameter values of a component. To do this vector autoregression (VAR) model [23]
is used. The principle of the model is following. Suppose a group of M time series is
given: {yi1, yi2, ..., yit}Mi=1, where yit is t-th measurement of i-th time series. Measurements
of all time series with the same t are grouped into a vector yt = (y1t y2t · · · yMt)

T . VAR
model supposes that a vector of predicted parameters values ŷt is a function of previous k
measurements:

ŷt = f(yt−1, yt−2, ..., yt−k) (4.1)

where ŷt is a predicted vector of parameters values; yt is a vector of measured values of the
parameters. For simplicity each time series has its own prediction model:

ŷit = fi(yt−1, yt−2, ..., yt−k) (4.2)

where ŷit is a predicted value for i-th time series. To approximate the functions fi different
machine learning algorithms [17] for the regression problem are used: Linear Regression
model, Shallow Neural Networks, Random Forest and Gradient Boosting over Decision
Trees Regressions. These algorithms are selected because they demonstrate high quality of
the prediction and work well with multivariate time series. The models are trained with the
following loss function:

L =
∑
t

(ŷit − yit)2 (4.3)
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Parameters of the models are optimized using Grid Search. The model with the lowest loss
function value on the validation sample wins and used for anomalies detection. For each time
series residual errors rit are calculated:

rit = ŷit − yit (4.4)
where rit a residual error of a predicted value for i-th time series on t-th measurement.

Example of a time series with two anomalies is shown in Fig. 4.2. It corresponds to the
percentage of CPU usage for one of the storage controllers. The time series is aggregated as
it is described in Sec. 4.1. To predict the current value ŷit the previous 30 observations of
this time series are used in this example. There are about 2500 observations that correspond
to about 150000 seconds. The first 60000 seconds are used to train VAR model and the next
25000 seconds are used for the validation. Residual errors of the prediction are shown in
Fig. 4.2. The figure shows larger residuals for the anomalies. To detect them the cumulative
sum (CUSUM) [26] test is used. The test calculates new time series {Tt}nt=1, where the first
value T1 = 0 and the next values are estimated by the recurrent formula using residual errors:

Tt = max(0, Tt−1 + εt) (4.5)

εt = log
f0(rit)

f∞(rit)
(4.6)

where f∞(rit) and f0(rit) are residual distributions for normal and anomalous states
respectively. Normal distributions for the residuals are considered:

f∞(rit) =
1√
2πσ2

∞
e
− (rit−r∞)2

2σ2∞ (4.7)

f0(rit) =
1√
2πσ2

0

e
− (rit−r0)

2

2σ20 (4.8)

where r∞, σ∞ are mean and standard deviation of residuals for normal states; r0, σ0 are
mean and standard deviation of residuals for anomalous states; Residuals are not necessary
have normal distributions. However, it was shown in [27] that even with strong deviations
from the normal distribution CUSUM works well.

An anomaly is detected when the Tt > Talarm. The distribution parameters and Talarm are
estimated during calibration on the validation sample without anomalies, where Tt has to take
values close to 0 without growing trend. This approach allows to detect mean and variance
changes of the residuals. An example of the CUSUM test is demonstrated in Fig. 4.2. The
test value increases for anomalies and falls when the anomaly disappears. To avoid the test
values relaxation after the anomaly Tt values can be reset right after the anomaly detected or
by operator’s demand.

4.3. One-class classification
One-class classification algorithms are used for anomalies and novelty detection in data.
These algorithms learn boundaries of a normal class and everything that outside that boundary
is considered as an anomaly. Isolation Forest [18] is one of the best one-class algorithms.
Suppose a sample with N objects is given. Each object has D parameters. The idea of the
Isolation Forest in the following:

Step 1 Select a subsample with 0 < n < N objects to build a new isolation tree.

Step 2 Randomly select a parameter.

Step 3 Randomly select an object from the current tree node. Use the selected parameter
value of this object as a splitting rule for the node.
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Step 4 Repeat steps 3 and 4 for the left and right children of the node. Stop the process when
the termination conditions are satisfied.

Step 5 Repeat steps 1-4 to build forest of isolation trees.
According to [18], anomalies have shorter decision paths in isolation trees than normal

objects. For an object x anomaly score ŝ is estimated as:

s(x) = 2−
E(h(x))
c(N) (4.9)

where h(x) is a length of s decision path for the object in an isolation tree; E(h(x)) is an
average length of the decision path for the object in the forest; c(N) is an average length of
the decision path for all N objects in the forest. The score takes values in [0, 1]. Objects with
the score close to 1 are anomalous. On the other hand, objects with small score are normal.
In case, when for all objects in a sample s(x) ≈ 0.5, the sample has no anomalies.

Similar to the time series analysis approach, Isolation Forest uses vectors yt of measured
parameters values to estimate the anomaly score ŝit for a measurement:

ŝit = fi(yt, yt−1, ..., yt−k) (4.10)
An example of working of Isolation Forest is demonstrated in Fig. 4.3. The first 60000

seconds are used to train a classifier. The figure shows a slightly higher anomaly score for
anomalies. All measurements with ŝit ≥ 0.5 can be considered as anomalies. Results can be
improved using CUSUM test similar to VAR models and will be considered further.

4.4. Binary classification

Isolation Forest

Binary classification

Fig. 4.3. (Top) Time series of percentage of CPU usage for one of the storage components of the storage system
after aggregation. (Middle) Anomaly score predicted by Isolation Forest. (Bottom) Anomaly score predicted by

Binary Classifier.

Binary classification is a powerful tool to detect known anomalies. Normal and anomalous
measurements are considered as two classes. The classifier learns the separation surface
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between them and is using it for anomalies detection for new measurements. Similarly to the
VAR models, several binary classifiers [17] are considered: Logistic Regression, Naive Bayes
Classifier, Shallow Neural Networks, Random Forest and Gradient Boosting over Decision
Trees Classifiers. They are used to predict anomaly scores:

ŝit = fi(yt, yt−1, ..., yt−k) (4.11)

where ŝit ∈ [0, 1] is a predicted anomaly score. Parameters of the classifiers are optimized
using Grid Search to minimize the logistic loss function:

L = −
∑
t

(sit log ŝit + (1− sit) log (1− ŝit)) (4.12)

where sit ∈ {0, 1} is a true anomaly score for t-th measurement of i-th time series; The
classifier with the lowest value of the loss function wins and is used for the anomalies
detection. The example of the binary classification work is shown in Fig. 4.3. The first 110000
seconds are used to train the classifiers.

4.5. Models comparison

0.00 0.01 0.02 0.03 0.04 0.05
False Alarm Rate

0.95

0.96

0.97

0.98

0.99

1.00

Fa
ilu

re
 D

et
ec

tio
n 

Ra
te

Binary classification
VAR

(a)

0.0 0.1 0.2 0.3 0.4 0.5
False Alarm Rate

0.5

0.6

0.7

0.8

0.9

1.0
Fa

ilu
re

 D
et

ec
tio

n 
Ra

te

Isolation Forest + CUSUM
Isolation Forest

(b)

Fig. 4.4. Dependencies of Failure Detection Rate from False Alarm Rate for different anomaly detection
algorithms: (a) Binary classification and VAR; (b) Isolation Forest and Isolation Forest with CUSUM methods.

We collected data with induced hardware failures in different storage system components.
A failure is considered as detected when at least one parameter of the system demonstrates
anomalous behaviour. Time series for all parameters corresponded to one component are
united into a group and used to estimate anomaly scores as described in previous sections. A
measurement is anomalous when its anomaly score ŝt > τ , where τ is a threshold value. For
a set of τ values Failure Detection Rate (FDR) and False Alarm Rate (FAR) are calculated to
measure the failures detection quality:

FDR(τ) =
1

Nanomalies

∑
i

I[ŝi ≥ τ |si = 1] (4.13)

FAR(τ) =
1

Nnormal

∑
i

I[ŝi ≥ τ |si = 0] (4.14)

whereNanomalies in the total number of anomalous measurements;Nnormal is the total number
of normal measurements. Dependencies of Failure Detection Rate from False Alarm Rate
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ROC AUC FDR (FAR = 5%) FDR (FAR = 1%)
Binary classification 0.999 0.997 0.991
VAR 0.997 0.987 0.975
Isolation Forest 0.755 0.0 0.0
Isolation Forest + CUSUM 0.956 0.852 0.836

Table 4.1. Quality metrics for the anomalies detection algorithms.

for different anomaly detection algorithms are shown in Fig. 4.4. These dependencies are
also known as ROC-curves. Area under the ROC-curve (ROC AUC) is widely used in
machine learning to measure quality of classification. ROC AUCs, Failure Detection Rates
that correspond to False Alarm Rate values of 5% and 1% for different anomaly detection
algorithms are presented in Tab. 4.1.

The results demonstrate that the binary classification method has the best quality. It detects
larger than 99% of all anomalous states with False Alarm Rate below 5%. These results can
be explained by the learning procedure of the method. During this procedure it recognizes
separation surface between normal and anomalous states in the system parameters space.
Then it uses this surface to distinguish the system states on new measurements.

VAR model shows similar results. It recognizes about 98% of all anomalous states with
False Alarm Rate below 5%. However, unlike the Binary classification it does not use any
information about anomalies. The model takes only the system parameters measurements for
normal states to learn normal behaviour of the system. Any significant deviation from this
behaviour considered as anomaly. This allows VAR to detect unknown anomalies.

Isolation Forest demonstrates high False Alarm Rates. Due to the noise in the parameters
measurements Isolation Forest detects some normal measurements as anomalous and
generates false alarms. It does not use any information about anomalies during the training
procedure, that makes it harder to detect anomalies compared with binary classification.
CUSUM test helps to reduce a number of false alarms and improves quality of the anomalies
detection in a small FAR region as it is shown in Fig. 4.4.

5. CONCLUSION

Several approaches for automatic anomalies detection for data storage systems were tested
and compared. These approaches are based on binary and one-class classification algorithms
as well as on VAR models of time series analysis. The binary classification method has
demonstrated the best detection quality. It allows to detect about 99% of anomalous states
with False Alarm Rate of about 1%. The main limitation of this method is that it requires
information about anomalies to learn how to detect them. This provides the high detection
quality but makes it impossible to use the method for detection previously unseen anomalies.

To resolve this limitation two additional methods were considered. These methods do not
use information about anomalies during their training procedures. They are able to detect
previously unseen anomalies. Isolation Forest shows very small Failures Detection Rate
in a region of False Alarm Rate below 5%. However, VAR model of time series analysis
in combination with CUSUM test demonstrates promising results. It detects about 97% of
anomalous states with False Alarm Rate is about 1%. The method learns normal behaviour
of the system and detects any changes of it. In our future works we are going to continue
developing methods of anomaly detection for data storage systems based on time series
analysis methods. The goal is to investigate the methods that are able to recognize any
anomalies without training procedure that uses information about these anomalies.
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