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Abstract: A new model of capital asset management was developed under the assumptions of 

hyperbolic absolute risk aversion, and employing the basic skills of mathematical modelling. The 

solution to the model was sought by formulating a continuous-time utility portfolio model 

satisfying some uncertainty criteria where the investment is continuous, the investor does not 

possess enough power to determine price and the investor can borrow money for a given period at 

a particular interest rate. The model was solved using analytical method and numerical method and 

optimal values of some input factors are derived. 
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1. INTRODUCTION 

Capital asset models have been subject to an enormous number of empirical studies since 

Lintner and Sharpe in the mid-1960. Among the most notable early tests of the models are 

those in [1, 4]. Other contributors are included in [3, 5, 13, 14]. The earliest researchers found 

the relationships between the risk-free rate and market risk premium. Since Merton developed 

and solve a portfolio selection model under uncertainty for the case of infinite lifetimes and 

finite lifetimes: the continuous-time case for risk and risk-free assets, capital asset management 

has adapted the portfolio theories, see [12]. 

This results to some researchers formulating asset management models using different 

mathematical approaches such that optimal values of controls and input factors are obtained. 

A stochastic optimal control approach was utilised to model debt crisis so as to evaluate debt 

crisis in international finance, thus, the optimal debt to preclude crisis was obtained [15]. The 

work [19] was based on the concepts of uncertainty theory where uncertain optimal control 

was applied to solve a portfolio selection model and obtained a fundamental result called 

equation of optimality for uncertain optimal control, thus obtain the optimal value of the 

control. Formulation of two instances of uncertain multidimensional optimal control models 

with 𝑛 jumps based on uncertainty theory from the perspectives of agents ( 

consumers) and principal (government) was carried out in the work [2] - the optimal 

control problems were applied to Research and Development fiscal policy and optimal control 

decisions were obtained. 

It is understood from existing works that the research carried out in [12,19, 2] examined 

the selection of risk-free asset and risk asset together in the formulation of the models. 

Meanwhile, it was examined in [15], the selection of risky assets only with stochastic optimal 

control approach without considering depreciation and taxation as input factors. The choice of 

Uncertainty theory over the conventional probability theory exists when the sample size is 

                                                 
* Corresponding author: tolulope.latunde@fuoye.edu.ng 

mailto:tolulope.latunde@fuoye.edu.ng


                                                                            T. LATUNDE  53 

Copyright ©2019 ASSA.                                                                                  Adv. in Systems Science and Appl. (2019) 

 

small to estimate a probability distribution and degree belief are ascertained from experts to 

work in place of frequency since human beings always overweight unlikely events 

Consequently, a new model of asset management based on uncertainty theory was formulated 

in [6] where the selection of capital assets, classified as risky assets is examined. Thus, 

depreciation and taxation are considered as input factors in the formulation of the models. 

However, this work is an extension of the work [6, 7] such that we seek to provide 

solutions to a problem of capital assets using a real life situation. The proposed model deals 

with a case where a nation invests her wealth in capital assets, for a particular period of time. 

It is assumed that there is difficulty in deciding the fraction of the nation’s net worth to be 

incurred on the investments of capital assets, thus leading to the problem of how to optimize 

the expected present value of the utility of assets. 

 

2. PRELIMINARY 

Uncertainty theory is a branch of mathematics for modelling belief degrees established by Liu, 

[8] and refined in [11]. The choice of Uncertainty theory over the conventional probability 

theory exists when the sample size is small to estimate a probability distribution and degree 

belief are ascertained from experts to work in place of frequency since human beings always 

overweight unlikely events. For the sake of this work, the following concepts are utilized. 

Let Γ be a nonempty set and 𝐿 a 𝜎- algebra over Γ such that (Γ, 𝐿) be a measurable space. Each 

element Λ ∈ 𝐿 is called an event. 

Definition 2.1 [8]:  

A set function 𝑀 defined on the 𝜎-algebra over 𝐿 is called an uncertain measure if it satisfies 

the following axioms: 

Axiom 1. (Normality Axiom): 𝑀{Λ} = 1 for the universal set 𝛤. 

Axiom 2. (Duality Axiom): 𝑀{Λ} + 𝑀{Λ𝑐} = 1 for any event Λ. 

Axiom 3. (Subadditivity Axiom): For every countable sequence of events, Λ1, Λ2, ⋯, we have  

𝑀{⋃∞
𝑖=1 Λ𝑖} ≤ ∑∞

𝑖=1 𝑀{Λ𝑖}                                                                                     (2.1) 

Axiom 4. (Product Axiom): Let (Γ𝑘, 𝐿𝑘, 𝑀𝑘) be uncertainty spaces for 𝑘 = 1,2, ⋯The product 

uncertain measure 𝑀 is an uncertain measure satisfying  

𝑀{∏∞
𝑘=1 Λ𝑘} = min1≤𝑘≤∞𝑀𝑘{Λ𝑘}                                                                          (2.2)  

where Λ𝑘 are arbitrarily chosen events from 𝐿𝑘 for 𝑘 = 1,2, ⋯, respectively. 

Definition 2.2 [10]: 

An uncertain process 𝐶𝜎 is said to be a canonical Liu process if 

(i) 𝐶0 = 0 and almost all sample paths are Lipschitz continuous, 

(ii) 𝐶𝜎 has stationary and independent increments, 

(iii) every increment 𝐶𝑠+𝜎 − 𝐶𝑠 is a normal uncertain variable with expected value 0 

and variance 𝜎2. The uncertainty distribution of 𝐶𝜎 is  

Φ𝜎(𝑥) = [1 + exp (
−𝜋𝑥

√3𝜎
)]

−1

,    𝑥 ∈ ℜ                                                                    (2.3) 

and the inverse distribution is  

Φ𝜎
−1(𝑦) =

𝜎√3

𝜋
ln

𝑦

1−𝑦
,    𝑦 ∈ ℜ                                                                                 (2.4) 

Definition 2.3 [8]: 

Let 𝜉 be an uncertain variable. Then the expected value of 𝜉 is defined by  

𝐸[𝜉] = ∫
+∞

0
𝑀{𝜉 ≥ 𝑥}𝑑𝑥 − ∫

0

−∞
𝑀{𝜉 ≤ 𝑥}𝑑𝑥                                                       (2.5) 

provided that at least one of the two integrals is finite 

Definition 2.4 [9]:  

An uncertain process 𝑋𝑡 is said to have independent increments if  

𝑋𝑡1
− 𝑋𝑡0

, 𝑋𝑡2
− 𝑋𝑡1

, ⋯ , 𝑋𝑡𝑘
− 𝑋𝑡𝑘−1
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are independent uncertain variables where 𝑡1, 𝑡2, ⋯ , 𝑡𝑘 are any times with 𝑡0 < 𝑡1 < ⋯ <
𝑡𝑘  

That is, an independent increment process means that its increments are independent 

uncertain variables whenever the time intervals do not overlap. It is noted that the increments 

are also independent of the initial state. 

Definition 2.5 [9]:  

Suppose 𝐶𝑡 is a canonical Liu process, and 𝑓 and 𝑔 are two functions. Then  

𝑑𝑋𝑡 = 𝑓(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑋𝑡)𝑑𝐶𝑡                                                                              (2.6) 

is called an uncertain differential equation. A solution is a Liu process 𝑋𝑡 that satisfies (2.3) 

and (2.4) identically in 𝑡. 

Definition 2.6 [9]:  

Let 𝑋𝑡 be an uncertain process. Then for each 𝛾 ∈ 𝛤, the function 𝑋𝑡(𝛾)is called a sample path 

of 𝑋𝑡. 

Definition 2.7 [11]:  

An uncertain process 𝑋𝑡 is said to be sample-continuous if almost all sample paths are 

continuous functions with respect to time 𝑡. 

Definition 2.8 Uncertainty Distribution of Solution [16]: 

Let 𝛼 be a number with 0 < 𝛼 < 1. An uncertain differential equation 

 

𝑑𝑋(𝑡) = 𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝐶(𝑡) 

is said to have an 𝛼-path 𝑋(𝑡)𝛼 if it solves the corresponding ordinary differential equation 

 

𝑑𝑋(𝑡)𝛼 = 𝑓(𝑡, 𝑋(𝑡)𝛼)𝑑𝑡 + |𝑔(𝑡, 𝑋(𝑡))|Φ−1(𝛼)𝑑𝑡                                                (2.7) 

where 𝛷−1(𝛼) is the inverse uncertainty distribution of standard normal uncertain variable, 

that is, 

Φ−1(𝛼) =
√3

𝜋
ln

𝛼

1 − 𝛼
,    𝛼 ∈ ℜ 

Theorem 2.1 Extreme Value of Solution [18]: 

Let 𝑋(𝑡) and 𝑋(𝑡)𝛼 be the solution and 𝛼-path of the uncertain differential equation (2.6). 

Then, for any time 𝑡 > 0 and strictly increasing function 𝐽(𝑥), the supremum 

 

sup𝑡0≤𝑡≤𝑡𝑛
𝐽(𝑋(𝑡)) 

has an inverse uncertainty distribution 

 

Ψ−1(𝛼) = sup𝑡0≤𝑡≤𝑡𝑛
𝐽(𝑋(𝑡)𝛼)                                                                                (2.8) 

and the infimum 

 

inf𝑡0≤𝑡≤𝑡𝑛
𝐽(𝑋(𝑡)) 

has an inverse uncertainty distribution 

 

Ψ−1(𝛼) = inf𝑡0≤𝑡≤𝑡𝑛
𝐽(𝑋(𝑡)𝛼)                                                                                 (2.9) 

Theorem 2.2 [16]:  

Let 𝑋(𝑡) and 𝑋(𝑡)𝛼 be the solution and 𝛼-path of the uncertain differential equation (2.6). 

Then 

 

𝑀{𝑋(𝑡) ≤ 𝑋(𝑡)𝛼, ∀𝑡} = 𝛼,    𝑀{𝑋(𝑡)   > 𝑋(𝑡)𝛼, ∀𝑡} = 1 − 𝛼.                            (2.10) 

3. MODEL FORMULATION 

A model of capital asset management is presented herein such that it is assumed that an 

investor invests his wealth in capital asset, 𝐴(𝑡), of a large business for time, 𝑡, from 𝑡0 to 𝑡𝑓. 
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Suppose he starts with a known initial net worth 𝑋0(𝑡). At time 𝑡, what ratio of his net worth, 

𝜓, must he select to utilize on capital asset in the presence of liability such that the expected 

net present value of the utility of asset, 𝐽(𝜓), is optimized ? 

 
Table  3.1. Definition of Parameters of the Objective function to the model  

 Parameter   Description 

𝑈   Utility function 

𝐴(𝑡)   Capital asset at time 𝑡 

𝜂   subjective discount rate, e.g., 
𝐴

𝜂+1
= Presentvalue 

𝜆   degree of relative risk, where (1 − 𝜆) is the risk aversion 

𝜓   Capital asset ratio (control) 𝜓 ∈ ℜ  

𝑋(𝑡)   Net worth at time (state variable)𝑡 

 

 
Table  3.2: Definition of Parameters of the constraint to the model  

 Parameter   Description 

𝜎𝑟(𝑡)   Diffusion volatility of liability (with variance 𝜎𝑟
2 per unit time) 

𝜓   Capital asset ratio (control) 𝜓 ∈ ℜ  

𝜎𝑏(𝑡)   Diffusion volatility of asset (with variance 𝜎𝑏
2 per unit time) 

𝜅(𝑡)   Capital gain on asset due to inflation at time 𝑡 

𝜎𝑝(𝑡)   Diffusion volatility on asset price (with variance 𝜎𝑝
2 per unit time) 

𝛽(𝑡)   Mean rate of return on asset 

𝜔   Mean interest rate of liability 

𝐶(𝑡)   uncertain process at time 𝑡  

𝜇(𝑡)   Consumption level at time 𝑡  

𝑗(𝑡)   Tax ratio at time 𝑡  

𝑔(𝑡)   Depreciation ratio at time 𝑡  

ℎ(𝑡)   Asset supplies ratio at time 𝑡 

 

Theorem 3.1 [12]:  

If 𝜆 > 0 and 𝑈 is such that the integral 𝐸𝐶 [∫
 
𝑡𝑓

𝑡0
𝑈(𝐴, 𝑡)𝑑𝑡] is absolutely convergent, then the 

maximization or minimization of 𝐸𝐶 [∫
 
𝑡𝑓

𝑡0
𝑈(𝐴, 𝑡)𝑑𝑡] is equivalent to the maximization or 

minimization of 𝐸0 ∫
𝑡𝑓

𝑡0
𝑒−𝜂𝑡𝑈(𝐴, 𝑡)𝑑𝑡 where 𝐸𝐶 is the conditional expectation operator over 

all random variables excluding 𝜆. 
 

By Theorem 3.1, an investor who faces an exponentially-distributed uncertain 

investment of capital asset invests as if there is no terminal period, but with a subjective rate 

of time preference equal to the investments terminals. 

 

𝐽 = opt𝐸𝐶 [ ∫

 
𝑡𝑓

𝑡0

𝑒−𝜂𝑡𝑈(𝐴(𝑡))𝑑𝑡]                                                                                               (3.1) 

where 𝐸𝐶 denotes conditional expectation, 𝜂 ∈ (0,1) is the arbitrary discount rate. In selecting 

the discount rate, the effective length of time is inversely proportional to the discount rate in 

the sense that a high discount rate implies a short time interval, [15]. Utility function 𝑈(𝐴) 

measures satisfaction of an investor as a function of usage or efficiency of capital assets with 

respect to risk aversion. However, risk aversion is the behaviour of the investors when exposed 
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to attempt to reduce the uncertainty in their investments. There are various measures of risk 

aversion under expected utility theory. 

Thus, a special case of Hyperbolic absolute risk aversion (HARA) is considered as the 

model’s utility function which helps in focusing more on ratios and its assumption also lowers 

the dimension of dynamic system for the model to be effortlessly solved analytically unlike 

some other utility functions. That is 

 

𝑈(𝐴) = (

1

𝜆
𝐴𝜆, 0 < 𝜆 < 1

lnA, 𝜆 = 0
                                                                                                        (3.2) 

where 1 − 𝜆 > 0 is the investor’s relative risk aversion. The larger the 𝜆, the more reluctant to 

own a risky asset, [12]. 

The efficiency or performance of the capital asset, 𝜓, is expressed as the ratio of capital 

asset, 𝐴(𝑡), and net worth, 𝑋(𝑡), such that 𝑋(𝑡) ≠ 0, [15]. That is,  

𝜓 =
𝐴(𝑡)

𝑋(𝑡)
                                                                                                                                            (3.3) 

 

𝐴(𝑡) = 𝜓𝑋(𝑡) 

From the proceeding, the model of risky capital asset is an optimal control of the form. 

 

𝐽(𝜓) = max𝜓𝐸𝐶 [ ∫

 𝑡𝑛

𝑡0

1

𝜆
𝑒−𝜂𝑡(𝜓𝑋(𝑡))𝜆𝑑𝑡]                                                                                   (3.4) 

subject to  

𝑑𝑋(𝑡) = [(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + ℎ − 𝑗 − 𝑔)]𝑋(𝑡)𝑑𝑡 

 

+[𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓 − 1)]𝑋(𝑡)𝑑𝐶(𝑡)  [6]                                                                  (3.5) 

4. APPLICATION OF THE CAPITAL ASSET MODEL 

Here, the model is analysed using real life data in order to provide some optimal solutions 

satisfying the optimality criteria. 

Utilizing the model in international finance, the revenue is taken to be the Gross 

Domestic Product of a nation (GDP) or value added, the risky capital asset as the capital 

investment or the Gross Fixed Capital Formation, Consumption as Household and 

Government Consumption, Depreciation is taken as the Consumption of Fixed capital. The 

debt is also taken as a study case of liability to be considered. 

 

 

 

 

 

 

 

 

 

 
Table  4.1: Definition of parameters according to the model application 

Parameter Description 

𝐽 Expected present value of utility of GFCF 
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𝜂 subjective discount rate, e.g., 
𝐴

𝜂+1
= Presentvalue 

𝜆 degree of relative risk, where (1 − 𝜆) is the risk aversion 

𝜓 GFCF ratio (control) 𝜓 ∈ ℜ 

𝜏(𝑡) Debt ratio (control) at time 𝑡, 𝜏 = 𝜓 − 1 

𝑋(𝑡) Net worth at time 𝑡 (GFCF minus Debt ) 

𝜅(𝑡) Capital gain on GFCF with net worth at time 𝑡 

𝛽(𝑡) Mean rate of return on GFCF with net worth 

𝜔(𝑡) Mean rate of debt with net worth 

𝜎𝑝(𝑡) Diffusion volatility on asset price (with variance 𝜎𝑝
2 per unit time) 

𝜎𝑏(𝑡) Diffusion volatility of GFCF (with variance 𝜎𝑏
2 per unit time) 

𝜎𝑟(𝑡) Diffusion volatility of Debt (with variance 𝜎𝑟
2 per unit time) 

𝜎(𝑡)   Diffusion volatility of the whole process (𝜎𝑝 + 𝜎𝑏 − 𝜎𝜔), [15] 

𝜇(𝑡)   Consumption level with net worth at time 𝑡  

𝑠(𝑡)   Net foreign supplies - net worth ratio at time 𝑡 

𝑗(𝑡)   Tax-net worth ratio at time 𝑡  

𝑔(𝑡)   Depreciation-net worth ratio at time 𝑡  

𝐶(𝑡)   Liu canonical process at time 𝑡  

  

In order to examine the debt crisis in Nigeria and propose a warning signal, the data 

that are available after the Paris Debt forgiveness in 2006 are used. Thus, Tables 4.2 and 4.3 

below represent the base parameter set for the case study. 
 

Table  4.2: Nigeria Net worth Profile  

Year  GDP  Debt  GFCF  Net worth  Consumption  Indirect Tax  Depreciation  Supplies  

2007 166.451  22.330  15.396       -6.934   149. 152   2.553   3.738    5.089  

2008 208.065  21.399  17.318       -4.081   161.035   3.436   3.853    30.988  

2009 169.481  25.817  20.487  -5.330   147.601   3.180   2.952    0.445  

2010 369.062  40.100  61.099       21.860   293.507   5.623   16.079    28.662  

2011 411.744  47.898  63.960      16.062   323.540   4.516   18.815    38.719  

2012 460.953  48.496  65.283       16.787   348.597   5.686   24.260    86.210  

2013 514.966  64.510  72.964   8.454   453.699   7.929   23.857    26.280  

2014 568.499  67.726  85.737       18.011   464.696   6.857   25.272    32.499  

2015 481.066  65.429  71.329   5.900   417.560   5.362   23.097    0.000  

2016 405.083  57.392  73.261      15.869   206.414   3.188   10.332   -3.341 

 

Source: 

Columns 1 and 3. The world bank (http://data.worldbank.org/indicator) 

Column 2. Debt Management Office of Nigeria (https://www.dmo.gov.ng/). 

Columns 5, 6, 7, 8 and 9. National Bureau of Statistics (http://nigerianstat.gov.ng/) 

Table 4.3 is derived from Table 4.2.  

 

 

 

 

 

 

 
 

Table  4.3: Parameters for the Nigeria Net worth Profile  

Year  𝜅   𝛽   𝜔       𝜎𝑝        𝜎𝑏       𝜎𝑟   𝜎   𝜇   h   j   g  
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2007 

 

 -7.25  -51.72 -6.10  -3.78  -21.47   -2.46   -22.79   -21.51  -0.73   -0.37   -0.54  

2008 

 

-12.32  -87.88  -10.36   -6.42  -36.48   -4.17   -38.73  -39.46  -7.59  -0.77   -0.94  

2009 

 

-9.43   -67.29   -7.93   -4.92   -27.93   -3.20   -29.65   -27.69   0.08  -0.60   -0.55  

2010 

 

 2.30   16.41   1.93   1.20   6.81   0.78   7.23   13.43   1.31   0.26   0.74  

2011 

 

 3.13   22.33   2.63   1.63   9.27   1.06   9.84   20.14   2.14   0.28   1.17  

2012 

 

 2.30   21.37   2.52   1.56   8.87   1.02   9.41   20.77   5.14   0.34   1.45  

2013 

 

 5.95   42.42   5.00   3.10   17.61   2.02   18.69   53.67   3.11   0.94   2.82  

2014 

 

 2.79   19.91   1.43   1.46   8.27   0.95   8.78   25.80   1.92   0.37   1.40  

2015 

 

 8.52   60.79   4.37   4.44   25.23   2.89   26.78   70.77   0.00   0.91   3.91  

2016 

 

 3.17   22.60   1.63   1.65   9.38   1.07   9.96   13.01   -0.21   0.20   0.65  

 

Measurements 
The measurements considered in obtaining data in Tables 4.1 – 4.3 are described 

below. 

All the values of parameters are measured in Billion US Dollars except the following 

parameters: 𝐶(𝑡) - measures the uncertainty process which exists in the interval 0 < 𝐶(𝑡) <
1; 𝜆 - is used to measure risk which exists in the interval 0 < 𝜆 < 1; and 𝜂 - measures discount 

rate which exists in the interval 0 < 𝜂 < 1. The debt is calculated as the total debt of the nation 

by summing the external debt stock (federal government and state) and Domestic debt (federal 

government and state) together. The net worth is also calculated by deducting the debt from 

the GFCF. The CBN Official Exchange rate of 𝑈𝑆𝐷 at 31st December of each year is used 

while current market prices from the national account are used in the computations. 

 

4.1  Solution to the model 

Here, the analytical and numerical solutions are derived. 

For the analytic solution, the required problem under consideration is  

𝐽(𝜓) = min𝜓𝐸𝐶 [ ∫

 𝑡𝑛

𝑡0

1

𝜆
𝑒−𝜂𝑡(𝜓𝑋(𝑡))𝜆𝑑𝑡] 

subject to  

𝑑𝑋(𝑡) = [(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + 𝑠 − 𝑗 − 𝑔)]𝑋(𝑡)𝑑𝑡 
 

 +[𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓 − 1)]𝑋(𝑡)𝑑𝐶(𝑡) 

with 𝛼-path equation 

 

 𝑑𝑋(𝑡)𝛼 = [(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + ℎ − 𝑗 − 𝑔)]𝑋(𝑡)𝛼𝑑𝑡 + |[𝜓𝜎𝑝 + 𝜓𝜎𝑏 −

𝜎𝑟(𝜓 − 1)]𝑋(𝑡)𝛼|Φ−1(𝛼)𝑑𝑡. 
The analytical solution to the constraint is 
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𝑋(𝑡) = 𝑋0exp([(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + 𝑠 − 𝑗 − 𝑔)]𝑡 + [𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓

− 1)]𝐶(𝑡)) 

and its inverse uncertainty distribution is 

 

Ψ(𝑡)−1(𝛼) = 𝑋0exp([(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + 𝑠 − 𝑗 − 𝑔)]𝑡 

 

+
[𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓 − 1)]𝑡√3

𝜋
ln

𝛼

1 − 𝛼
) 

Hence, by Theorem 2.1,  

Ψ(𝑡)−1(𝛼) = 𝐸(𝑋(𝑡)𝛼) 
Numerical solutions are presented via trapezoidal rule for the objective functional and, 

Euler method and fourth order Runge-Kutta method for solving uncertain differential 

equations due to its ability to yield more precise outcomes than other methods for the 

constraints, [17]. 

Trapezoidal method:  

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =
ℎ

2
(𝑓0 + 2𝑓1 + 2𝑓2 + ⋯ + 2𝑓𝑛−1 + 𝑓𝑛) 

 

= ℎ(
𝑓0 + 𝑓𝑛

2
+ ∑

𝑛−1

𝑖=1

𝑓𝑖), 

where 𝑓(𝑥𝑘) ≡ 𝑓𝑘 

The Runge-Kutta method for solving uncertain differential equations was designed in 

[17] with respect to the following definition and theorems. 

Runge-Kutta method is an effective method for solving ordinary differential equations. 

The generally used Runge-Kutta formula is a fourth-order formula. It should be noted that 

there is a wide range of fourth-order schemes and here, just one common structure is exhibited. 

For an ordinary differential equation with initial value 𝑋0 

 

𝑑𝑋(𝑡) = 𝐹(𝑡, 𝑋(𝑡))𝑑𝑡. 
The scheme uses the following formula 

 

𝑋(𝑡𝑛+1) = 𝑋(𝑡𝑛) +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

where  

𝑘1 = ℎ𝐹(𝑡𝑛, 𝑋𝑛), 
 

𝑘2 = ℎ𝐹(𝑡𝑛 +
ℎ

2
, 𝑋𝑛 +

1

2
𝑘1), 

 

𝑘3 = ℎ𝐹(𝑡𝑛 +
ℎ

2
, 𝑋𝑛 +

1

2
𝑘2), 

 

𝑘4 = ℎ𝐹(𝑡𝑛 + ℎ, 𝑋𝑛 + 𝑘3) 

and ℎ is the step size which is assumed to be constant for all steps. 

However, based on Theorem 2.4, a Runge-Kutta method for uncertain differential 

equations was designed as 

 

𝑋𝑖+1
𝛼 = 𝑋𝑖

𝛼 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

where  
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𝑘1 = ℎ(𝑓(𝑡𝑖, 𝑋𝑖
𝛼) + |𝑔(𝑡𝑖, 𝑋𝑖

𝛼)
|Φ−1(𝛼)), 

 

𝑘2 = ℎ(𝑓(𝑡𝑖 +
ℎ

2
, 𝑋𝑖

𝛼 +
1

2
𝑘1) + |𝑔(𝑡𝑖 +

ℎ

2
, 𝑋𝑖

𝛼 +
1

2
𝑘1)|Φ−1(𝛼)), 

 

𝑘3 = ℎ(𝑓(𝑡𝑖 +
ℎ

2
, 𝑋𝑖

𝛼 +
1

2
𝑘2) + |𝑔(𝑡𝑖 +

ℎ

2
, 𝑋𝑖

𝛼 +
1

2
𝑘2)|Φ−1(𝛼)), 

 

𝑘4 = ℎ(𝑓(𝑡𝑖 + ℎ, 𝑋𝑖
𝛼 + 𝑘3) + |𝑔(𝑡𝑖 + ℎ, 𝑋𝑖

𝛼 + 𝑘3)|Φ−1(𝛼)). 
For the proposed optimal control model of net risky capital asset with an uncertain differential 

equation 

 

𝑑𝑋(𝑡) = [(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + ℎ − 𝑗 − 𝑔)]𝑋(𝑡)𝑑𝑡 + [𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓

− 1)]𝑋(𝑡)𝑑𝐶(𝑡) 

with initial value 𝑋0 and its 𝛼-path equation. 

i.e., 

 

𝑑𝑋(𝑡)𝛼 = [(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + ℎ − 𝑗 − 𝑔)]𝑋(𝑡)𝛼𝑑𝑡 

 

+|[𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓 − 1)]𝑋(𝑡)𝛼|Φ−1(𝛼)𝑑𝑡, 
This is solved using the algorithm below. 

 

4.2.  Algorithm 4.1: Runge-Kutta method for solving the model    

Step 1. Given time interval 𝑡, [𝑎, 𝑏], iteration number 𝑁, step length ℎ =
𝑏−𝑎

𝑁
. Set 𝑡𝑖 = 𝑎 + 𝑖ℎ, 

𝑖 = 0,1, ⋯ , 𝑁 and 𝛼 > 0.  

Step 2. Compute the corresponding differential equation  

 𝑑𝑋(𝑡)𝛼 = [(𝜅 + 𝛽)𝜓 − (𝜔(𝜓 − 1) + 𝜇 + 𝑠 − 𝑗 − 𝑔)]𝑋(𝑡)𝛼𝑑𝑡 

 +|[𝜓𝜎𝑝 + 𝜓𝜎𝑏 − 𝜎𝑟(𝜓 − 1)]𝑋(𝑡)𝛼|
𝜎√3

𝜋
ln

𝛼

1−𝛼
𝑑𝑡, 

𝑋0
𝛼 = 𝑋0, with the Runge-Kutta method for solving uncertain differential equations.  

Step 3. Set 𝑖 = 𝑖 + 1, repeat Step 2 and step 3 for 𝑁 times, then 𝑋(𝑡)𝛼 is derived. Go back to 

step 1 until 𝑡𝑖 = 𝑏,  

 
Table  4.4: Results of Analytical solution to the Model with ℎ = 0.05, 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑎 = 0, 𝑏 = 1, 𝜂 = 0.9, 

𝜆 = 0.1 and 𝑋0 = 18.011  

 𝜓   X   J  

-9   -1175.785   16.657  

-7   -28.783   11.209  

-5   -0.277   6.812 

-3   -0.118   5.941  

-1   -1.612   6.916  

1  19.050   8.854  

3  95.377   11.609  

5  91.492   12.166  

7  77242.383   24.684  

9                   4.159 × 106   37.710  
 

Table  4.5: Results of Numerical solution to the Model (ℎ = 0.05, 𝑎 = 0, 𝑏 = 1, 𝜂 = 0.9, 𝜆 = 0.1 and 𝑋0 =
18.011) 

 𝜓   X   J  

-9   -1638.001   17.218  

-7   -31.576   11.313  
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-5   -0.322   6.916  

-3   -0.150   6.088  

-1   -3.037   7.368  

1  19.007   8.852  

3  93.596   11.587  

5  84.931   12.076  

7  74991.214   24.612  

9 
3.524 × 106 37.090 

   

Furthermore, using the available data, the numerical and analytical solution to the 

asset-liability management problem was presented. Using the net worth of the year 2007 to 

2016 were to study the behaviour of the optimal control in each year and provide a control 

policy to the problem. 

Let 𝜓𝑂 be the optimal control which implies the rate of capital asset such that the 

expected present value of the utility of assets, and 𝜓𝐴 be the actual control which is obtained 

from the given ratio of capital asset and net worth. 

The optimal control 𝜓𝑂 for each year was derived analytically using the equation of 

optimality proposed in [19] for uncertain optimal control problem, where 

 

 𝜓𝑂 =
(𝜇+𝑗+𝑔+𝜔−ℎ)𝜆−𝜂

(1−𝜆)(𝜅+𝛽−𝜔)
 

and the actual control is  

𝜓𝐴 =
𝐴(𝑡)

𝑋(𝑡)
. 

 
Table  4.6: Results on performance of Capital Asset 

 Year   𝜓𝐴   𝜓𝑂   𝜓𝐴 - 𝜓𝑂  

2007  -2.22   -4.09   1.87  

2008  -4.24   -5.88   1.64  

2009  -3.84   -5.09   1.25  

2010  2.80   0.67   2.13  

2011  3.98   1.42   2.56  

2012  3.89   1.22   2.67  

2013  8.63   5.59   3.04  

2014  4.76   2.01   2.75  

2015  12.09   7.88   4.21  

2016  4.62   0.74   3.88  

  

  The warning signal will be based on the difference between the actual liability ratio 

𝜏𝐴 and the optimal liability ratio 𝜏𝑂.  

 

 

 
 

 

 

 

 

 

Table  4.7: Warning signal  

 Year   𝜏𝐴   𝜏𝑂   𝜏𝐴 - 𝜏𝑂  

2007  -3.22   -5.09   0.87  
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2008  -5.24   -6.88   0.64  

2009  -4.84   -6.09   0.25  

2010  1.80   -0.33  1.13  

2011  2.98   0.42   1.56  

2012  2.89   0.22   2.67  

2013  7.63   4.59   2.04  

2014  3.76   1.01   1.75  

2015  11.09   6.88   3.21  

2016  3.62   -0.26   2.88  

 

4.2  Optimal U, 𝝀 and 𝜼 

 By hyperbolic absolute risk aversion utility function,  

𝑈(𝐴) = (

1

𝜆
𝐴𝜆 , 0 < 𝜆 < 1

lnA, 𝜆 = 0
 

 
𝑑𝑈

𝑑𝜆
= 0 

 

−
1

𝜆2
𝐴𝜆 +

1

𝜆
𝐴𝜆ln𝐴 = 0 

 
1

𝜆
= ln𝐴 

 

𝜆 =
1

ln𝐴
 

Hence, the optimal 𝜆 is 𝜆∗ =
1

ln𝐴
. 

Similarly, optimal 𝑈 is 𝑈∗ where  

𝑈∗ =
1

𝜆∗
𝐴𝜆∗

 

 

= (ln𝐴)𝐴
1

ln𝐴 

From Table 4.2, Let 𝐴1 = 15.396 and 𝐴2 = 85.737 where 𝜆 = 𝜆1 and 𝐴 = 𝐴1. 

This implies  

𝜆1 =
1

ln𝐴1
= 0.366 

Let 𝑈 = 𝑈1  

𝑈1 = (ln𝐴1)𝐴1

1
ln𝐴1 = 7.432 

and let 𝜆 = 𝜆2, 𝐴 = 𝐴2  

𝜆2 =
1

ln𝐴2
= 0.225 

 

𝑈2 = (ln𝐴2)𝐴1

1
ln𝐴2 = 12.100 

Therefore, 𝜆2 ≡ 𝜆∗ = 0.225 and 𝑈2 ≡ 𝑈∗ = 12.100 

Also, from equation (3.1)  
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𝐽 = max𝐸𝐶 [ ∫

 
𝑡𝑓

𝑡0

𝑒−𝜂𝑡𝑈(𝐴(𝑡))𝑑𝑡] 

 

= max𝑈(𝐴)max ∫
1

0

𝑒−𝜂𝑡𝑑𝑡 

 

= 𝑈∗max
1

𝜂
(1 − 𝑒−𝜂) =

1

𝜂
𝑈∗ 

Given in Table 4.1 is the net present value 𝐽 as 
𝐴

𝜂+1
 This implies  

𝐴2

𝜂 + 1
=

𝑈∗

𝜂
 

Thus,  

𝜂∗ =
𝑈∗

𝐴2 − 𝑈∗
 

 

⇒ 𝜂∗ = 0.164 
Therefore, using the calculated optimal values, the following results are obtained. 

 
Table  4.8: Numerical result of Expected present value of utility of asset 𝐽(𝜓)𝛼 with different 𝛼-paths    

 𝛼   𝐽(𝜓)𝛼  

10−6                              1.152 × 106  

.1   25619.235  

.24   6056.883  

.38   448.529  

.52   429.982  

.64   3372.794  

.8   15826.851  

.999999                              1.273 × 106  

5. CONCLUSION 

Based on uncertainty theory, an optimal control model of capital asset was formulated by 

adapting the expected value operator to quantify the objective rewards in the model. 

Furthermore, the model was solved by using some optimality criteria to derive the optimal 

values of some input factors, thus applied to a real life problem. In future work, the objective 

of the model may be viewed from the perspective of stakeholders or regulators other than that 

of the investors. 
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