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Abstract: In this paper we develop a concept of data-driven control of distributed storage systems
digital twin. The design of the digital twin is supported by an optimal control strategy created
by Reinforcement Learning technique. In the proposed approach we consider a combination
of a trained neural network that tunes the parameters of a discrete event-driven storage system
simulator to gain the best resemblance to the actual system. The proposed method has several
benefits compared to conventional approaches providing trade-offs between the simplicity of
customization, the ability to infer nontrivial patterns from the real system represented by the
simulation model and interpretable behavior. We consider different optimization metrics and
demonstrate the viability of the approach using a toy training system until physical system
becomes available.

Keywords: Storage area network, digital twin, simulation, machine learning, reinforcement
learning

1. INTRODUCTION

Digital twins [1, 2] are used to simulate a behavior of complex systems. The distributed
storage systems are built of multiple components, many of which have measurable parameters
altogether providing valuable diagnostic information. The task of storage system simulation
converges to building its digital twin with a highly accurate description of components
behavior and its interaction. Such approach allows for prediction of the components failure
and studying the failure outcomes.

In this paper we consider the problem of building a credible digital twin of the distributed
storage system on the assumption that we have a model-based simulator and data from the real
system. It is also assumed that the simulator has a set of parameters that can be changed during
the runtime thus affecting following simulation states. To solve this problem, we propose
an approach that combines conventional computer simulation with machine learning. The
first one is usually based on a mathematical model devised by an expert and the second one
infers dependencies from the observed data. The control over these parameters is delegated
to a neural network trained on real data using Reinforcement Learning (RL) techniques. In
the case of distributed storage systems the following use case scenario can be applied. The
real-time prediction of possible failures of the real system with the digital twin which is
continuously provided with information from the real system: load and environment variables
(temperature, pressure, etc.) collected from sensors.
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One of the limitations of the simulators based on domain knowledge is the rigidity of
the underlying mathematical model, resulting in a limited ability to reproduce unexpected
patterns that might be observed in real data. Such inability to imitate real system behavior
implies the necessity for a revision of the mathematical model over and over again. This
cycle of trial and error can take a lot of time and human resources. Besides, simulators
are usually ignorant of the appearance of new data, i.e. cannot adapt to newly observed
patterns in the data due to, for example, the degeneracy of some components or/and changes
in external conditions. On the other hand, simulation approaches in machine learning, for
instance, generative adversarial networks [3], require only data to reproduce behavior of the
real system. The indisputable advantage of the GAN approach is its simplicity. However at
least two significant problems are arising. Firstly, without any underlying model, it is hard
to interpret the neural network[4]. Secondly, it might be inaccurate in operating regions that
have not been presented in the dataset.

We can achieve a synergy between two inherently different methods by loosening
constraints on the simulator and delegating the control over parameters to the neural network.
In this case, the simplification of the simulator model provides more freedom for the neural
network, simultaneously regularizing it and making interpretation of the hybrid model much
more manageable than for the single neural network.

Our approach has following key differences in comparison with existing solutions:

1. a novel idea of recovery of the functional dependency of control parameters, instead of
point estimation;

2. a fusion of the discrete event simulator with the neural network;
3. the usage deep Reinforcement Learning for a such task;

In this paper, we test the viability of such an approach.

2. RELATED WORKS

The task of storage area network simulation has been approached in several publications.
The majority of works are focused on the discrete event simulation methods. The researches
CODES project uses a highly parallel simulation to explore the design of exascale storage
architectures and distributed data-intensive science facilities [5]. The general purpose
network simulator ns-3 [6] allows a detailed modelling of a storage system from the view
of interconnected nodes with different functionality. Another general approach to network-
like structure simulation is the OMNeT++ framework [7]. Another work presents a SANSim
tool [8], a simulation compliant with the fiber channel technology often used in contemporary
SAN architectures. More simulation methods descriptions and studies dedicated to SAN
system modelling can be found in [9, 10, 11, 12]. From this overview we can see that the
most popular approach to the storage area network modelling is the deterministic method
based on discrete event sequences. Below we going to discuss an extension to this method
by coupling it with the dynamic parameter tuning by means of a neural network trained with
real data sample.

Initially, the topic of simulation parameters optimization using Reinforcement Learning
was discussed in [13]. In this work, the discrete-valued parameters are optimized to construct
a matrix of optimal actions for each state. Our approach features a solution for real-valued
parameters with the usage of deep Reinforcement Learning which primarily became possible
due to advances in GPU computing technology. Our crucial difference from the mentioned
research is the derivation of parameter dynamics during the whole simulation cycle instead
of just optimal initial parameters.

Another way to find optimal parameters in the presence of real data is a validation of the
simulator for each set of parameters output[14, 15]. In this setup for each set of parameters
for simulated data and real data the hypothesis is constructed:
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H0 : model output is the same as system output

vs

H1 : model output is not the same as system output

The choice of an appropriate statistic for outputs comparison as well as the selection of a
statistical test depends on a particular problem. However, this methodology can only give an
estimation of a single parameter point.

3. SIMULATOR

3.1. Simulated system
TATLIN (Figure 3.1) is a PCIe-centric distributed storage system designed by the YADRO
Company [16]. It consists of hardware computational tools and a special software designed
for storing and transmitting large amounts of data.

Due to the unified access protocol(Hybrid Unified Storage), this system supports a wide
range of disk interfaces: NVMe/SAS SSD and SAS/NL-SAS/SATA HDD.

The platform consists of three major building blocks:

• The PCIe fabric controller is a PCI Express bus that provides interconnection between
storage controllers and storage media;
• The storage controllers, the computer servers that provide access to storage media to

end users;
• The drive enclosures generally known as JBODs (just a bunch of disks).

To ensure data integrity in TATLIN, the YADRO uses customizable data protection
technology based on Reed-Solomon codes with minimal redundancy instead of conventional
RAID. However, writing data on disks using this technology requires a lot of computational
resources and can take considerable amount of time. To meet this problem and reduce CPU
load the YADRO proposed a concept of hardware deduplication acceleration with non-
volatile cache (NVRAM) built into the storage controllers.

3.2. Description of the simulator
The GoTatlin framework (Figure 3.2) is designed to simulate the TATLIN distributed storage
system. It has been implemented using the Go programming language [17].

The storage system simulation is based on a discrete-event simulation model where the
system’s evolution in time is presented by a discrete sequence of changes in its state. Each
change in the system state occurs at a distinct point of time due to some triggering event.

3.3. Output data of the simulator
We construct a vector of features from the output of the simulator. The features are
summarized below.

• storage controllers features:
– traffic [GBs−1];
– load [%];

• storage media features:
– used space [GB];
– average read/write speed [GBs−1];

• general TATLIN features:
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Fig. 3.1. DSS TATLIN.

Fig. 3.2. GoTatlin architecture view.

– amount of data transferred in read/write mode [GB];
– number of read/write requests per unit of time [ms−1];
– read/write requests response time [ms];
– read/write requests processing time [ms];

3.4. Control parameters
A full list of the control parameters of the simulator is the following:

• storage media:
– read – read speed [GBs−1];
– write – write speed [GBs−1];

• drive enclosures:
– speed – computational power [GFLOPS];

• storage controllers:
– speed – computational power [GFLOPS];

• PCIe fabric controller:

Copyright c© 2018 ASSA. Adv Syst Sci Appl (2018)



TUNING DSS DIGITAL TWINS WITH RL 5

– speed – computational power [GFLOPS];
• physical network links:

– bandwidth [GBs−1];
– latency [ms−1].

As one might imagine, the real system should have much more parameters, which represent
the system’s behaviour (L1/L2 cache sizes, RAM parameters, etc.), than the simulated one
has. But we intentionally reduced the number of parameters implying that these variables
represent most ‘effectively’ the real system. On the one hand, changing those parameters
helps to relax rigidity of the simulator, and on the other hand, these effective parameters can’t
be derived from the physical system and should be calibrated by the algorithm explained in
the following chapter. In the rest of the paper, we control those effective parameters unless
stated otherwise.

4. CONTROL SYSTEM

The core part of the control system is a neural network which analyses the output of the
simulator at the time t and generates a new set of control parameters that will be used for
simulation until next moment of time t+ ∆t. ∆t is an external parameter of the simulator
fixed a priori.

It should be noted that ∆t is a hyper-parameter of the simulation control system and can be
chosen arbitrarily. We set ∆t to 3s a priori because in the real TATLIN we are expecting the
delay between successive log outputs to be approximately 1− 10s.

General outlines of the simulation and training pipelines are presented at the Figures 4.3a
and 4.3b respectively.

4.1. Reinforcement Learning
In Reinforcement Learning [18] the following terminology is commonly used:

• environment (st) is an observed system (in our case, the system is a simulator);
• state is a current status of the simulation represented by output data;
• goal is a desired state of the simulation;
• agent is a system that takes actions (at) in the environment and changes its state;
• reward (rt) is a scalar value that shows how close is our system’s state to the goal state.

In our case, goal state of the simulator is a state in which its output fully resembles the
real storage system’s output. We will discuss the construction of the reward function in more
details in Section 4.2.

The most common approach is to assume that the environment is modelled as a Markov
decision process. In this case our model can be described with 4-tuples (S,A, P (·, ·, R(·, ·))),
where

• S = {si}Ni=0 is a set of all possible states of the simulator;
• A = {ai}Ki=0 is a set of all possible actions of the agent;
• P (st+1|st, at) is a probability of transition from state st at time t to state st+1 at the next

moment of time t+ 1 under action at;
• r(st+1, st) = r(st, at) is a reward after transition from state st to state st+1;

The most successful approach that use markovian assumption about environment is the
so-called Q-learning [19] and its successor in deep learning domain Deep Q Network
(DQN) [20]. In DQN method the neural network generates probability distribution over all
possible actions in the current state of environment πθ(a|s) and the next action is sampled
from it (at ∼ πθ(s)).
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(a) Proposed Simulation Control System pipeline.

(b) The training pipeline.

Fig. 4.3. Simulation Control System training pipeline.

The maximization of agent rewards in all possible states of the system can be represented
as the maximization of the following objective:

L(πθ) = Es,a [r(s, a)] =

∫
S

r(s)

∫
A

πθ(s)dsda

In the case of neural networks, optimization can be easily performed with Monte-Carlo
evaluation of this mathematical expectation with following gradient descent and backward
propagation of errors:

∇θL(πθ) = Es,a [∇θπθ(s)r(s, a)]

However, this naive approach has an extremely slow convergence rate. This happens due
to a large number of control parameters in continuous real-valued space. To deal with this
problem we decided to use DDPG (Deep Deterministic Policy Gradients) [21], an algorithm
that was designed to tackle the continuous control problems. The authors of DDPG propose
to predict not just a distribution over all possible actions that agent can make but a specific
action. To endorse exploration of state-action space they suggest adding random noise
sampled from Ornstein–Uhlenbeck process. In our realization the Ornstein–Uhlenbeck noise
was sampled this way:

nt+1 = nt + θ(n0 − nt) + σN(0, σ),

where θ defines a momentum of regression toward the mean(n0),N(0, 1) is normal random
variable, σ is a variance of the process. The action predicted by the neural network is
consequently modified by addition of the noise:
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ât = at + nt.

This choice of the noise provides an adequate level of “curiosity” due to its random nature.
Furthermore, autocorrelation property of this process ensures smooth transitions of actions
thus making it more suitable for control tasks and additionally reducing variance during
training.

4.2. Metrics
We implemented various metrics to compare output data from different simulation runs:

• cosine similarity of spectra or wavelet spectra;
• mean square error;
• Kolmogorov distance (KD), Wasserstein distance (W), Cramér–von Mises distance

(CvM) between distributions of two sets of output parameters.

Our goal is to find a reward function that would be sensitive to differences in the control
parameters, but smooth and robust to small perturbations. These requirements are important
for the convergence of neural network training.

We tested metrics on simulated data with different fixed parameters. It was done without
complex analysis but with simple hand-selection based on plots of metric dependencies. We
propose following loss function that combines several metrics.

Numeric coefficients were chosen so that all values in loss function would have about the
same order of magnitude and similar contribution.

Rt =
|Sreft − Scontrolledt |

107
+
CvM(WV ref

1,...,t, V
controlled
1,...,t )

20
+
CvM(WQref

1,...,t, Q
controlled
1,...,t )

2
,

where

• St is a total occupied storage space at the time t.
Occupied storage space is a cumulative and robust characteristic of the system. One
drawback of this metric is that it accumulates simulation errors.
• V1,...,t is an empirical distribution function of transferred data amount in “write” mode

from t′ = 0 to t′ = t;
• Q1,...,t is an empirical distribution function of write requests response time from t′ = 0

to t′ = t;
These two metrics represent dynamical behavior of the system.

Then we can easily define reward function as a temporal difference between losses at
consequent moments of time, i.e.

rt = Rt−1 −Rt.

5. TRAINING

5.1. Experiments
For the moment, the data from the real system is not yet available for the optimization of
simulation. Due to this, the experiment is conducted in the following way: we take two
configurations of the system (two sets of initial control parameters), the first configuration
is assumed to be the target system that we want to be able to properly simulate the behavior
of. The second configuration is used for initialization of the neural network. We initialize
all layers randomly and for the last layer, which represents parameters of the simulator, we
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Fig. 5.4. Load parameters sampling areas. Loads for training set are sampled from red area, loads for validation
set are sampled from blue area. Black dots are sampled points.

zero the weights and set biases of layer to parameters from the second configuration. On the
assumption that in the real system the optimal parameters could be far away from the initial
parameters we deliberately set parameters of the second configuration to be very different
from the target system.

Also, we made one more simplification. Our configurations differ only in the following
sets of parameters: bandwidth of physical network links and the computational power of
storage controllers. These parameters have the highest impact on the behavior on the system
in comparison with other parameters like latency or computation power of drive enclosures.
Another reason for reduction of parameter space is an exponentially increasing complexity
of optimization problems. Overall, neural network generates 5 parameters: four parameters
account for computational power of four storage controllers and the fifth one accounts for
bandwidth(Figure 5.5a).

The system load is modelled as Poisson process with mean time between incoming
files equal τ̄ [s]. The file size is modelled with exponential distribution parameterized by
average file size s̄[Mb]. For tuning our algorithm we consider a finite set of possible load
configurations: L = S × T = {si}Ni=1 × {τj}Kj=1.

The loads for training Ltrain and loads for validation Ltest are sampled from uniform
distributions on a 2D-grid (Figure 5.4). It is important to note that Ltrain and Ltest
distributions do not overlap and this allows us to test generalization of our model on unseen
situations.

We chose quite simple architecture (Figures 5.5a and 5.5b), thus allowing us to avoid
over-fitting and speed-up training. The PyTorch [22] framework was used. At each epoch
of training the neural network is fed with data from 40 new and 40 old (experience replay)
runs of simulation. Fed data is time differences between the outputs of simulator(Section 3.3)
at the moment t+ ∆t and t. Optimization is done with Adam with learning rate set to 10−2

and all other parameters left as default. Evaluation on validation set of loads is done every 20
epochs.

5.2. Results
We judge our improvement in simulation by looking at difference in occupied storage
space (|Sreft − Scontrolledt |[B]). As can be noted, this metric is the first part of Rt

definition(Section 4.2). It was chosen for comparison mostly due to simplicity of
interpretability.
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(a) Actor architecture
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Data
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Fig. 5.5

The improvement of the metric on the training set of loads (Figure 5.6a) and validation set
of loads (Figure 5.6b) have a similar pattern. Taking this into account, two conclusions may
be derived:

• our agent (neural network) is able to tune the parameters of the simulation and make it
similar to the target system;
• the trained neural network is robust and capable of generalizing on unseen situations.

(a) (b)

Fig. 5.6. Averaged metric with confidence interval on training (left) and validation (right) set of loads. Lower is
better.

At Figure 5.7a and Figure 5.7b one can see metric(Rt) dependence from simulation time
and epoch number. As expected, the distance between the hybrid and target systems is
increasing while simulation time is growing, i.e. we are observing the disorder between two
processes. This disorder diminishes during training of neural network making system more
and more compliant.

6. CONCLUSION

We demonstrated the viability of our approach with a fusion of conventional simulation
techniques and RL-trained neural network on the problem of optimization of discrete event
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(a) (b)

Fig. 5.7. Contour plot of logarithm of the metric as a function of simulation time (vertical axis) and epoch
(horizontal axis) during training (left) and validation (right).

simulator of the distributed storage system. In this setup, a neural network is trained by the
Reinforcement Learning algorithm to find an optimal control strategy for parameters of the
simulator.

The hybrid simulator has a wide range of benefits in comparison with vanilla simulators:
simplified customization of the simulator; ability to infer patterns from data. And in contrast
with GANs, it has interpretable behavior and ability to generalize on partially unseen
scenarios.

Further research may cover such steps as:

• increase complexity of the system under control by adding more control parameters;
• assess the sensitivity of the agent to the choice of reward functions;
• build and validate the approach on a realistic multiparametric data sample.

7. ACKNOWLEDGEMENTS

The research was carried out with the financial support of the Ministry of Science and
Higher Education of Russian Federation within the framework of the Federal Target Program
“Research and Development in Priority Areas of the Development of the Scientific and
Technological Complex of Russia for 2014-2020”. Unique identifier – RFMEFI58117X0023,
agreement 14.581.21.0023 on 03.10.2017.

References

1. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018) Digital
twin-driven product design, manufacturing and service with big data. The
International Journal of Advanced Manufacturing Technology, 94, 3563–3576,
https://dx.doi.org/10.1007/s00170-017-0233-1.

2. Aaron Parrott, L. W. (2017) Industry 4.0 and the digital twin: Manufacturing meets its
match. p. 110.

3. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014) Generative Adversarial Networks. ArXiv e-prints.

4. Doshi-Velez, F. & Kim, B. (2017), Towards a rigorous science of interpretable machine
learning.

Copyright c© 2018 ASSA. Adv Syst Sci Appl (2018)



TUNING DSS DIGITAL TWINS WITH RL 11

5. Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C., & Ross, R. H. (2011) Codes :
Enabling co-design of multi-layer exascale storage architectures.

6. Riley, G. F. & Henderson, T. R. (2010) The ns-3 Network Simulator, 15–34. Springer
Berlin Heidelberg.

7. Varga, A. & Hornig, R. (2008) An overview of the omnet++ simulation environment.
In Proceedings of the 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems & Workshops, ICST, Brussels, Belgium,
Belgium, 60:1–60:10, Simutools ’08, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

8. Wang, C.-Y., Zhou, F., Zhu, Y.-L., Chong, C. T., Hou, B., & Xi, W.-Y.
(2003) Simulation of fibre channel storage area network using sansim. In The
11th IEEE International Conference on Networks, 2003. ICON2003., 349–354,
https://dx.doi.org/10.1109/ICON.2003.1266215.

9. Molero, X., Silla, F., Santonja, V., & Duato, J. (2000) Modeling and simulation of
storage area networks. In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, Washington,
DC, USA, 307–, MASCOTS ’00, IEEE Computer Society.

10. Molero, X., Silla, F., Santonja, V., & Duato, J. (2001) A tool for the design and
evaluation of fibre channel storage area networks. In Proceedings of the 34th Annual
Simulation Symposium (SS01), Washington, DC, USA, 133–, SS ’01, IEEE Computer
Society.

11. Perles, A., Molero, X., Marti, A., Santonja, V., & Serrano, J. J. (2001) Improving the
execution of groups of simulations on a cluster of workstations and its application to
storage area networks. In Proceedings. 34th Annual Simulation Symposium, 227–234,
https://dx.doi.org/10.1109/SIMSYM.2001.922136.

12. Muknahallipatna, S., Miles, J., Hamann, J., & Johnson, H. (2010) Large fabric
storage area networks: Fabric simulator development and preliminary performance
analysis. International Journal of Computers and Applications, 32, 167–180,
https://dx.doi.org/10.1080/1206212X.2010.11441973.

13. Paternina-Arboleda, C. D., Montoya-Torres, J. R., & Fabregas-
Ariza, A. (2008) Simulation-optimization using a reinforcement
learning approach. In 2008 Winter Simulation Conference, 1376–1383,
https://dx.doi.org/10.1109/WSC.2008.4736213.

14. Sargent, R. (2011) Verification and validation of simulation mod-
els. Engineering Management Review, IEEE, 37, 166 – 183,
https://dx.doi.org/10.1109/WSC.2010.5679166.

15. S. Carson II, J. (2002) Model verification and valida-
tion. Winter Simulation Conference Proceedings, 1, 52–58,
https://dx.doi.org/10.1109/WSC.2002.1172868.

16. YADRO (2017), TATLIN hybrid storage. https://yadro.com/products/
tatlin, [Online; accessed 29-October-2018].

17. Google (2012), Go programming language. https://golang.org, [Online;
accessed 29-October-2018].

18. Sutton, R. S. & Barto, A. G. (1998) Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1st edn.

19. Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8, 279–292,
https://dx.doi.org/10.1007/BF00992698.

20. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
& Riedmiller, M. A. (2013) Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602.

21. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014)
Deterministic policy gradient algorithms. In Proceedings of the 31st International

Copyright c© 2018 ASSA. Adv Syst Sci Appl (2018)



12 V. BELAVIN ET AL.

Conference on International Conference on Machine Learning - Volume 32, I–387–
I–395, ICML’14, JMLR.org.

22. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017) Automatic differentiation in pytorch.

Copyright c© 2018 ASSA. Adv Syst Sci Appl (2018)


