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Abstract: In this work, an identification approach of nonlinear systems is studied. Presently, the 

nonlinear system can be described by Wiener-Hammerstein model. This latter is composed of a 

nonlinearity surrounded by two linear blocks. The linear blocks can be nonparametric. The 

nonlinear element is allowed to be discontinuous, specifically it can be of hard element (e.g. 

Preload, Coulomb friction, Dead-zone). Roughly, it is very difficult to model these types of 

nonlinearities by orthogonal decompositions (e.g. polynomial). 

Keywords: Nonlinear systems, linear system, static and dynamic systems, control system, system 

identification, discontinuous nonlinearity, hard element. 

1. INTRODUCTION 

Nonlinear systems exist widely in industry and science applications [2,5-7,13], among which 

the Wiener-Hammerstein model (Fig. 1.1) is one of the most typical cases [1,3,9,15-16]. The 

Wiener-Hammerstein models consist of a nonlinear block surrounded by two linear elements 

(Fig.1.1). The identification problem have been paid considerable attention due to their 

benefits such as control [7,11-12]. The Wiener-Hammerstein like systems are used in a wide 

range of applications such as identification of skeletal muscle [1]. Note that, Wiener and 

Hammerstein nonlinear systems can be modeled by Wiener-Hammerstein systems.  

The solution of this problem identification can be dealt using several method. The 

available methods have been developed following three main approaches i.e. iterative 

nonlinear optimization procedures [19]; stochastic methods e.g. [3,21]; 

In [27], an approach based on the standard SVM (support vector machines) for regression 

was presented. The quite poor results obtained in that work highlighted some of the 

limitations of the method. In particular, only a NFIR (nonlinear finite impulse response) 

model structure was taken into account, which did not perform well since the considered 

system has a long impulse response. Another problem was given by the high computational 

time and memory usage, which made it difficult to work with a large amount of data. 

Several SVM-like approaches [18], based on the least squares SVM (LS-SVM), are 

characterized by a very high number of parameters. Many approaches use the BLA, or a 

similar correlation analysis, as a starting point for the algorithm (e.g. [24-26]). Then, the user 

does not have to take order decisions needed to parametrize the BLA (or the QBLA). 

In [23], a nonparametric approach to separate the front and back dynamics starting from 

the best linear approximation (BLA) is proposed. In [16], a recursive identification method 

of Wiener-Hammerstein system with internal noises is developed. In [17], a recursive least-

squares identification method of wiener-Hammerstein system is proposed. This approach is 

treated in the case where the system nonlinearity is dead-zone.   

Then, a wide multiplicity of approaches is currently under study. These contain 

parametric and non-parametric methods. There exist different class of non-parametric 
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solutions. Among these concepts the frequency modeling, for which control and output are 

relying using periodic signals [4,8,10,14,20,22]. Depending on the nature of the control (the 

input excitation) to the system, several estimators have been developed. 

In this paper, a solution based on analytical geometry (frequency study) is proposed. 

Presently, the linear elements are allowed to be nonparametric. The nonlinear block can be 

discontinuous or of hard nature. Examples of popular hard functions are shown by Figs. 1.2a-

b. For convenience, Fig. 1.2a illustrates Coulomb friction nonlinearity with dead-zone and  

Fig. 1.2b shows example of viscous friction function. A hard function is often known as 

being a nonlinearity having several discontinuities and it is an affine nonlinearity elsewhere 

[9,14]. 

On the other hand, the modeling of hard function using orthogonal polynomials 

decomposition often remains a challenge. It is very complicated to approximate these types 

of nonlinearities using any orthogonal basis approximation (e.g. polynomial decomposition). 

For convenience, Fig. 1.3 illustrates example of orthogonal polynomial decomposition of 

hard function. This example shows that remarkable modeling errors are thus induced 

especially around discontinuity points even though the troncature degree m is too big. 

Presently, the nonlinear element is allowed to be discontinuous and not necessarily affine 

function between two consecutive discontinuities. Except in a small interval where it is 

supposed to be parametric function (e.g. polynomial nonlinearity).  

Then, recall that the identification method is based only on control signal u(t) and 

observed output signal y(t) (i.e. all inner signals are not accessible). In this work, the linear 

blocks are not necessarily parametric. Accordingly, because of these last difficulties, it is not 

surprising to notice that they are very rare papers dealing the identification of Wiener-

Hammerstein models having hard function. 

 

 

Fig. 1.1. Wiener-Hammerstein model 

The paper is organized as follows: the identification problem is formulated in Section 2, 

which also introduces the problem of multiplicity of identification solutions; Section 3 is 

devoted to the determination of nonlinear system parameters (linear block and nonlinear 

element); the performances of the identification method are illustrated by simulation in 

Section 4. 
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Fig. 1.2a. Coulomb friction nonlinearity with dead-zone 
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Fig. 1.2b. Viscous friction function 
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Fig. 1.3. Decomposition of Hard NL with series of polynomial basis 

2. PROBLEM FORMULATION 

Presently, the problem of determination of nonlinear system parameters is discussed. The 

considered nonlinear system is structured by Wiener-Hammerstein model (Fig. 1.1). Let Gi(s) 

and Go(s) denote the transfer function of linear blocks. The associated impulse responses (or 

the inverse Laplace transforms) are respectively denoted  1 )( ()i ig L G st   and 

 1 )( ()o og L G st  . 

The control signal ( )u t  and the inner signal v(t) are thus related by the following relation: 

( ) ( )* ( )
i

v t g t u t       (2.1) 

where the notation “ * ” designates the convolution product. Then, the inner signals v(t) and 

w(t) undergo the following equation: 

   ( ) ( ) ( )* ( )iw t f v t f g t u t      (2.2) 

As far as that goes, the inner signal w(t) and the undisturbed output x(t) are related as 

follows: 

( ) ( )* ( )
o

x t g t w t       (2.3) 

Finally, it follows from (2.3) and Fig. 1.1 that, the system output can be expressed as: 

 

( ) ( )* ( ) ( )

      ( )* ( ) ( )

o

o

y t g t w t t

g t f v t t





 

 
       (2.4) 

where the extra input ( )t  accounts for measurement noise and other modelling effects. 

On the other hand, note that this identification problem does not have a unique solution 

[6,12]. Indeed, if the triplet  ( ), ( ), ( )i oG s f v G s  is solution of this Wiener-Hammerstein 
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identification problem, then any set of form 

    ( ) ,  ( / ) / ,  ( ) ;   0 and 0i i i o o o i ok G s f v k k k G s for k k   is also solution of this problem (by 

distributing nonzero constants between the blocks of system).  

In this respect, the question that arises is how to choose a solution to this problem? 

The answer to this will be dealt with in the next section. 

The considered Wiener-Hammerstein nonlinear system is completed by the following 

assumptions: 

 

Assumptions 2.1:  

 The nonlinear element is hard function having multiple discontinuities. Except in a 

small interval where it is supposed to be parametric or polynomial function of degree 

increased by a finite integer n. 

 The linear elements have a nonzero static gains, i.e. (0) 0iG   and (0) 0oG  .  

 The extra input ( )t  is supposed to be zero-mean ergodic and uncorrelated with the 

control input u(t).  □ 

 

Except of these assumptions, the system is arbitrary. In particular, the nonlinear element is 

allowed to be discontinuous and it is not necessarily an affine function between two 

consecutive discontinuities. Then, the linear elements are nonparametric. 

3. SYSTEM PARAMETERS ESTIMATION 

3.1. Nonlinear element estimation 

The goal presently is to develop a solution allowing to give the estimate of a set of points 

belonging to nonlinear function f(.). The question: from the plurality problem discussed in 

section 2, what is the system to be estimate? 

A key idea is to get benefit from this model plurality to make the identification problem 

more tractable. In this respect, the following selection of the free scalars ( , )i ok k  will prove 

to be judicious: 

1

(0)i
i

k
G

   and  
1

(0)o
o

k
G

      (3.1) 

Without loss of generality, it is readily follows from (3.1) and model plurality that, the 

linear elements of system to be determined check the following property: 

(0) (0) 1i oG G        (3.2) 

On the other hand, let excite the system by a constant value: 

1( )u t U ,    0t T      (3.3) 

where T is more superior to the system rise time rt . Then, it follows from (2.1), (3.2) and 

(3.3) that, the inner signal v(t) boils down (in steady state) to: 

1( )v t U        (3.4) 

One immediately gets from (2.2) and (3.4) that (after transient regime): 

 1( )w t f U        (3.5) 

Accordingly, in view of (2.3), (3.2) and (3.5), it follows that x(t) is written as follows 

(after transient regime): 
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 11( )x t X f U        (3.6) 

Then, it is readily seen from (2.4), (3.2) and (3.6) that the output y(t) undergoes (after 

transient regime) the following expressions: 

 1( ) ( )y t f U t        (3.7) 

At this point, it is worth emphasizing that, the signal y(t) is constant up to noise. 

Furthermore, it readily seen (in steady state) that: 

     1 1 1 1, , , ( )u x U X U f U      (3.8) 

is a point belonging to the nonlinearity f(.). One difficulty with the considered identification 

problem is that, the output of the system y(t) is infected by the disturbance ( )t  whose 

stochastic law is not known. Then, it follows from the assumption on the noise ( )t , just as 

suggested in [6,12] the following estimator for 1( )f U  is proposed: 

1 1

1ˆ ˆ( ) ( )
r

r

T

t t

f U X y t
T t



 
       (3.9) 

Indeed, one has from (3.7) and (3.9) that: 

 11

1ˆ ( ) ( )
r

r

T

t t

Uf U f t
T t




 
      (3.10) 

Bearing in mind that, the noise ( )t  is zero-mean ergodic stochastic sequence, the last 

term in (3.10) converges (with probability 1) to zero. This implies that: 

 11
ˆ ( )

T
Uf U f


     w.p.1     (3.11) 

This result shows that, an accurate estimate of a point belonging to the function f(.) can 

be obtained. Accordingly, the estimate of set of points belonging to f(.) can be achieved 

using the same procedure, i.e. applying the control (input) sequence: 

( ) ku t U ,  ( 1)   t k T kT 
    for  1k N    (3.12) 

Then, ˆ( )kf U  ( 1k N ) can be obtained using the estimator (3.9): 

( 1)

1ˆ ( ) ( )
k

r
r

kT

t k T t

f U y t
T t

  


    for  1k N    (3.13) 

 

Remark 3.1:  

Consider the nonlinear system (Wiener-Hammerstein) described by (2.1)-(2.4). Then, the 

system nonlinearity estimator, given by (3.9), enjoys the consistency property for any value 

.kU  Specifically, one has the following result: 

 ˆ ( ) kk
T

Uf U f

     w.p.1     (3.14) 

The proof of this can be found by combining (3.9)-(3.10) and the property of ( )t  (zero-

mean ergodic stochastic).  □ 
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Remark 3.2:  

 The identification method can be easily applied in the case where f(.) is parametric 

(e.g. polynomial function of degree n). Then, a number of points 1N n   (arbitrarily 

chosen by the user) is largely sufficient to determine the nonlinearity over the entire 

working range. 

 In the case where f(.) is hard element, it is thus not necessarily a parametric function 

and can be discontinuous. Furthermore, in a small interval (e.g. between two 

consecutive discontinuities), f(.) is supposed to be parametric or polynomial function 

of degree increased by an integer n. Then, using the set of estimated points 

  ˆ, ( ) 1;
k k

U f U k N , choose a candidate interval and verify if the nonlinear 

element can be decomposed with orthogonal polynomials approximation. To this end, 

we can excite the system by other inputs in this interval. Then, find out if we can 

approximate the set of points  ˆ, ( )
k k

U f U  with a polynomial function of degree n. 

 The last statement can be checked using a sine control in the chosen interval. 

Accordingly, by observing the spectrum of the output signal if it does not contain 

harmonics of higher rank than n. For further information, please see the following 

subsection « The linear blocks determination ». In this interval, the output of 

nonlinear block can thus be expressed as: 

0

( ) ( )( ) k
k

n

k

w t c vf v t


       (3.15) 

where  0 ...
T

nC c c  is the parameters vector corresponding to the nonlinear 

element.□ 

3.2. The linear blocks determination 

Presently, the aim is to present an identification approach permitting to provide the estimate 

of linear blocks parameters. For convenience, the nonlinear system (2.1)-(2.4) is excited by 

the following control signal: 

 ( ) cos( )u t U t        (3.16) 

where the parameter   is adjusted such that u(t) belongs to the chosen interval using remark 

3.2 for any small amplitude U. This result can be practically depicted by observing the 

spectrum of the output signal. Let ( )i 
 and ( )o 

 designate the phases (argument) of 

linear elements ( )
i

G j  and ( )
o

G j , for any frequency  , respectively. Then, it readily 

follows from (2.1), (3.2) and (3.16) that, the inner signal v(t) (in the steady state) is given by: 

 ( ) ( ) cos( ( ))
i i

v t U G j t           (3.17) 

One has then using (3.15) and (3.17) that: 

 
0

( ) ( ) cos( ( ))
i i

kk

k

n

k

w t c U G j t    


      (3.18) 

Bearing in mind that: 

   
0

( ) cos( ( )) ( ) cos( ( ))
i i i i

k k lk l

l

k

l

G j t C G j t         




      (3.19) 

where: 
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 
!

! !

k

l

k
C

l k l



       (3.20) 

Then, it immediately follows from (3.18)-(3.20) that: 

 
0 0

( ) ( ) cos( ( ))
i i

k lk k l

k l

n k

k l

w t c U C G j t    


 

     (3.21) 

For convenience, the formulas of power identities of types 
2cos m   and 2 1cos m    can 

also be given analytically as: 

 2 2 2

2 2 1

1

0

1 1
cos cos 2( )

2 2

m m m

m pm m

m

p

C C m p 






     (3.22a) 

 2 1 2 1

0

1
cos cos (2 1 2 )

4

m m

pm

m

p

C m p  



      (3.22a) 

In view of (3.22a-b) and grouping the components having the same harmonics, (3.21) 

becomes (for any limited integer n): 

      0

1

( ) ( ) ( ) cos ( )
i i ik k

n

k

w t A G j A G j k t     


     (3.23) 

where the unknown variables in the amplitude  ( )
ikA G j  ( 0 )k n  and the phases 

 ( )
ik    ( 1 )k n  are the parameters of linear element ( )

i
G j  (i.e. the modulus gain 

( )
i

G j  and the phase ( )
i

  ). Therefore, one immediately gets using (2.3), (3.2) and (3.23): 

 

    

0

1

( ) ( )

( ) ( ) cos ( ) ( )

i

i o i ok k

n

k

x t A G j

A G j G jk k t k



       


 

 
   (3.24) 

It readily seen that, the unknown parameters in the expression of undisturbed output 

signal are  ( ) , ( )
i i

G j    and   ( ) , ( ) ; 1
o o

G jk k k n    . In this respect, note that the 

inner signal x(t) is equivalent to sum of n sinusoidal signals and DC component. Specifically, 

having the spectrum of x(t), the equation (3.24) leads to a system of (2 1)n  equations  and 

(2 2)n  unknowns, i.e. more unknowns than equations. This problem can be overcome by 

repeating the same experiment using the input signal (3.19) having the frequency 2 , 

3 , …. 

The difficulty that arises is that, the signal x(t) is not accessible to measurement. 

Fortunately, an estimate of x(t) can be established using the fact that this latter is periodic of 

the same period 2 /T    of control signal u(t). This property suggests the following 

estimator: 

1

1
ˆ( ) ( )

L

p

x t y t pT
L 

    for  [0, )t T     (3.25a) 

ˆ ˆ( ) ( )x t kT x t    for any integer  k    (3.25b) 

where L is any integer preferably large. Indeed, one immediately gets from (2.4) and (3.25a-

b) that: 
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1 1

1

1 1
ˆ( ) ( ) ( )

1
      ( ) ( )

L L

p p

L

p

x t x t pT t pT
L L

x t t pT
L





 



   

  

 



   (3.26) 

The periodic stationarity of ( )t  means that  ( ) ( ( ))E t pT E t   , for any p and t.  

Then, the zero-mean ergodicity of ( )t  means that: 

1

1
( ) 0

L

L

p

t pT
L






        (3.27) 

This implies that (using (3.26)-(3.27)): 

ˆ( ) ( )
L

x t x t

        (3.28) 

4. SIMULATION 

Presently, the system (2.1)-(2.4) is characterized by the linear elements of transfer functions: 

0.1
( )

(0.4 )(0.1 )
i

G s
s s


 

     (4.1a) 

1
( )

(0.2 )(0.5 )
o

G s
s s


 

     (4.1b) 

The curve of nonlinear block (.)f , used in simulation, is shown by Fig. 4.1. The noise 

signal ( )t  is a sequence of random numbers, with zero-mean and standard deviation 

0.5  . 

In the first stage, we apply to the input of system the sequence plotted in Fig. 4.2. The 

collected system output is illustrated in Fig. 4.3a. Then, using the estimator (3.9) or (3.13), 

the estimate values ˆ( )kf U  ( 1k N ) are also given by Fig. 4.3a. For convenience, a zoom 

of these results is given by Fig. 4.3b. 
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Fig. 4.1. Shape of the function f(.) considered in simulation  
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Fig. 4.2. The applied control sequence 

Then, to compare the estimated and the true nonlinearities, Fig. 4.4 shows the set of 

points   ˆ, ( ) 1 16;
k k

U f U k   and the true function (.)f  (of rescaled nonlinear system using 

(3.1)-(3.2)). These results show that the estimated points   ˆ, ( ) 1 16;
k k

U f U k   are very 

close to their true values. 

It follows that the function does not seem to be of hard type in the interval  1 3 . In this 

respect, the system can be excited with other inputs within this interval and comparing the 

interpolation of these points with a polynomial of degree n. 
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Fig. 4.3a. The system output signal and the estimate of x(t) 
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Fig. 4.3b. Zoom of the signal y(t) and the estimate of x(t) 

In the second stage, we apply to the system input the sine signal (3.16) where   is chosen 

such that u(t) belongs to the interval  1 3 . Taking e.g. 2  , the resulting system output 

signal y(t) for an amplitude 1U   and a frequency 0.02 ( / )rd s   is illustrated by Fig. 4.5. 
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The measured signal y(t) is collected on a sufficiently large interval. Then, the collected 

sample is used to generate the undisturbed output ( )ˆ tx  using (3.25a-b). The obtained estimate 

is plotted in Fig. 4.6 over one period of time. 
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Fig. 4.4. Comparison between the true and estimated nonlinearities 

Accordingly, it readily follows from the results of first stage and using an orthogonal 

polynomial decomposition of degree 3n   that, the obtained expression of ˆ(.)f  within the 

interval  1 3  is given as: 

3 2ˆ( ) 0.003 +31.24 0.02 24.8f v v v v       (4.2a) 

While the expression of the true nonlinearity is as follows: 

2( ) 31.25 25f v v       (4.2b) 

Let us consider: 

3
ˆ 0.003c  ; 

2
ˆ 31.24c  ; 

1̂ 0.02c  ; 
0
ˆ 24.8c   ;   (4.3) 

denote the coefficients of the estimated nonlinearity. On the other hand, it readily follows 

from (3.18)-(3.23) and (4.2a) ( 1)U   that, the inner signal w(t) can be rewritten as: 

      0

3

1

( ) ( ) ( ) cos ( )
i i ik k

k

w t A G j A G j k t     


      (4.4a) 

where: 
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 

   

 

2

2

0 0 1 2 3 2 3

2

2

1 1 2 3

2

2 2 3

3

3 3
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2

( )
ˆ ˆ ˆ( ) 2 3 ( ) ;

4

1
ˆ ˆ( ) 3 ( ) ;

2

1
ˆ( ) ( ) ;

4

i

i

i

i i

i i

i i

G j
A G j c c c c c c

G j
A G j c c c G j

A G j c c G j

A G j c G j


    


   

  

 

     
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      

  
  

 



  (4.4b) 

and: 

     1 2 3( ) ( );   ( ) 2 ( );   ( ) 3 ( );
i i i i i i

                   (4.4c) 

Then, one immediately gets using (3.2), (3.24) and (4.4a-c): 
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  

  (4.5) 

where des parameters  ( )
ikA G j  ( 0 ... 3k  ) are given by (4.4b). Further, note that the 

inner signal ( )tx  is periodic of the same period of ( )tu  (i.e. 2 /T   ). Accordingly, ( )tx  

can be expanded in series Fourier, where its parameters (the amplitudes and arguments) can 

be easily generated using the estimate ( )ˆ tx . Then, it readily follows from (4.5) and ( )ˆ tx  that, 

7 equations are provided. Specifically, using the estimate of DC component 
0A , the value of 

harmonic amplitudes kA  ( 1... 3k  ), and the estimate of harmonic phases. 

Accordingly, it readily seen from (4.4b) and (4.5) that, the modulus gain ( )
i

G j  can be 

determined using the DC component of ˆ( )x t . Then, the modulus gains ( )
o

G jk , for 1... 3k  , 

can be immediately estimated using the amplitude of the first 3 harmonics (three unknowns 

and three equations). Furthermore, using the argument of the fundamental component and 

that of the first two harmonics, one has 4 unknowns (i.e. ( )
i

  , ( )
o

  , (2 )
o

  , and (3 )
o

  ) 

and 3 equations (see (4.5)). We have more unknowns than equations. The nonlinear system is 

thus excited with the sine input (3.16) with the frequencies 2  and 3 . It readily follows 

that, these experiments generate 9 equations (from the phases) involving 9 unknowns ( ( ),
i

   

(2 )
i

  , (3 )
i

  , ( )
o

  , (2 )
o

  , (3 )
o

  , (4 )
o

  , (6 )
o

   and (9 )
o

  ). Finally, an estimate of 

( )
i

l   and ( )
o

kl  , for 1... 3l   and 1... 3k  , can be obtained. 

 

0 100 200 300 400 500 600 700

0

50

100

150

200

250

Time (s)

y

True system output

 
Fig. 4.5. The system output y(t) 

Then, it follows from these three experiments that, for any frequency  , the estimate of 

modulus gains ( )
i

G jl  and ( )
o

G jkl  ( 1... 3l   and 1... 3k  ) can also be given.  

On the other hand, in the case where the linear elements are parametric, the coefficients 

of transfer functions (numerators and denominators) can easily be determined using these 

estimates [6,12]. 

Among the advantages of the proposed method, the estimate of the gains ( )
i

G jl  

( ( )
i

G jl  and ( )
i

l  ) and ( )
o

G jkl  ( ( )
o

G jkl  and ( )
o

kl  ), for 1... 3l   and 1... 3k  , can be 

obtained using only 3 experiments. Then, repeating this steps for  0.04 ( / )rd s   and 

0.06 ( / )rd s  , i.e.: Excite the system by the control (3.16) with these frequencies and 

estimate the corresponding ( )ˆ tx . This latter allows us to get the Fourier parameters. Finally, 

the gains ( )
i

G jl  and ( )
o

G jkl  ( 1... 3l   and 1... 3k  ) can easily be determined using (4.4b) 
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and (4.5). Table 4.1 gives the estimated numerical values. The obtained results show that the 

estimated parameter values are very close to their true values. 
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Fig. 4.6. The stimated signal ˆ( )x t  over one period of time 

Table 2.1. Estimate of linear elements and their true values 

( / )rd s
 

0.02 0.04 0.06 

 ( ) , ( )i iG j    
  (0.97, -0.25)   (0.92, -0.48)   (0.85, -0.69) 

 ( ) , ( )o oG j    
  (0.99, -0.14)   (0.98, -0.27)   (0.95, -0.41) 

 ( 2 ) , (2 )o oG j     
  (0.98, -0.27)   (0.91, -0.54)   (0.83, -0.77) 

 ( 3 ) , (3 )o oG j     
  (0.95, -0.41)   (0.83, -0.77)    (0.7, -1.08) 

 ˆ ˆ( ) , ( )i iG j    
  (0.98, -0.24)    (0.9, -0.46)   (0.87, -0.67) 

 ˆ ˆ( ) , ( )o oG j    
  (1.01, -0.15)   (0.96, -0.25)   (0.98, -0.39) 

 ˆ ˆ( 2 ) , (2 )o oG j   

 
  (0.96, -0.25)   (0.93, -0.57)   (0.80, -0.81) 

 ˆ ˆ( 3 ) , (3 )o oG j     
  (0.98, -0.39)   (0.80, -0.81)   (0.74, -1.04) 

5. CONCLUSION 

In this paper, an identification method of nonlinear systems is proposed. Presently, the 

nonlinear system can be described by Wiener-Hammerstein model. The nonlinear element is 

allowed to be discontinuous or of hard shape. It is interesting to point that, it is very 

complicate to decompose or approximate these types of nonlinearities using polynomial 

decomposition.  

The estimation of system parameters is done using two stage. Firstly, the nonlinear block 

is determined using a simple sequence of constant controls. In the second stage, the linear 

elements parameters are estimated using sine signal. 

The identification method also features the fact that the linear elements identification is 

made decoupled from the nonlinear element identification. 

To the author's knowledge very few previous studies have been dealt with discontinuous 

or hard nonlinearity and nonparametric linear elements.  
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