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Abstract: Chaotic systems are evidently very sensitive to slight perturbations in their algebraic 

structures and initial conditions, which can result in unpredictability of their future states. This 

characteristics has rendered them very useful in modelling and design of engineering and non-

engineering systems. Using the Burke-Shaw chaotic system as a reference template, a special 

case of a novel 4-D hyperchaotic system is proposed. The system consists of 10 terms and 9 

bounded parameters.  In this paper, after the realization of a mathematical model of the novel 

system, we designed an autonomous electronic circuit equivalent of the model and subsequently 

proposed an improved adaptive finite-time stabilizing controller which incorporates some 

augmented strength coefficients in the derived controller structures. These augmented 

coefficients greatly constrained transient overshoots and resulted in a faster convergence time for 

the controlled trajectories of the novel system. This novel system is suitable for application in the 

modelling and design of information security systems such as image encryption and multimedia 

security systems, due to its good bifurcation property. 

Keywords: chaotic analysis, adaptive finite-time stabilization, hyperchaos, Lyapunov stability. 

1. INTRODUCTION 

Chaos is a unique phenomenon that often occur in a class of dynamic systems that are 

sensitive to perturbation in their initial conditions or mathematical models, consequently 

resulting in unpredictability of their future states [1]. Chaos has been found to exists in 

natural and man-made systems, and its dynamics have been used in the modelling and 

studies of practical and hypothetical systems in communications engineering [2], medicines 

[3], robotics [4], thermodynamics [5], waste water treatment plant [6], electric power system 

[7], amongst others. However, for chaos to be of practical use, it must be controllable. 

Consequently, during the past decades since the seminal works of Ott, Grebogi and Yorke 

[8], extensive research on chaos control has resulted in the proposition of different methods 

in the literature and their applications by researchers in controlling and stabilizing chaotic 

dynamics such as active control [9], sliding mode control [10], fuzzy control [11] and 

adaptive hybrid control [12], amongst others. Classical stability concepts such as the 

Lyapunov stability, BIBO stability and asymptotic stability concepts [13], [14] do not take 

into consideration the time intervals of stabilization of systems. Rather, the main objective is 

the stabilization which can continue into infinite time. In recent years however, the concept 

of finite time stability and stabilization has gained wide attention due to its usefulness in 

time-critical system designs including secure communication systems, image and data 

encryption systems. A dynamic system is said to be finite-time stable (or synchronized), if 

given a bound on the initial conditions, its states does not exceed a certain threshold during a 

specified interval. Finite-time stability is essential to ensure that the trajectories of a targeted 

system does not overshoot a specified bound in order to avoid undesirable consequences 
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during applications. There is a distinction between finite time stability and Lyapunov 

stability. A system which is finite-time stable may be Lyapunov asymptotically stable, 

whereas a system that is Lyapunov asymptotically stable may not be finite-time stable, if 

during transient it uncontrolled dynamics exceeds a prescribed threshold of time [15]. Many 

works on finite time control have appeared in recent year  [16]–[18].   In some of the 

reference works listed under Section Four, however, the settling times are comparably large, 

even when the controllers featured the use of sign function. In the proposed adaptive 

controller in this paper,  we proposes a control structure that offers a faster rate of 

convergence of the controlled trajectories of a novel special case  of a hyperchaotic system 

[19], which was derived from the Burke – Shaw atmospheric model [20]. Certain 

characteristics distinguished the novel system from several others in the literature. These 

include its unique bifurcation properties where the plots of control parameters depict 

bifurcation diagrams with fewer periodic windows, thus making the system a good candidate 

for application in chaos-based cryptosystem modelling and design. The elegance of the 

algebraic structure makes it possible to further reduce the algebraic structure to consists of 

fewer parameters, yet would still exhibit hyperchaotic features with some degrees of novelty 

in its qualitative features. The novel system is also highly sensitive to slightest change in its 

initial conditions and system parameters. Thus, several attractors may be evolved through 

key sensitivity.     

1.1 Concepts and Preliminaries 

Throughout this paper, the following existing definitions and Lemmas are used in the 

analysis and synthesis of the improved finite-time controller design for stabilization. 

Consider a class of nonlinear systems given by  

                                          0 0( , ), ( ) (0)x f x t x t x x                                                       (1.1) 

Where 0( , ), ( ) nx f x t x t  is the system state and : n nx f     is a nonlinear 

function. Assume that the origin O is an equilibrium point, 0(0,0,0,0)  of (1). If there exist a 

constant 0T   where T may be influenced by the initial condition  such that lim ( ) 0,
t T

x t


  

lim ( ) 0,
t T

x t


   if t T  then the system (1) is finite-time stable. 

 

Definition 1.1 [15], [21]  

The origin of (1.1) is a finite-time stable equilibrium, if the origin is Lyapunov stable and 

there exist a function : nT   called the settling time function, such that for every 

0
nx  , the solution 0( , )x t x  of (1.1) is defined on 0 0 0[0, ( ), ( , ) [0, ( )]]nT x x t x t T x    and 

0

0
( )

lim ( , ) 0
t T x

x t x


 . 

Lemma 1.1 [22], [23]  

If there exist a continuous positive definite function  ( ) : n nV t  , such that ( )V t  is 

radially bounded (i.e. ( ( ))V x t   as ( )x t  ), and satisfies the following differential 

inequality: 

                                           0 0( ) ( ( )) , 0, , ( ) 0,qV t V t t T t V t                                  (1.2) 

Where 0   and 0 1q   are two positive numbers. It follows that for any 0t , ( )V t  satisfies 

the inequality: 

 

                                              1 1
0 0 0( ) ( ) (1 )( ),q qV t V t q t t t t T                              (1.3) 
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and ( ) 0,V t t T   . We conclude that the origin of (1.1) is globally stable in finite time  T  

and the settling time T is given by the relationship: 

                                       1
0 0

1
( )

(1 )

qT t V t
q

 


                                                           (1.4) 

Assumption 1 [24], [25]  

Assume 1 2, ,..., n
na a a   and 0 1   are all real numbers. Then the following inequality 

holds: 

                                1 2 1 2( ... ) ...
rr rr

n na a a a a a                                            (1.5)  

                                                                                             

Lemma 1.2 [25]  

For the dynamic system (1.1), if there exists a continuous differentiable function 

:[0, ) ,V D    class K  function (.)a  and (.)b , a function :[0, )k   , such that 

( ) 0k t   for almost all [0, ),t  a real number (0,1)  and an open neighbourhood M D of 

the origin, such that: 

 

                                             

( ,0) 0, [0, )

( ) ( , ) ( ), [0, ), ,

( , ) ( )( ( , )) , [0, ), ,

V t t

a x V t x b x t x M

V t x k t V t x t x M

  

    

    

                              (1.6)                                                                                                  

 

holds, then the equilibrium point ( ) 0x t   of the system (1.1) is uniformly finite-time stable 

with settling time function 0 0( , )T t x  satisfying 
1

1 0 0
0 0

( , )
( , ) [ ],( ),

1

V t x
T t x K K







 


where 

0

( ) ( )
t

t
K t k s ds  . If nM D  , then the equilibrium ( ) 0x t  of the system (1.1) is globally 

uniformly finite-time stable. 

2. MAIN RESULTS 

It is well known in practical system applications that system parameters are not always 

known in advance due to the uncertainties that inevitable arises during operations. As a result, 

practical controllers are designed with uncertainties in focus.   In this section, the aim is to 

design a finite-time adaptive stabilizing control laws that will stabilizing the unstable 

dynamics of the novel system and update the unknown parameters in a uniform finite time.  

2.1 Mathematical model of the novel system 

Consider a general structure of a novel 4D hyperchaotic system which is inspired by the 

Burke-Shaw atmospheric model template [19], 

                                   

1 1 1 2 2 3

2 3 1 3 4 2 5 4

3 6 1 2 7

4 8 1 9 2 10 3 11 4

( )x x x x

x x x x x

x x x

x x x x x

 

  

 

   

   


   


 
     

                                                (2.1) 

Where 1 11, , 0i i       are bounded parameter vectors and 1 2 4[ , ,..., ]x x x x  are the state 

variables. System (2.1) may be considered as a generic structure of a family of the novel 

hyperchaotic systems which can produce special cases that still exhibit hyperchaos, yet 

possessing qualitative and quantitative properties which are conditioned by nullifying one or 
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more system parameters, in addition to appropriate selection of system parameter values. In 

this paper, we nullified two terms 2 11 0   , resulting in a new 10 terms and 9 parameter 

system given by 

                                 

1 1 1 2

2 3 1 3 4 2 5 4

3 6 1 2 7

4 8 1 9 2 10 3

( )x x x

x x x x x

x x x

x x x x



  

 

  

  


   


 
    

                           (2.2) 

When 1 37, 3.1,   4 53.5, 0.95,   6 71, 13,   8 9 100.01, 3, 0.01     , system 

(2.2) exhibit hyperchaotic behaviour depicted in Fig. 1 (a) – (f) after 200s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. 2-D phase portraits of the novel hyperchaotic system 
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2.2 Qualitative and quantitative properties of the hyperchaotic system 

2.2.1 Dissipativity 

We can examine whether the system is dissipative or otherwise by applying the Liouville 

divergence theorem [26], [27]. Let the vector notation of the 4-D hyperchaotic system (2.2) 

be denoted by 

 

                       

1 1 1 21

2 3 1 3 4 2 5 42

3 3 6 1 2 7

4 4 8 1 9 2 10 3

( ) ( )( )

( )( )
( )

( ) ( )

( ) ( )

i
i

f x a x xf x

f x a x x a x a xf xdx
f x

f x f x a x xdt

f x f x a x a x a x



   
 

       
   
 

      

                        (2.3) 

Suppose   is a region in the phase space 4   with a smooth boundary and 

( ) tt  where t  is the flow of the system (2.3). If V is a hypervolume of the phase space 

at time 0t  , then by Liouville’s divergence theorem [28], 

                                                      1 2 3 4

( )
.

t

dV t
fdx dx dx dx

dt 

                                           (2.4)                                      

Where 
4

1

( )
. i

i i

df x
f

dx

   is the divergence of the vector field f  of the system (2.3).  Using the 

theorem, the rate of volume contraction is given by the Lie derivative [33]  

 

                                                
1

1,2,3...i

i i

dV
i

V dt


 


                                               (2.5) 

Where 1 1 2 2 3 3 4 4, , ,x x x x        are the state variables of the system (2.3). The 

divergence of the vector field f  on 
4

 can be obtained by using the relationship 

 

                                   31 2 4

1 2 3 4

( )( ) ( ) ( )
.

df xdf x df x df x
f

dx dx dx dx
                                            (2.6) 

By using (2.3), (2.4) and (2.6), the divergence is  

 

                                          1 4 1 4( )f                                                               (2.7)  

 

For 1 47, 3.5   ,  3.5f   .  Since the divergence is negative, it implies that the 

hyperchaotic system is dissipative. 

 

2.2.2   Equilibria and local stability 

Hyperchaotic systems are essentially nonlinear models, and are therefore linearized in order 

to study their local stability for different parameters. The stability is determined by the sign 

of the real part of the eigenvalues of the Jacobian matrix. The Jacobian matrix is the matrix 

of the partial derivatives of the right-hand side with respect to state variables where all 

derivatives are evaluated at the equilibrium point ex x  and is expressed by  
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1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

4 4 4 4

1 2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f x f x f x f x

x x x x

f x f x f x f x

x x x x
J x

f x f x f x f x

x x x x

f x f x f x f x

x x x x

    
 

   
 
    
 

    
    
 

    
    
 
     

                                                (2.8) 

 

When 0x  , the equilibrium is at the origin, i.e. 1 2 3 4( 0, 0, 0, 0)E x x x x    . The 

equilibrium point of (2.3) at any point 4x R   (other than the origin), that is, 
* * * *

1 2 3 4( 0, 0, 0, 0)E x x x x     is calculated by using the matrix (2.8). 

 

                             

1 1

* *
3 3 4 3 1 5

* *
6 2 6 1

8 9 10

0 0

( )
0 0

0

x x
J x

x x

 

   

 

  

  
 
  

  
 
    

                                                    (2.9) 

Analyzing (2.9), the equilibrium points are located at  

 

                                                   10( , , , )E B B AB CB DA    

                                             10( , , , )E B B AB CB DA                                               (2.10) 

                                                  

 Where 

                                                 

8 9

7 6

4 5

3 7 5 6 10

A

B

C

D

 

 

 

    

 







                                                       (2.11) 

To test for the type of stability associated with each equilibrium point, eq. (2.10) were 

computed as follows: 

                                       

3.61 3.61

3.61 3.61
,

1078 1078

12670.28 12696.88

E E 

   
   


    
   
   
    

                                   (2.12) 

Using E  and E  respectively in the matrix (2.9) gives an indication of the nature of stability 

of these equilibrium points i.e. 

                                    

7 7 0 0

3341.8 3.5 11.191 0.95
( )

3.61 3.61 0 0

0.01 3 0.01 0

J E

  
 
 
 
 
 
   

                               (2.13)                               

The eigenvalues of (2.13) are 1 2 3 40.000, 154.911, 150.886, 0.0251        , which implies 

that it is a saddle and unstable. Next, we have  

                                    

7 7 0 0

3341.8 3.5 11.191 0.95
( )

3.61 3.61 0 0

0.01 3 0.01 0

J E

  
 
 
 
 
   

                                    (2.14) 
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The eigenvalues of (2.14) are  1 2 3 40.000, 155.032, 151.000, 0.025        which implies it 

is a saddle and unstable. 

2.2.3     Lyapunov exponents and Kaplan-Yorke dimension 

The Lyapunov exponent measures qualitatively the rate of exponential divergence or 

convergence of nearby trajectories of the system in state space, while the Kaplan-Yorke 

dimension (Lyapunov dimension) gives a quantitative measure of this divergence. The 

Lyapunov exponents was calculated based on the Wolf algorithm [29], in conjunction with 

the procedure which implements the Gram-Schmidt ortho-normalization in the MATLAB 

environment. The numerically computed values are 1 2.216,LE  2 1.280,LE  3 0.000,LE  and 

4 6.997LE   . The system has two positive Lyapunov exponents, a null and a negative 

Lyapunov exponent (+, +, 0, -), which confirmed its hyperchaoticity. Moreover, 

1 2 3 4LE LE LE LE    and 1 2 3 4 0LE LE LE LE    , hence the novel system is dissipative. 

The Kaplan-Yorke dimension [30] is given by 

 

                                        
11

1
, 1,2,3

D

KY j
jD

D D LE j
LE 

                                             (2.15) 

Where D is the topological dimension of the attractor, and must satisfy 
1

0
D

j
j

LE


 . For 

regular chaos with three dimensions, the topological dimension is 2, while for hyperchaos, it 

is 3. By using the numerically generated values of Lyapunov exponents, the Kaplan-Yorke 

dimension is calculated as  

1 2 3

4

3 3.4996KY

LE LE LE
D

LE

 
    

 

2.2.4. Bifurcation diagrams 

Bifurcation diagram shows how the dynamics of a system changes with variation of control 

parameters. In this paper, we explored the parameter space to discover which parameters 

influence the dynamic characteristics of the system. Two parameters 1  and 3  influences 

the route to chaos. Fig. 2.2 depicts the bifurcation diagrams plotted by varying the two 

control parameters for the range 16.3 6.5   and 13.5 4.15  . 

 

 

 

 

 

 

 

 

Fig. 2.2. Bifurcation diagrams of control parameters 1 , 3  

3. FINITE-TIME ADAPTIVE STABILIZATION 

The objective of finite-time adaptive stabilization is to design an adaptive control law and 

parameter update laws such that the state and parameter update trajectories of the controlled 

system (2.16) converged in uniform finite time for any initial condition. Let the controlled 

form of system (2.3) be given as follows: 
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1 1 1 2 1

2 3 1 3 4 2 5 4 2

3 6 1 2 7 3

4 8 1 9 2 10 3 4

ˆ ( )

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

x x x u

x x x x x u

x x x u

x x x x u



  

 

  

   


    


  
     

                                                     (3.1) 

Where 1 3 10
ˆ ˆ ˆ,    are the unknown parameters to be estimated, , ( 1,2..4)

i ii x xu D A i    is 

the finite-time adaptive control functions associated with each coupled equation and 

comprises of 
ixD , the model equation-based derivative of the control functions and  

sgn( ) ,( 1,2..4)
i ix i u i iA x x x i

     , the augmented control functions and 
iu are the 

augmented controller strength coefficients. 

 

Lemma 3.1 

The unknown parameters of system (3.1) can be estimated if there exists parametric error 

functions ,( 1,3,...10)i i  , where : 

                                  

1 1 1 3 3 3 4 4 4

5 5 5 6 6 6 7 7 7

8 8 8 9 9 9 10 10 10

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, ,

        

        

        

     

     

     

                                  (3.2) 

1 3 10
ˆ ˆ ˆ,    are the unknown parameters to be estimated. Taking the derivatives of (3.2) 

yields the following time-varying functions: 

                                 
1 1 3 3 4 4 5 5 6 6

7 7 8 8 9 9 10 10

ˆ ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆ, , ,

         

       

         

       
                 (3.3)   

Remark 3.1 

Several works have featured the use of sign function in finite-time controller design due 

to its good tracking properties [18], [31] etc. In these references, the designed controllers 

exhibit good noise rejection and good convergence time than controllers that do not feature 

the signum variables. However, their convergence time are still appreciably large. In this 

present work therefore, we introduced coefficient terms called augmented controller strength 

coefficients and augmented parameter update strength coefficients respectively, in 

conjunction with signum variables to produces controller and parameter update structures 

that drastically cut down on the uniform convergence time of the dynamics of the controlled 

system. 

 

3.1 The proposed controller and parameter update structures 

The controlled hyperchaotic system (3.1) can be finite-time adaptive stabilized and the 

unknown parameters can be accurately estimated in uniform finite time, if the following 

adaptive stabilizing control laws and parameter update laws are applied: 
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3 1 2 3 3

2
4 2 4

5

ˆ ( ) sgn( )

ˆ ˆ ˆ sgn( )

ˆ ˆ sgn( )
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ˆ

ˆ

ˆ

u

u

u

u

u x x x x x

u x x x x x x x

u x x x x x x

u x x x x x x

x x x

x x x
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







 

   

 

   

  
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x x
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  
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  

















 


  


  

  

  

  


                      (3.4) 

Where 
1

 are the augmented parameter update strength coefficients (
i

 has the same 

definition with 
iu ) and 0 1   is a non-negative index.  

Proof. Firstly, by using (3.2) and (3.4) in (3.1), the controlled system (3.1) becomes 

                                     

1

2

3

4

1 1 1 2 1 1 1

2 3 1 3 4 2 5 4 2 2 2

3 6 1 2 7 3 3 3

4 8 1 9 2 10 3 4 4 4

( ) sgn( )

sgn( )

sgn( )

sgn( )

u

u

u

u

x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x x









 

   

 

   

    



    

     

     


                        (3.5)         

Secondly, based on Lemma 1.2, a Lyapunov function candidate is given by   

    

4 10
2 2

1 1

2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 1 3 4 5 6 7 8 9 10

1 1
( )

2 2

1 1
( ) ( )

2 2

x p i i
i i

V t V V x

x x x x



        

 

    

            

                 (3.6)    

The partial derivative of (3.6) produces 

                           
1 1 2 2 3 3 4 4 1 1 3 3 4 4 5 5

6 6 7 7 8 8 9 9 10 10

( ) ...

...

V t x x x x x x x x        

         

        

    
             (3.7)        

                                                                                                                                                                       

By making use of (3.3), (3.4) and (3.5) in (3.7), the derivative becomes 

        

1

2 3

4

1 1 1 2 1 1 1 2 3 1 3 4 2 5 4

2 2 2 3 6 1 2 7 3 3 3

4 8 1 9 2 10 3 4 4 4 1 1 3 3

4 4 5 5

( ) ( ( ) sgn( ) ) ( ...

... sgn( ) ) ( sgn( ) ) ...

ˆ ˆ... ( sgn( ) ) ...

ˆ ˆ...

u

u u

u

V t x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x

 

   
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       

       

       

  6 6 7 7 8 8 9 9 10 10
ˆ ˆ ˆ ˆ ˆ             

                (3.8)    



130            E. A. UMOH, O. N. ILOANUSI 

Copyright ©2018 ASSA.                                                                                    Adv. in Systems Science and Appl. (2018) 

                                                                                                                                                                    

Using the following convention 

                            
1

sgn( ) ; sgn( )

sgn( )

i i i
i i i i

i i

i i i i

x x x
x x x x

x x

x x x x



 

  



                                              (3.9) 

Eq. (3.8) is then transformed to 

1 2 3 4

1 1 1 1
1 2 3 4 1 2 3 4

2
1 1 1 2 3 1 2 3 4 2 5 2 4 6 1 2 3 7 3 8 1 4 9 2 4

10 3 4 1 1 3 3 4 4 5 5 6 6 7 7 8 8 9 9

( ) ...

... ( ) ...

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ...

u u u uV t x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x

         

      

                 

            

         

          10 10̂

                              

                                                                                                                                 (3.10) 

And by using (3.9) in (3.10), the derivative reduces to 

1 2 3 4 1

3 4 5 6 7 8 9 10

1 1 1 1
1 2 3 4 1 2 3 4 1

3 4 5 6 7 8 9 10

...
( ) 0

...

u u u ux x x x x x x x
V t

     


       

     

               

             
  
        
 

                                              

                                                                                                                                 (3.11) 

Eq. (3.11) is negative definite in 17 , thus Lemma 1.2 is satisfied, and the equilibrium point 

( ) 0x t  is uniformly finite-time stable about the origin because ( ) 0V t   and also implies 

that  (0) 0V  and lim 0
t T

x


 . Suppose 
1 2 3 4 Cu u u u u         (where 

Cu is known as the 

controller strength coefficient) and 
1 3 4 10

...
P              (where 

Pu is known as the 

parameter update coefficient), then by setting 
C Pu u G    , ( G  is known as the global 

strength coefficient), (3.11) reduces to: 
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( ) 0i G i G i
i i i

V t x x
   


  

                                             (3.12)                                    

Using Assumption 1, it can be deducted that  

 

                                

14 4
1 12 2

1 1

( )G i i
i i

x x x


 




 

 

                                                        (3.13)                                                                                                                                       

Substituting (3.3) in (3.12) yields 

                                    
4 11

11

1 1

( ) i G i
i i

V t x x
  


 

                                                     (3.14)                                                                                                                        

By virtue of Assumption 1, it is easy to see that 

 

                         

1
1 2

2

21 1 1 1

2 2 2 2
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2 ( ) 2
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                                     (3.15)                                                         

Setting 

1

2
1

2 ,
2

p









  , reduces (3.15) to  
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                                                     ( ) pV t V                                                                     (3.16) 

Also, by substituting  and p into (1.4), we have  

                                          
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12
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20 0 01
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                          (3.17) 

Where 
22 2 2

0( ) (0) (0) (0) (0)x p i iV t V V x      

Remark 3.2 

Eq (3.17) implies that the finite-time stabilization of the controlled system (3.1) depends 

on the initial condition  and rational number p , while the uniform convergence time is 

either increasing or decreasing as the parameter p is varied as can be observed in the works 

of [18], [32] . In our case however, due to the complexity introduced by the global strength 

coefficient G , it was observed that the bounded value of G , 
min max

[ , ]G G G    has a strong 

constraining effect on trajectory overshoot and also has domino effects on the uniform 

convergence time. Accordingly, the following cases were observed when min max     and 

min maxG G G    . 

a. As 
minG G  and min  , the convergence rate was relatively slower and the uniform 

convergence time is an increasing function 

b. As 
maxG G   and max  , the convergence rate was relatively faster and the uniform 

convergence time is a decreasing function. 

4. NUMERICAL SIMULATION RESULTS 

The controlled hyperchaotic system is simulated using MATLAB for the following 

parameters 1 37, 3.1   4 5 6 73.5, 0.95, 1, 13       , 8 9 100.01, 3, 0.01     , with 

initial conditions set as 1 2 3 4[ (0), (0), (0), (0)] [4,2, 4, 2]x x x x     . The following results were 

obtained for two different cases. 

 

Case 1: 
minmin 0.8, 1000G    
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Fig.4.1. Stabilized trajectories of the 

controlled system 
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Fig.4.2. Uniformly converged dynamics 

of the adaptive controller 
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Case 2: 
maxmax 0.99, 8000G    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 4.1 

The rate of asymptotic convergence of the system dynamics in Case 1 is slower than those in 

Case 2 due to the effects of the global strength coefficients.  This is in consonance with the 

Remark 3.2 on the effects of the global strength coefficient. It can be observed that the 

larger G , the faster the rate of uniform convergence of the system’s trajectories.  When 

compared to controllers that featured in related works listed in Table I, it is obvious that the 

designed adaptive controller provides a faster convergence time than those in these works. 
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Fig.4.3 (b). Estimated parameters of the 

controlled system 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-10

-5

0

5

10

t(s)

E
s
ti
m

a
te

d
 p

a
r
a

m
e

te
r
s

 

 

a1 a3 a4 a5 a6

Fig.4.3 (a). Estimated parameters of the 

controlled system 

0 0.5 1 1.5

x 10
-3

-4

-2

0

2

4

t(s)

S
ta

b
il
iz

e
d

 t
r
a

je
c
to

r
ie

s

 

 

x1 x2 x3 x4

Fig.4.4. Stabilized trajectories of the 

controlled system 
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Fig.4.5. Uniformly converged dynamics of the 

adaptive controller 
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Fig.4.6 (a). Estimated parameters of the 

controlled system 
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4.1.  Comparison with related works 

The rate of uniform convergence of system dynamics using the proposed finite-time adaptive 

controller was compared with related works in the literature. The different rates reported in 

the papers are given in Table I. 

 

                                    Table I. Comparison with related works 

Related 

works 

Approximated convergence 

time of error dynamic systems 

Proposed work  0.005s 

Ref [33]   0.2s 

Ref [34]   0.3s 

Ref [35]   0.5s 

Ref [36]   1.0s 

Ref [37] >1.0s 

Ref [38] >1.0s 

Ref [31]   2.0s 

Ref [39] >1.0s 

Ref [40] >2.0s 

Ref [41]   8.0s 

 

5. CONCLUSION 

In this paper, we proposed an improved finite-time adaptive controller with a fast rate of 

uniform convergence of system trajectories of hyperchaotic systems. We examined the 

performance of the controller on a novel special case of a hyperchaotic system which was 

originally evolved by adding feedback control to the classical Burke-Shaw chaotic system 

that models some atmospheric phenomena. Numerically obtained results shows that the 

proposed control structure offered better rate of convergence of the controlled system 

dynamics when compared to related works in the literature. Overall, these systems can 

contribute to improve the design characteristics of chaos-based cryptosystems. 
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