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Abstract: Chaotic systems are evidently very sensitive to slight perturbations in their algebraic
structures and initial conditions, which can result in unpredictability of their future states. This
characteristics has reaeed them very useful in modelling and design of engineering and non
engineering systems. Using the Bu&baw chaotic system as a reference template, a special
case of a novel-BD hyperchaotic system is proposed. The system consists of 10 terms and 9
bourded parameters. In this paper, after the realization of a mathematical model of the novel
system, we designed an autonomous electronic circuit equivalent of the model and subsequently
proposed animproved adaptive finitéime stabilizing controllerwhich incorporates some
augmented strength coefficients in the derived controller structures. These augmented
coefficients greatly constrained transient overshoots and resulted in a faster convergence time for
the controlled trajectories of the novel systemsTiovel system is suitable for application in the
modelling and design of information security systems such as image encryption and multimedia
security systems, due to its good bifurcation property
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1.INTRODUCTION

Chaos is a unique phenomenon that often occur in a class of dynamic systems that are
sensitive to perturbation in their initial conditions or mathematical models, consequently
resulting in unpredictabiy of their future state§l]. Chaos has been found to exists in
natural and mamade systems, and its dynamics have been used in the modelling and
studies of practical and hypothetical systems in communications engingrimgedicines

[3], robotics[4], thermodynamic§5], waste water treatment plgB{, electric power system

[7], amongst others. However, forads to be of practical use, it must be controllable.
Consequently, during the past decades since the seminal works of Ott, Grebogi and Yorke
[8], extensive research on chaos control has resulted in the proposition of different methods
in the literature and their applicatioby researchers controlling and stabilizing chaotic
dynamics such as active canitf{9], sliding mode contro[10], fuzzy control[11] and
adaptive hybrid contro[12], amongst othersClassical staility concepts such as the
Lyapunov stability, BIBO stability and asymptotic stability concdf¥, [14] do not take

into consideration the time im&als of stabilization of systems. Rather, the main objective is
the stabilization which can continue into infinite time. In recent years however, the concept
of finite time stability and stabilizatiohas gained wide attention due to its usefulness in
time-critical system designs including secure communication systems, image and data
encryption systems. A dynamic system is said to be fimte stable (or synchronized), if
given a bound on the initial conditions, its states does not exceed a certdiolthdesing a
specified interval. Finitéime stability is essential to ensure that the trajectories of a targeted
system does not overshoot a specified bound in order to avoid undesirable consequences
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during applications. There is a distinction betweeanitdi time stability and Lyapunov
stability. A system which is finitime stable may be Lyapunov asymptotically stable,
whereas a system that is Lyapunov asymptotically stable may not betifimgtestable, if

during transient it uncontrolled dynamics exdse a prescribed threshold of tifd®]. Many

works on finite time control have appeared in recent ygE8]i[18]. In some of the
referencewnorkslisted under Section Founpwever, the settling tingearecomparably large,

even when the controllers featured the use of sign function. dnptbposed adaptive
controller in this paper, we proposes a constiucture thatoffers a faster rate of
convergence of the controlled trajectories of a nepelcial case of a hyperchaotic system
[19], which was derived from the Burké Shaw atmospheric modgPR0]. Certain
characteristics distinguished the novel system from several othéhe ilterature. These
include its unique bifurcation properties where the plots of control parameters depict
bifurcation diagrams with fewer periodic windows, thus making the system a good candidate
for application in chaebased cryptosystem modelling adésign. The elegance of the
algebraic structure makes it possible to further reduce the algebraic structure to consists of
fewer parameters, yet would still exhibit hyperchaotic features with some degrees of novelty
in its qualitative features. The nowgjstem is also highly sensitive to slightest change in its
initial conditions and system parameters. Thus, several attractors may be evolved through
key sensitivity.

1.1 Concepts and Preliminaries

Throughout this paper, the following existing defimitsoand Lemmas are used in the
analysis and synthesis of the improved finitene controller design for stabilization.
Consider alass of nonlinear systems given by

x=f(x1, X(b) 0) % (L.2)

Where x= f(x 1), x(t) IR" is the systemstate andx=f:R, 3R" -R" is a nonlinear
function. Assume that the origid is an equilibrium pointp(0,0,0,0 of (1). If there exist a
constan T >0 whereT may be influenced by the initial conditiery such thatlirq||x(t)|| 10,

t-

Iin%||x(t)||1 0, if t>T.then the system (1) is finitéme stable.
t-

Definition 1.1[15], [21]

The origin of (11) is a finitetime stable equilibrium, if the origin is Lyapunov stable and
there exist a functiom:R"- R™ called the settling time function, such that for every
X, I R", the solutionx(t,»,) of (1.1) is defined orf0,T(x)), X(t, %)i R" "t [0, T(%)]] and

im x(t, =0 .
t- T(%) (£0)
Lemma 11[22], [23]

If there exist a continuous positive definite functiaft):R" - R", such thatv(t) is
radially bounded (i.eV(x(t))- = as x(t)- = ), and satisfies the following differential
inequality:

Ve 5 (V@)Y t BT $2V(p) O, (1.2)

Where; >0 and 0<qg = are two positive ambers. It follows that for any, V(t) satisfies
the inequality:

VEIMeVia() 7@ et )t t (13)
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andVv(t)t 0, "t 7. We conclde that the origin of (1) is globally stable in finite timeT
and the settling tim& is given by the relationship

— 1 1-q
T=t. +—V 14
%) o (to) (14)
Assumption 1[24], [25]

Assumea, &,...,.d,1 R" and0<g < are all real numbers. Then the following inequality
holds:

(al+[a] + &) & [aF . Fal (15)

Lemma 1.2 [25]

For the dynamic system .(}, if there exists a continuous differentiable function
V:[0,2) 3D -R, class K, function a(.) and b(.), a functionk:[0,=2) - R, , such that
k(t)>0 for almost allti [0, ©),a real numbemi (0,1)and an open neighbourhodtli D of
the origin, such that:

V(t,00=0t i[O, 9
a({) e V(LR o §), t o, )px M (1.6)
V(X ¢ k(V(tR)°,t [0, )px M,

holds, then the equilibrium poinit) =0 of the systeml(1) is uniformly finitetime stable
1- k
with settling time functionT(ty, x,) satisfying T(ty, x,) ¢ K‘l[\%],(K k), where

K(t)=fjk(s) ds. fM =D R", then the equilibriumx(t) =0 of the systeml(1) is globally
0

uniformly finitetime stable.

2. MAIN RESULTS

It is well known in practical system applications that system parameters are not always
known in advance due to the uncertainties that inevitable arises during ogerasanresult,
practical controllers are designed with uncertainties in focus. In this section, the aim is to
design a finitetime adaptive stabilizing control laws that will stabilizing the unstable
dynamics of the novel system and update the unkn@nampeters in a uniform finite time.

2.1 Mathematical model of the novel system
Consider a general structure of a novel 4D hyperchaotic systaahn is inspired by the
Burke-Shaw atmospheric model templ§i®],

€% = a(x ) a&X

ixz = dgXXg BXy EXy

TR =agkX +&

fx=agq ax, axs &y
Wherea, - g,, " @ ; a® are boundedparameter vectorand xi [x, %,..., %] are the state

variables. System2(1) may beconsidered as generic structure o family of the novel
hyperchaoticsystens which can producespecial caseshat still exhibit hyperchaos, yet
possessing qualitative and quantitative properties wdmiebhonditioned by nullifying one or

2.
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more system parameteis addition to appropriate selsan of systemparameter values. In
this paper, we nullified two terms, = g, 9, resulting in a new 10 terms and 9 parameter
system given by

€4 = a(q %)

Iy —

= a

%{‘2 - 33X Xy Xy 2.2

1% 46X +&

[X = agx @X, ®X3
When a,=7, 4 8.1, a,=35& 0.95 ag=1, 4 =3, a3=0.01,4 =3, @ 9.0, system
(2.2) exhibit hyperchaotic behaviour depicted in Fig. 1i (&) after 200s.

(© (f)

Fig. 2.1. 2-D phaseportraits ofthe novel hyperchaotgystem
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