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Abstract: Chaotic systems are evidently very sensitive to slight perturbations in their algebraic 

structures and initial conditions, which can result in unpredictability of their future states. This 

characteristics has rendered them very useful in modelling and design of engineering and non-

engineering systems. Using the Burke-Shaw chaotic system as a reference template, a special 

case of a novel 4-D hyperchaotic system is proposed. The system consists of 10 terms and 9 

bounded parameters.  In this paper, after the realization of a mathematical model of the novel 

system, we designed an autonomous electronic circuit equivalent of the model and subsequently 

proposed an improved adaptive finite-time stabilizing controller which incorporates some 

augmented strength coefficients in the derived controller structures. These augmented 

coefficients greatly constrained transient overshoots and resulted in a faster convergence time for 

the controlled trajectories of the novel system. This novel system is suitable for application in the 

modelling and design of information security systems such as image encryption and multimedia 

security systems, due to its good bifurcation property. 
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1. INTRODUCTION  

Chaos is a unique phenomenon that often occur in a class of dynamic systems that are 

sensitive to perturbation in their initial conditions or mathematical models, consequently 

resulting in unpredictability of their future states [1]. Chaos has been found to exists in 

natural and man-made systems, and its dynamics have been used in the modelling and 

studies of practical and hypothetical systems in communications engineering [2], medicines 

[3], robotics [4], thermodynamics [5], waste water treatment plant [6], electric power system 

[7], amongst others. However, for chaos to be of practical use, it must be controllable. 

Consequently, during the past decades since the seminal works of Ott, Grebogi and Yorke 

[8], extensive research on chaos control has resulted in the proposition of different methods 

in the literature and their applications by researchers in controlling and stabilizing chaotic 

dynamics such as active control [9], sliding mode control [10], fuzzy control [11] and 

adaptive hybrid control [12], amongst others. Classical stability concepts such as the 

Lyapunov stability, BIBO stability and asymptotic stability concepts [13], [14] do not take 

into consideration the time intervals of stabilization of systems. Rather, the main objective is 

the stabilization which can continue into infinite time. In recent years however, the concept 

of finite time stability and stabilization has gained wide attention due to its usefulness in 

time-critical system designs including secure communication systems, image and data 

encryption systems. A dynamic system is said to be finite-time stable (or synchronized), if 

given a bound on the initial conditions, its states does not exceed a certain threshold during a 

specified interval. Finite-time stability is essential to ensure that the trajectories of a targeted 

system does not overshoot a specified bound in order to avoid undesirable consequences 
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during applications. There is a distinction between finite time stability and Lyapunov 

stability. A system which is finite-time stable may be Lyapunov asymptotically stable, 

whereas a system that is Lyapunov asymptotically stable may not be finite-time stable, if 

during transient it uncontrolled dynamics exceeds a prescribed threshold of time [15]. Many 

works on finite time control have appeared in recent year  [16]ï[18].   In some of the 

reference works listed under Section Four, however, the settling times are comparably large, 

even when the controllers featured the use of sign function. In the proposed adaptive 

controller in this paper,  we proposes a control structure that offers a faster rate of 

convergence of the controlled trajectories of a novel special case  of a hyperchaotic system 

[19], which was derived from the Burke ï Shaw atmospheric model [20]. Certain 

characteristics distinguished the novel system from several others in the literature. These 

include its unique bifurcation properties where the plots of control parameters depict 

bifurcation diagrams with fewer periodic windows, thus making the system a good candidate 

for application in chaos-based cryptosystem modelling and design. The elegance of the 

algebraic structure makes it possible to further reduce the algebraic structure to consists of 

fewer parameters, yet would still exhibit hyperchaotic features with some degrees of novelty 

in its qualitative features. The novel system is also highly sensitive to slightest change in its 

initial conditions and system parameters. Thus, several attractors may be evolved through 

key sensitivity.     

1.1 Concepts and Preliminaries 

Throughout this paper, the following existing definitions and Lemmas are used in the 

analysis and synthesis of the improved finite-time controller design for stabilization. 

Consider a class of nonlinear systems given by  

                                          0 0( , ), ( ) (0)x f x t x t x x= = =                                                    (1.1) 

Where 0( , ), ( ) nx f x t x t= Í is the system state and : n nx f += ³ ­  is a nonlinear 

function. Assume that the origin O is an equilibrium point, 0(0,0,0,0) of (1). If there exist a 

constant 0T>  where T may be influenced by the initial condition  such that lim ( ) 0,
t T

x t
­

¹  

lim ( ) 0,
t T

x t
­

¹   if t T>  then the system (1) is finite-time stable. 

 

Definition  1.1 [15], [21]  

The origin of (1.1) is a finite-time stable equilibrium, if the origin is Lyapunov stable and 

there exist a function : nT +­  called the settling time function, such that for every 

0
nx Í , the solution 0( , )x t x  of (1.1) is defined on 0 0 0[0, ( ), ( , ) [0, ( )]]nT x x t x t T xÍ " Í  and 

0

0
( )

lim ( , ) 0
t T x

x t x
­

= . 

Lemma 1.1 [22], [23]  

If there exist a continuous positive definite function  ( ) : n nV t ­ , such that ( )V t  is 

radially bounded (i.e. ( ( ))V x t ­¤ as ( )x t ­¤), and satisfies the following differential 

inequality: 

                                           0 0( ) ( ( )) , 0, , ( ) 0,qV t V t t T t V tj¢- " ² ² ²                            (1.2) 

Where 0j>  and 0 1q< > are two positive numbers. It follows that for any 0t , ( )V t  satisfies 

the inequality: 

 

                                              1 1
0 0 0( ) ( ) (1 )( ),q qV t V t q t t t t Tj- -¢ - - - ¢ ¢                       (1.3) 
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and ( ) 0,V t t T¹ " ². We conclude that the origin of (1.1) is globally stable in finite time  T  

and the settling time T is given by the relationship: 

                                       1
0 0

1
( )

(1 )

qT t V t
qj

-= +
-

                                                           (1.4) 

Assumption 1 [24], [25]  

Assume 1 2, ,..., n
na a a Í  and 0 1g< < are all real numbers. Then the following inequality 

holds: 

                                1 2 1 2( ... ) ...
rr rr

n na a a a a a+ + + ¢ + + +                                     (1.5)  

                                                                                             

Lemma 1.2 [25]  

For the dynamic system (1.1), if there exists a continuous differentiable function 

:[0, ) ,V D¤ ³ ­  class K¤  function (.)a  and (.)b , a function :[0, )k +¤ ­ , such that 

( ) 0k t >  for almost all [0, ),tÍ ¤ a real number (0,1)nÍ and an open neighbourhoodM DÌ of 

the origin, such that: 

 

                                             

( ,0) 0, [0, )

( ) ( , ) ( ), [0, ), ,

( , ) ( )( ( , )) , [0, ), ,

V t t

a x V t x b x t x M

V t x k t V t x t x Ms

= Í ¤

¢ ¢ Í ¤ Í

¢- Í ¤ Í

                              (1.6)                                                                                                  

 

holds, then the equilibrium point ( ) 0x t =  of the system (1.1) is uniformly finite-time stable 

with settling time function 0 0( , )T t x  satisfying 
1

1 0 0
0 0

( , )
( , ) [ ],( ),

1

V t x
T t x K K

k

k
k

-
-¢ ¸

-
where 

0

( ) ( )
t

t
K t k s ds=ñ . If nM D= = , then the equilibrium ( ) 0x t = of the system (1.1) is globally 

uniformly finite-time stable. 

2. MAIN RESULTS  

It is well known in practical system applications that system parameters are not always 

known in advance due to the uncertainties that inevitable arises during operations. As a result, 

practical controllers are designed with uncertainties in focus.   In this section, the aim is to 

design a finite-time adaptive stabilizing control laws that will stabilizing the unstable 

dynamics of the novel system and update the unknown parameters in a uniform finite time.  

2.1 Mathematical model of the novel system 

Consider a general structure of a novel 4D hyperchaotic system which is inspired by the 

Burke-Shaw atmospheric model template [19], 

                                   

1 1 1 2 2 3

2 3 1 3 4 2 5 4

3 6 1 2 7

4 8 1 9 2 10 3 11 4

( )x x x x

x x x x x

x x x

x x x x x

a a

a a a

a a

a a a a

=- + +ë
î
=- + +î

ì
= +î

î =- - - -í

                                                (2.1) 

Where 1 11, , 0i ia a a a- " > are bounded parameter vectors and 1 2 4[ , ,..., ]x x x xÍ  are the state 

variables. System (2.1) may be considered as a generic structure of a family of the novel 

hyperchaotic systems which can produce special cases that still exhibit hyperchaos, yet 

possessing qualitative and quantitative properties which are conditioned by nullifying one or 
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more system parameters, in addition to appropriate selection of system parameter values. In 

this paper, we nullified two terms 2 11 0a a= =, resulting in a new 10 terms and 9 parameter 

system given by 

                                 

1 1 1 2

2 3 1 3 4 2 5 4

3 6 1 2 7

4 8 1 9 2 10 3

( )x x x

x x x x x

x x x

x x x x

a

a a a

a a

a a a

=- +ë
î
=- + +î

ì
= +î

î =- - -í

                           (2.2) 

When 1 37, 3.1,a a= = 4 53.5, 0.95,a a= = 6 71, 13,a a= = 8 9 100.01, 3, 0.01a a a= = = , system 

(2.2) exhibit hyperchaotic behaviour depicted in Fig. 1 (a) ï (f) after 200s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. 2-D phase portraits of the novel hyperchaotic system 
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