
Adv Syst Sci Appl 2019; 01; 141-149

Published online at http://ijassa.ipu.ru/index.php/ijassa/article/view/594

Copyright ©0000 ASSA. Adv. in Systems Science and Appl. (0000)

The application of graph decomposition to development of

large-scale agent-based economic models

V.L. Makarov1, A.R. Bakhtizin1, E.D. Sushko1, G.B. Sushko1
1) Central Economics and Mathematics Institute CEMI RAS, Moscow, Russia

E-mail: albert.bakhtizin@gmail.com

Received May 17, 2018; Revised March 13, 2019; Published April 15, 2019

Abstract: In this work we describe the application of the graph decomposition algorithms for the

development of a scalable high-performance agent-based model of population of Russia

described in terms of demography, migration and transport flows. The simulated system consists

of agents representing individuals and sets of links to other agents, which represent the social

interactions of individual. Individual agents in the model participate in several independent

processes, for which different sets of social links is important such as family and neighbors. To

perform a load balancing of agents between cluster computer nodes the METIS graph

decomposition algorithm was used. These algorithms allow to split the graph of agents and links

into parts of similar size with least possible number of links between them. A number of

numerical experiments was carried out for test model to estimate the influence of the parameters

of the model on scalability.

Keywords: agent-based modelling, numerical modelling, parallel computing, graph

decomposition.

1. INTRODUCTION

The simulation of complex economic processes by means of agent-based approach requires a

large number of agents to be used. One can expect the number of agents to be comparable to

the population of the modelled society such as the city or a country i.e. up to 109 agents.

High number of agents requires the use of supercomputer clusters to perform the simulation

and requires a special programming technique to be applied in order to be able to run the

model on such computer. A typical supercomputer nowadays is a cluster of multiprocessor

multicore nodes with the shared memory inside the node and distributed memory between

the nodes of the cluster. That distributed memory model requires the data describing agents

to be evenly split between the nodes of the cluster. The paper describes the application of the

METIS[1,2,3] spatial decomposition algorithm for conducting multi-agent simulations of the

behavior of society using supercomputers.

There is a number of technologies and frameworks for development of ABM (Agent-

Based Modeling) simulation software such as Microsoft Axum [4] and Repast HPC [5] and

SWAGES [6]. These frameworks implement mechanisms of exchange of messages between

agents but the problem of optimal distribution of agents between processes should be solved

by the simulation code taking into account all types of interactions in the model. For

example, a similar approach using METIS algorithm for a large-scale epidemiologic ABM

using Repast HPC and METIS was implemented in paper [7]. Another example is the

application of the METIS decomposition for modeling of railway scheduling in paper [8]. E

ach of these codes used its own implementation of the decomposition code to transform the

objects in the model into graph representation for METIS.

mailto:albert.bakhtizin@gmail.com

142 V.L. MAKAROV, A.R. BAKHTIZIN, E.D. SUSHKO, G.B. SUSHKO

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

The simulated system consists of agents which represent individuals and a set of links to

other agents, which represent the social interactions of individual. The individual agents in

the model participate in several independent processes, for which different sets of social

links is important such as family and neighbors.

The agents of the system participate in two processes: 1) the process of reproduction of

the population, and 2) the process of migration. In the first process they use messages

exchange to search for the partner to form a family. In the second process the message

exchange mechanism is used to obtain information about available jobs in different regions

to determine the direction of migration.

To conduct agent modeling of demographic processes with a large number of agents, it is

necessary to create an initial state of the population of agents with a given distribution by

region, age, sex, income and other relevant parameters. In the test case, reading of the data

by region from the text file and the geometry of regions from the image file was realized.

The data is used to construct a rectangular grid, each cell of which is connected to a certain

region and parameters of agents in the cell are determined by the parameters of the region.

A random distribution of the number of resident agents between grid cells (uniform

distribution of population within each region with the fixed total number of agents in the

system) and calculation of grid cells decomposition by processors was implemented.

2. THE MODEL DESCRIPTION

The most common way of writing simulation programs for cluster computers is to use

C++/Fortran language and MPI library which are available on all supercomputers. To

simplify the development of the model the distributed ABM framework [9] was developed

for use with the high-level Microsoft .Net platform. The use of the high-level programming

language for model description requires the implementation of wrapper code to system-level

functions for inter-process exchange using native MPI library. As most of modern

supercomputers run on Linux operating system, we have decided to use Microsoft .Net Core

and MONO [10] implementations of .NET platform available for this OS.

The choice of these technologies was determined by the following criteria:

1. The system has to be scalable across multiple computational cluster nodes (i.e. use

resource of multiple nodes for speedup) therefore the multithreading calculation model was

not suitable as it is limited to single cluster node.

2. The model should be easy to develop and maintain and therefore the high-level

programming language C# was used.

3. The system should be efficient and therefore the native MPI library was used instead

of TCP/IP Sockets or .Net libraries like Windows Communication Foundation as these

technologies are not optimal for supercomputers and HPC applications. MPI libraries

installed on each cluster computer are usually tuned for particular proprietary network

system which is used on the cluster such as Infiniband.

4. The program should be portable and should be compatible with any operating system

i.e. running on both developer workstations and on cluster computers.

5. The results of the simulation should not depend significantly on the number of

processors used for the calculation. All interactions between agents on different processes on

each simulation step should be taken into account. The simulation solution calculated on

different number of processors can still be different due to the difference in the order of

operations (due to the limited float point numbers precision) and the difference in the random

number sequence (each process has its own independent random number sequence).

An efficient mechanism of message exchange between agents was implemented by

means of message queue and native MPI collective operations. The message queue

accumulates a buffer of messages to different processes and then uses MPI AllToAll

exchange operation to deliver contents of messages. This operation delivers the buffers of

THE IMPLEMENTATION OF THE SCALABLE MODELLING FRAMEWORK 143

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

arbitrary size from each MPI process to all other processes in most efficient way by splitting

the buffer into chunks of optimal size for network transfer and hiding the latency of network

operations by performing simultaneous several send and receive operations.

To use native operations with managed C# objects operations of binary serialization and

deserialization of objects were implemented and C# wrappers for native functions were

written.

2.1 The system decomposition algorithm

The modeled system consists of a large number of agents connected with each other by the

number of social links. To perform an efficient simulation of the system it is necessary to

split the set of agents between MPI processes taking into account their links with other

agents. This distribution of agents between processes determines the parallel scalability of

the program. The quality of the decomposition is determined by the balance of the agents

count on different processes and the number of links between agents assigned to different

processes.

The decomposition of a graph of agents with links can be performed by the application of

graph decomposition algorithms such as METIS [1], Scotch [11] or Jostle [12]. These

algorithms provide a computationally efficient way of decomposition of large graphs into

parts of equal size with minimal borders between them. Such approach leads to a best

possible system decomposition with a fine distribution of agents but it also leads to a number

of drawbacks: 1) it requires the formation and a decomposition of a sparse matrix of size N,

where N is the total number of agents, 2) each change of a number of agent due to agent’s

birth or death leads to a recalculation of the decomposition. In order to calculate the

decomposition in a more efficient way the system was split by a rectangular grid covering all

regions. The decomposition of cells is much faster due to smaller matrix and doesn’t require

recalculation of the decomposition after each time step as the distribution of population

changes slowly with time. Due to the small size of the input matrix the decomposition can be

performed using sequential version of METIS algorithm without sensible impact on the

parallel performance of the simulation.

To calculate the decomposition of the grid, a graph METIS algorithm with a weighting

was used (METIS_PartGraphRecursive). The METIS algorithm takes an input on a graph

specified through the constraint matrix and an array of weights of the nodes of the graph and

returns the optimal distribution of the graph by a given number of parts with minimizing the

links between the parts.

The link matrix is given in CSR [13] format i.e. by the number of rows (N) and two

arrays IA and JA. The array IA contains a sequence of partial sums of the number of non-

zero elements in the matrix. This array is used to separate the elements of the JA array by

strings. The JA array contains index lists of non-zero elements in all rows.

In the test example, the size of the matrix corresponded to the number of non-empty grid

cells, the adjacent grid cells (not diagonally) were considered to be related. As the weight of

the cell, the number of agents that should be created in the corresponding cell was used.

The calculation of the most optimal decomposition of such matrix is very

computationally expensive. The METIS library implements a multilevel recursive coarse-

grained algorithm for calculation of the reasonably good decomposition. On each level the

original graph is transformed to a smaller graph using the coarse-graining algorithm, the

decomposition of the smaller graph is performed and then a special refinement of the

decomposition is performed.

As a result of calling the METIS algorithm for a given coupling matrix and weights and a

given number of processors, an array of numbers is created that describes the optimal

binding of the grid cells to the processors. These data are used to distribute cells and agents

144 V.L. MAKAROV, A.R. BAKHTIZIN, E.D. SUSHKO, G.B. SUSHKO

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

by processors during the calculation, but do not affect the aggregation procedure of the

received calculation results. The results of the calculation are aggregated by region and

should not depend on the decomposition used.

To test the decomposition algorithm a sample system was constructed using the data on

the population of Russia. Russia can be a good example of a country with very different

regions in terms of population. The total population of Russia is 144 million people and the

average density of population is 8.58 person per square kilometer ranging from 4626

people/km2 in Moscow to 0.07 people/km2 in Chukotka Region. Large cities such as

Moscow and St. Petersburg were considered as separate regions in order to distinguish the

parameters of the region and parameters of the enclosing region because of the principal

difference in population density, income and other parameters.

The figures below show the results of automatic grid decomposition using the METIS

algorithm for 8 processors in two variants: without taking into account the number of agents

in cells (the weight of each cell = 1) and taking into account the number of agents (cell

weight equals to number of agents).

THE IMPLEMENTATION OF THE SCALABLE MODELLING FRAMEWORK 145

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

Fig. 1. The decomposition of a territory of Russia by 8 processors taking into account only the number of cells

(top) and the number of agents in cells (bottom). One can notice much smaller regions in the western part of

Russia on a second plot due to much higher population density.

Different shades of red show areas assigned to different processors. In the first case, the

algorithm equalizes the number of grid cells on different processors with the minimum

length of the boundary between them. In the second case, the number of agents attributed to

the cells of a specific processor is equalized, while minimizing the length of the border.

One can see that in the second case the regions have different area because of the

difference in population density. The difference in density between European part of the

country (27 people per km2) and Asian part (3 people per km2) leads to much smaller regions

in European part in terms of area and cell count. Another effect associated with the

formulation of criteria for optimizing distribution is that the cells located on islands and

exclaves are isolated and not directly connected to the nearest regions and in terms of

decomposition can be linked to any processor.

146 V.L. MAKAROV, A.R. BAKHTIZIN, E.D. SUSHKO, G.B. SUSHKO

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

The use of the sparse matrix of links between cells allows the further development of

decomposition criteria which should in principle include the connectivity of cells which have

no common border. These connections may arise due to air communication, railways and

other ways of traveling which have to be taken into account for correct simulation of

migration.

In the test example presented above, the total number of agents was set at 8400000. At

the same time, the share of agents in each region was determined by the share of this region

in the population of the country. Within the region, agents were distributed uniformly across

cells. Such a calculation scheme allows us to change the total number of agents for test

purposes, keeping their correct geographical distribution.

Using the algorithm described above, the distribution of the source system by the

processors was obtained. In the implementation, it is important that such a distribution must

be done before the agents are created, since the agents created must by initially correctly

distributed among the nodes of the cluster to meet the limitations of the system memory.

To analyze the obtained distribution of agents by processors, one can use Amdahl's law,

which connects the maximum achievable acceleration in parallel computations (Sp) with the

number of processors (p) and the fraction of consecutive computations (a).

Fig. 2. The illustration of Amdahl’s law for description of parallel speedup on the number of processors and the

value of parallel portion.

In our case, sequential computations arise due to an imbalance in the number of agents on

the nodes, i.e. if we have two nodes and the first 400 agents, and on the second 300, then we

can say that the first 300 agents are processed by each node in parallel, and the second 100

agents are processed sequentially by the second one, because the second node can’t perform

calculations at this time.

The figure below shows the dependence of the parallel speedup on the number of MPI

processes. The comparison of Amdahl’s law estimates for decomposition with and without

cell weights show that decomposition with cell weights leads to a very balanced distribution

of agents and potentially to a very good parallel speedup. The real parallel speedup of the test

simulations is significantly lower than Amdahl’s law estimates but it still shows rather

reasonable speedup.

THE IMPLEMENTATION OF THE SCALABLE MODELLING FRAMEWORK 147

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

Fig. 3. The dependence of the parallel speedup on the number of MPI processes. The scalability of the test

simulation is compared to the ideal speedup curve, and to the estimate speedup based on the Amdahl’s law for

the cases of decomposition with and without cell weights.

For the test calculation, a system consisting of 8400000 agents was selected. For each

agent the number of neighbor agents was selected randomly (1..10), the neighbor agents

were selected randomly within the same cell on the map and it’s direct neighbors. The table

shows the time of calculation of the step and the average number of agents on one processor.

Table. 1. The results of the simulation of 8.4 million of agents for different number of processors.

Number of

cores

Time step

simulation

time, s

Parallel speedup Number of

agents per core

Fraction of

remote

message

sends, %

1 55.683 1 8417590 0

2 28.872 1.92 4208795 0.15

4 16.114 3.45 2104397 0.39

8 10.262 5.42 1052198 0.68

12 7.006 7.94 701465 0.91

16 5.268 10.56 526099 1.10

24 3.796 14.66 350732 1.72

48 2.161 25.75 175366 2.26

96 1.378 40.38 87683 3.41

192 0.846 65.78 43841 5.56

148 V.L. MAKAROV, A.R. BAKHTIZIN, E.D. SUSHKO, G.B. SUSHKO

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

The results shown in the table above show that the distribution of agents by processors as

a result of the decomposition was fairly uniform, but the overall parallel speedup in this

version is limited to a several dozen times. The table also shows the dependence of the

fraction of remote message sends which were delivered to agent on another processor. The

increase of the number of processors leads to increase of the number of borders between

areas attributed to different processors, the number of remote sends and the ratio between

network exchanges and local calculations within one processor which is another factor which

affects the scalability of the simulation.

Uniform distribution of the number of agents by processors allows you to evenly

distribute the load of RAM of each node of the cluster. As a test case, a multi-agent system

was calculated with 148 million agents on 192 cluster processors. The main difficulty in this

case was that with the total amount of RAM of the allocated nodes in 192GB on each node

of the cluster there was only 8GB of RAM. Thus, it was necessary to distribute the agents

evenly, so that on none of the cluster nodes the simulation processes exceed the memory

consumption limit.

Fig. 4. Decomposition of the computational grid into 192 processors taking into account population density.

The figure above shows the distribution of the calculated grid for 192 processors, built

taking into account the population density. In the distribution, the average number of agents

per processor was 772000. The number of agents per processor ranged from 743711 to

787266, i.e. the spread of the number of agents on one processor was ~ 6% of the average.

The calculation of one step in this simulation took about 15 seconds. In the future, the spread

of the number of agents can be reduced by using a smaller calculation grid, which will

improve the accuracy of the decomposition.

3.CONCLUSION

In this work a new framework for parallel calculations of agent-based models was presented

and tested. The framework uses METIS graph decomposition algorithm to perform natural

spatial distribution of agents in ABM-simulations to achieve high level of balance and

parallel scalability. The decomposition algorithm based on cell distribution allows us to

compute a balanced distribution of agents efficiently. Which can be used for both initial

distribution of agents and redistribution of agents during simulation. The provided results of

THE IMPLEMENTATION OF THE SCALABLE MODELLING FRAMEWORK 149

Copyright ©2019 ASSA. Adv. in Systems Science and Appl. (2019)

the test simulations show good scalability of the program across multiple computational

nodes and possibility to perform ABM simulations with number of agents comparable to

population of large countries and regions.

ACKNOWLEDGEMENTS

This work was supported by the Russian Science Foundation (grant # 14-18-01968). The

possibility to perform computer simulations at the MVS-100K Joint Supercomputer Center

and Tianhe 2 supercomputer is gratefully acknowledged.

REFERENCES

[1] Karypis, G. & Kumar, V. (1995). METIS-unstructured graph partitioning and sparse

matrix ordering system, version 2.0.

[2] Karypis, G. & Kumar, V. (1999) Parallel Multilevel k-way Partitioning Scheme for

Irregular Graphs. // SIAM Review, Vol. 41, No. 2, pp. 278 - 300

[3] LaSalle, D. & Karypis, G. (2013) Multi-Threaded Graph Partitioning // 27th IEEE

International Parallel & Distributed Processing Symposium

[4] https://en.wikipedia.org/wiki/Axum_(programming_language)

[5] https://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-

framework

[6] Scheutz, M., Connaughton, R., Dingler, A., & Schermerhorn, P. (2006). SWAGES -

An Extendable Distributed Experimentation System for Large-Scale Agent-Based

Alife Simulations. In Proc. of Artificial Life X, pp. 412-419.

[7] Collier, N., Ozik, J., & Macal, C. M. (2015). Large-scale agent-based modeling with

repast hpc: A case study in parallelizing an agent-based model. European Conference

on Parallel Processing, pp. 454-465

[8] Salidol, M. A., Abril, M., Barber, F., Ingolotti, L., Tormos, P. et. al. (2006). Domain

dependent distributed models for railway scheduling. In International Conference on

Innovative Techniques and Applications of Artificial Intelligence, pp. 163-176

[9] Bakhtizin A.R. et al. (2017) The Development of the agent-based demography and

migration model of Eurasia and its supercomputer implementation. // Advances in

Systems Science and Applications, [S.l.], v. 17, n. 4, p. 34-45

[10] http://www.mono-project.com

[11] Chevalier, C. & Pellegrini, F. (2008). PT-Scotch: A Tool for Efficient Parallel

Graph Ordering. // Parallel Computing. 34 (6): 318–331.

doi:10.1016/j.parco.2007.12.001

[12] Walshaw, C. & Cross, M. (2000). Mesh Partitioning: A Multilevel Balancing

and Refinement Algorithm. // Journal on Scientific Computing. 22 (1): 63–

80. doi:10.1137/s1064827598337373.

[13] Tinney W. & Walker J. (1967) Direct solutions of sparse network equations

by optimally ordered triangular factorization. // Proceedings of the IEEE,

55(11):1801–1809

https://en.wikipedia.org/wiki/Axum_(programming_language
https://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
https://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
http://www.mono-project.com/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1137%2Fs1064827598337373

