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Abstract: This topic is of high relevance due to the fact that many market risk assessment 

mathematical models currently available contain many limitations for their effective use. However, 

these limitations are often not feasible, which leads to a decrease in forecast accuracy. To avoid 

this, more accurate models are necessary. Neural network-based models can show a more accurate 

result due to their basic property – nonlinearity. The goal of this paper is to build a model that can 

enable us to assess a market risk for a company. 
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1. INTRODUCTION

Fig. 1. 

The primary goal of this paper is to determine a lower bound of the yield to be forecast by the 

neural network model with a certain level of significance. Current actual yields will be fed to 

the neural network output, and some factors will be fed to the neural network input. 

Starbucks stock prices for the period from 2011 to 2016 were taken as the factors fed to 

the neural network input. 
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Fig. 2 

However, there is no point in using this data as is, so the values of stock yield were fed to 

the neural network input. It was decided to take weekly yields with a lag of one day as the 

yield basic indices. In other words, the yield values were calculated as follows: 

𝑟𝑡 =
𝑃𝑡 − 𝑃𝑡−5
𝑃𝑡−5

, 

where the t is a time interval assumed as a day (the t assumes the values of 6,7,8,... from 

the beginning of the counting period taking into account that the initial value is indexed by the 

one); 

The 𝑃𝑡 is the closing price on the t day without taking into account dividends (this choice 

is due to the fact that we cannot forecast dividends upon stocks and we do not need this because 

we assess the market risk of a company); 

The 𝑟𝑡 is the earned weekly yield which has been used for modeling. 

 
Fig. 3  

To improve the model quality volatility was also used as input and output data, so the next 

step was to calculate daily yields and weekly volatilities (standard deviations) on their basis 

with a lag of one day similarly with the yields. The volatilities finding procedure can be 

described as follows: 

𝑟𝑘 =
𝑃𝑘 − 𝑃𝑘−1
𝑃𝑘−1

 

𝜎 = √∑(𝑟𝑘 − 𝑟𝑘̅)2
4

𝑘=1

 

 

Another input parameter was trade volume change values.  
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𝑣𝑜𝑙𝑢𝑚𝑒𝑡 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑡 − 𝑉𝑜𝑙𝑢𝑚𝑒𝑡−5

𝑉𝑜𝑙𝑢𝑚𝑒𝑡−5
, 

 

where 𝑉𝑜𝑙𝑢𝑚𝑒𝑡 is an absolute trade volume value on the t day; 𝑣𝑜𝑙𝑢𝑚𝑒𝑡 is a trade volume 

relative change on the t day.  

2. DISTRIBUTION OF THE NEURAL NETWORK ERRORS WHEN 

FORECASTING THE YIELD 

The model is based on the architecture of the artificial neural network of a multilayer 

perceptron or a direct propagation network with error back propagation learning method.  

The model is aimed at forecasting yield lower bound for the time being, which can be 

crossed by the actual yields graph not more than α in 100% of cases. To solve this problem, it 

was decided that the neural network should learn based on historical data. It was also assumed 

that the current yield and volatility depended on lagged yield and lagged volatility values. 

An empirical distribution function was constructed and a quantile of 0.95 level was taken. 

The error distribution density is shown in Fig. 4. 

 
Fig. 4  

The resulting value was calculated as a correction level to the initially specified VaR curve. 

That is the final formula for the VaR based on the neural network is as follows: 

 

𝑉𝑎𝑅𝑛𝑒𝑢𝑟 = 𝑟𝑛𝑒𝑢𝑟 − 𝜎𝑛𝑒𝑢𝑟 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
 

This curve was constructed in two ways. The first way of constructing is based on the fact 

that the neural network learns once and then a forecast is made using it. That is essentially a 

model with static weights in that the weights inside the network are calculated once and no 

longer change. This approach to the VaR curve constructing gives an advantage in terms of 

program running time, since the learning occurs once. For the sake of convenience this model 

will be hereinafter referred to as a neural network model with static weights. 

The second way is based on the assumption that the market structure is changeable (which 

is actually the case) and to make a forecast more accurate the neural network learns each  

time when calculating the VaR. That is, to forecast the yield for the time being the neural 

network learns using N size sample, which includes the previous N values of this index. This 

is a model with dynamic weights. At each calculation of the VaR value the neural network 

learns again. Of course, such method of the VaR constructing is inferior to the first one, but it 

should be more accurate. For the sake of convenience this model will be hereinafter referred 

to as a neural network model with dynamic weights. 
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Kupic test consists in checking the following statistical hypothesis: 

 

𝐻0: 𝛼0 = 𝛼 against alternative  𝐻𝑎𝑙𝑡: 𝛼0 ≠ 𝛼, 
 

where the 𝛼 =
𝐾

𝑁
, 𝐾 is the number of the VaR line breaks, the 𝑁 is the quantity of forecast 

data, and the 1 − 𝛼0 is a specified level of significance. 

Checking is performed using statistics 

 

𝑆𝐶𝑢𝑝 = −2 ln((1 − 𝛼)
𝑁−𝐾𝛼𝐾) + −2 ln((1 − 𝛼0)

𝑁−𝐾𝛼0
𝐾), 

 

which has the 𝜒2(1) distribution if the null hypothesis is true. 

Another quality index that helps to choice between the models that passed the Kupic test 

is the loss function value, which measures the average value of the VaR level excess by actual 

losses. The smaller the loss function value, the more adequately risk is assessed by the 

considered model. The loss functions most commonly used are the Lopez and Blanco-Ihle’s 

ones: 

 

𝐿𝐿𝑜 =
1

𝐾
∑(𝑦𝑡 − 𝑉𝑎𝑅𝑡)

2𝐼(𝑦𝑡 < 𝑉𝑎𝑅𝑡)

𝑇

𝑡=1

, 

 

𝐿𝐵𝐼 =
1

𝐾
(
𝑦𝑡 − 𝑉𝑎𝑅𝑡
𝑉𝑎𝑅𝑡

) 𝐼(𝑦𝑡 < 𝑉𝑎𝑅𝑡) 

 

The Lopez’s loss function is different in that it gives a greater weight to significant 

deviations. This is justified from a substantive point of view, since single large excesses are 

usually more dangerous than a few small ones. 

When constructing the VaR curve, the programming language R with the neuralnet library 

was used, which allowed to construct direct propagation neural networks with the error back 

propagation methods in different versions. In particular, the RPROP learning method was 

used. 

During the research, experiments to change the number of layers in the multilayer 

perceptron, as well as the number of neurons in each layer in order to improve forecast 

accuracy were carried out. The learning sample-based forecast error formula built into the 

neural network was used as a guide. Such error formula was calculated as follows: 

𝐸 =
1

2
(𝑦𝑓𝑎𝑐𝑡 − 𝑦̃)

2
 

and was output by the program itself. Since the neural network showed different results at 

each learning session, it was decided to take the arithmetic mean of this error in order to 

generalize this parameter for the neural network with such layers and quantity. 

𝐸ср =
1

𝑛
∑𝐸𝑖

𝑛

𝑖=1

, 

where the n was taken equal to the order of 30. 

The result of the research is the Error! Reference source not found.. 

Table 1.  

Number of 

neurons in 

layers 

Yield Volatility 

With a relative 

change in trade 

volume 

Without a relative 

change in trade 

volume 

Without a relative 

change in trade 

volume 

(6, 3) 0.14399 0.163759 0.00813 
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(8, 3) 0.135139 0.157891 0.00813 

(11, 6) 0.12661 0.14632 0.00813 

(12, 3) 0.12789 0.139695 0.00813 

(12, 6) 0.13096 0.132457 0.00813 

(22, 6) 0.1176 0.14441 0.00801 

(22, 11) 0.10761 0.15441 0.00771 

(24, 3) 0.107 0.14177 0.00713 

(24, 6) 0.11826 0.17130 0.00712 

(22, 11, 3) 0.12405 0.1789 0.01519 

(22, 11, 6) 0.10574 0.17111 0.02907 

(24, 12, 6) 0.11581 0.1753 0.01813 

 

From the implementation point of view the back propagation method converges for a long 

time, therefore its various modifications are often used. In particular, during the neural network 

learning the RPROP method has been used which is as follows. 

The algorithm is based on the partial derivative sign. New weights are updated according to: 

 

𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
(𝑡)
+ ∆𝑤𝑖𝑗

(𝑡)
 

 

{
 
 

 
 ∆𝑤𝑖𝑗

(𝑡) = −𝑠𝑖𝑔𝑛 (
𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

)∆𝑖𝑗
(𝑡), if 

𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡−1) 𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

≥ 0 

∆𝑤𝑖𝑗
(𝑡) = −∆𝑤𝑖𝑗

(𝑡−1) и (
𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

) = 0, if 
𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡−1) 𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

< 0

. 

 

 

where the 𝑠𝑖𝑔𝑛()  is a function that assumes the value of +1 or -1 depending on which sign 

has a value in parentheses; 

 

∆𝑖𝑗
(𝑡)=

{
 
 
 

 
 
 min(𝜂+∆𝑖𝑗

(𝑡−1)
, Δmax  ) , if   

𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡−1) 𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

> 0  

max(𝜂−∆𝑖𝑗
(𝑡−1), Δmin  ) , if   

𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡−1) 𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

< 0

∆𝑖𝑗
(𝑡−1), if   

𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡−1) 𝜕𝐸

𝜕𝑤𝑖𝑗

(𝑡)

= 0

 

 

where the zero values ∆𝑖𝑗
(0)

 and 0 < 𝜂− < 1 < 𝜂+ are chosen arbitrarily. Such an algorithm 

converges faster than a usual back propagation method. 

The result of this study is the VaR curve constructed on the basis of the neural network model.  

One of the ways to implement the neural network model for the VaR level forecasting is 

shown in Figure 5. 
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Fig. 5 

The VaR curve constructed on the basis of the neural network model with static weights and 

a significance level of 0.95 (the black line is the yield curve, the red line is the VaR level). 

In this case, the actual percentage of break is at the level of 4.65%. The Kupic test has shown 

a p-value= 0.6809912418, which is a good result. 

The Lopez and Blanco-Ihle’s tests for such a situation assumed the following values: 

 

𝐿𝐿𝑜 = 0.0001344051456, 
 

𝐿𝐵𝐼 = 0.1513434227, 
 

which generally evidences a good quality of the model, since the break depth is relatively 

small. In particular, the Lopez’s index indicates that existing breaks are light, which is a good 

sign. 

The result of the paper is the market risk assessment neural network model, which has shown 

good results according to the tests performed. 
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