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Abstract: In design, especially in preliminary design, the assumption of parameter accuracy is 

not justified, since the parameters here are inaccurate (uncertain), due to insufficient knowledge 

or lack of statistics, as well as the fact that design parameters are further implemented in the 

production with some tolerance. The application of deterministic optimization methods under 

conditions of parametric uncertainty can lead to unacceptable solutions even with slight variation 

in the parameters. Currently, to account for uncertainty of the parameters there are commonly 

used stochastic methods designed to account for aleatory uncertainty with a priori known 

distribution functions of random parameters. However, in the preliminary design, most of the 

parameters are not random variables with known distribution functions. The necessary 

information on the parameters is obtained from the experts. In this paper, we develop methods 

and algorithms for preliminary design in conditions of epistemic uncertainty arising from lack of 

knowledge and observation results, replenished by expert assessments. In the paper the problem 

of optimal design in the presence of input and design parameters with epistemic uncertainty is 

considered. The choice of Liu's uncertainty theory for solving the problems of preliminary design 

is justified. The model of uncertain design parameter and optimization model with uncertain 

design and input parameters are proposed. The task of optimal design of the propulsion system 

parameters of  supersonic maneuverable airplane is solved using the proposed models. The results 

are compared with the solution using Monte Carlo method. The solution time using the proposed 

model is two orders of magnitude less.  

Keywords: preliminary design, uncertain quantity, epistemic uncertainty, optimization under 

conditions of parametric uncertainty, deterministic duplicate, expected mean, model of uncertain 

design parameters, optimal design. 

1. INTRODUCTION

Preliminary design of complex technical systems is usually understood as an iterative 

multidisciplinary optimization process of searching for design parameters (solutions) with 

given objective functions and constraints that determine the admissible set of solutions. 

In the deterministic formulation of optimal design, the parameters are considered accurate. 

The influence of parameter uncertainty on the objective functions and on the admissibility of 

the solutions is not taken into account. In the design, especially in preliminary design of new 

technical objects, the assumption of parameter accuracy and the search for a global 

maximum in the deterministic formulation is not justified, since the parameters here are 

inaccurate (uncertain), due to insufficient knowledge, lack of statistics, as well as the fact 

that design parameters are further implemented in the production with some tolerance. In 

addition, multidisciplinary optimization involves independent optimization of subsystems, i.e. 

subsystems should be optimized without full information on the output (design) parameters 

of other subsystems, using expert estimates. Therefore, the search for design parameters in 

deterministic form can also cause inefficient solutions. 

The application of deterministic optimization methods under conditions of parametric 

uncertainty can lead to unacceptable solutions even with a slight variation in the parameters 
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[1]. The need to present and take into account uncertainty in engineering design is now 

universally recognized [2]. 

Any method of decision-making in design under uncertainty must provide three basic 

tools: 

 uncertainty representation model; 

 method of calculations with uncertain variables (method of propagation of 

uncertainty on a function of uncertain variables); 

 model of optimization taking into account uncertainty of parameters. 

In the paper a brief overview of these tools for decision-making in the conditions of 

uncertainty ("theories of uncertainty") is given. Unlike other uncertain theories Liu's 

uncertainty theory provides a tool for reducing optimization models with epistemic input 

parameters to models of mathematical programming (for a certain class of functions). This 

provides the possibility of using classical numerical or meta-heuristic optimization methods 

without the use of simulation and approximation schemes, which lead to unacceptable 

computational time, especially with significant number of parameters, and introduce an 

additional error.  

In Liu's theory input parameters are considered as uncertain. The work extends Liu's 

theory of uncertainty, namely, the model of uncertain epistemic design parameters and the 

optimization model with epistemic input and design parameters are proposed. 

The problem of preliminary design of supersonic maneuverable airplane parameters in 

the conditions of parametric epistemic uncertainty using the Liu's uncertainty theory [3] is 

solved. 

Section 2 provides a classification of uncertainty types and a brief overview of existing 

models of uncertainty. Section 3 gives an overview of the optimization models and methods 

under conditions of parametric epistemic uncertainty. The choice of Liu's uncertainty theory 

for solving the problems of preliminary design of a supersonic maneuverable aircraft is 

justified. In section 4 a model of epistemic design parameters is proposed and the expected 

mean formula for the objective function with epistemic design and input parameters is 

derived. In section 5 the problem of calculating the parameters of the propulsion system for 

supersonic maneuverable aircraft using the proposed model is solved. 

2. CLASSIFICATION OF UNCERTAINTY AND MODEL OF EPISTEMIC 

UNCERTAINTY  

There are two types of uncertainty, depending on the available information: aleatory and 

epistemic.  Aleatoric (objective) uncertainty is associated with a random variable for which 

there is statistical data to help make reliable conclusions about the distribution of a random 

variable. In this case, the uncertain quantity is modeled by the probability distribution 

function. 

 The epistemic (subjective) uncertainty of the first kind is connected with the fact that 

there is no or not enough information on random variables in order to make reliable 

conclusions about the distribution of a random variable. In the literature, such uncertainty is 

called an imprecise probability. In this case, it is common practice to obtain information 

from experts. An imprecise probability is sometimes called second-order uncertainty: 

uncertainty about an uncertain variable, i.e. the uncertainty associated with either the 

subjectivity of expert information or the methods of processing incomplete data is added to 

the uncertainty of the random variable. To date, more than 20 "uncertainty theories" have 

been proposed for modeling imprecise probabilities [4], including evidence theory [5], 

possibility theory [6], interval analysis [7], interval probability (P-box) [8], the Liu's 

uncertainty theory [3].  

Epistemic uncertainty of the second kind is associated with a nonrandom variable, the 

value of which is currently unknown. The expert gives information about the predictive 
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evaluation of this value.  This kind of epistemic uncertainty is often called imprecise. The 

aleatory and epistemic uncertainties of the first kind can be classified as probabilistic form of 

uncertainty, while the second kind of epistemic uncertainty is non-probabilistic form of 

uncertainty. Possibility theory [6], fuzzy sets theory [9], interval analysis [7], uncertainty 

theory [3] are used for model non-probabilistic form of uncertainty.  

To represent the epistemic uncertainty, there are many models. However, there is no 

well-defined procedure for selecting an epistemic uncertainty representation model. A 

variety of models is discussed in [10]. In practice, the choice of the model is determined by 

the available information and the ability to obtain expert information about the uncertain 

parameters of the problem as well as the complexity of the objective functions, i.e. the 

complexity of computations with uncertain variable. 

3. OPTIMIZATION MODELS AND METHODS UNDER CONDITIONS OF 

PARAMETRIC EPISTEMIC UNCERTAINTY.  

An objective function with uncertain parameters is an uncertain variable. In order to be 

able to compare uncertain objective functions and put the optimization task, it is necessary to 

introduce deterministic duplicates of objective functions, i.e. the numerical characteristics of 

these uncertain variables that will allow establishing the order relation on the set of uncertain 

objective functions. The choice of numerical characteristics as duplicates is the prerogative 

of the decision-maker (DM). The expected average value is most often used as the 

deterministic duplicate of the objective function. Perhaps, the decision maker will prefer to 

obtain a result corresponding to the smallest spread of the objective function. Then different 

spread indicators can be duplicates. DM also use a combination of both duplicates. DM may 

prefer to have a guaranteed result with a fairly high degree of belief. Then the guaranteed 

value of the function is used as a duplicate. In this case, the decision maker sets the level of 

belief that the values of the function will be less than the guaranteed value when minimizing 

the objective function and more than the guaranteed value when maximizing the objective 

function. 

In a rigid setting, constraints must be satisfied for any uncertain parameter values. In a 

more conservative formulation  (soft constraints)  the expert sets levels for the belief degree 

in the performance of constraints 

In a multicriteria formulation for several objective functions fi, i=1, …, m, a model with 

uncertain parameters can use different set of deterministic duplicates for each objective 

function [11]: 

 

min(max (D[f1],…, D[fm]), где D[fi] – set of deterministic duplicates for fi. 

 

Different aggregations of deterministic duplicates can be used as criteria. However, 

choosing a single metric for several objective functions is a very difficult task, which does 

not always have a solution. Therefore the aggregation of objective functions is rarely used in 

real multi-criteria optimization tasks. On the other hand, when the number of objective 

functions is greater than 2, there is a problem of visualization of multidimensional data. In 

this case, it is important to have tools for graphical representation of the Pareto front to 

facilitate the selection of solutions [12]. 

The problems of analysis and optimization with uncertain parameters usually have a large 

computational complexity, especially in applications to complex nonlinear systems. The 

application of epistemic parameter models using evidence theory, probability theory, fuzzy 

sets theory and interval representation often requires an excessively large number of samples 

and, as a rule, the found solution is not an extremum of the objective function.  The 

calculation methods here rely on interval computations, which in general make optimization 

problems difficult to solve, in the worst case, it is not better than a brute force [13]. To 
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alleviate this problem, surrogate models were proposed [14]. However, the effectiveness of 

these approaches strongly depends on the accuracy of the surrogate model, and in addition 

the costs of building a surrogate model can be high. Calculation methods for these types of 

models, using Monte Carlo simulation methods, are easy to implement, but for engineering 

applications their computational cost becomes unacceptable.  

For engineering design in conditions of epistemic uncertainty, it is important to use 

mathematical formalism, which will be effective for computation and decision making. In 

this paper, an approach based on the Liu’s uncertainty theory was chosen to solve the 

problem of preliminary design. This theory for a certain class of functions ensures the 

reduction of optimization models with input epistemic parameters to models of mathematical 

programming. This allows to use classical numerical or meta-heuristic optimization methods 

without applying simulation and approximation schemes that lead to unacceptable 

computational time. In the future, uncertain variables will be called variables with epistemic 

uncertainty, modeled within the framework of Liu’s uncertainty theory. 

Let us describe a model of an uncertain variable in the uncertainty theory. The epistemic 

uncertainty of the event in uncertainty theory is the degree of the expert belief that the event 

will happen, i.e. measure of the uncertainty of this event M {*}. The measure of the 

uncertainty M is subadditive and the measure of the product of events is equal to the minimal 

measure of these events. Uncertain variable ξ is given (on the basis of expert estimates) by 

the distribution Ф(х) = M(ξ < x).  M(ξ < x)  is the degree of the expert belief that ξ is not 

greater than some value of x (measure of uncertainty). 

Unlike the measure of uncertainty, the probability measure is additive, and the measure 

for the product of events is equal to the product of the measures of these events. In particular, 

it is asserted in [3] that experts tend to overestimate the probability of cases leading to 

negative consequences, therefore the application of probability theory with epistemic 

uncertainty of parameters can lead to significant errors in the analysis. 

In [3] optimization models under conditions of parametric uncertainty are considered for 

uncertain input parameters. Let's give an analytical expression for the expected mean, which 

is used as a deterministic duplicate of an uncertain objective function. 

Let x be the vector of the design exact parameters,   be the vector of independent input 

uncertain parameters with inverse distribution functions Фi
-1, i = 1, …, n, ),( xf   be the 

objective function, ,0),( xg
j     j = 1, 2,…, p be constraints. 

If ),( xf  is a continuous strictly increasing function with respect to ξ1, ξ2,…,ξm and 

strictly decreasing with respect to ξm+1, ξm+2,…, ξn, then:  
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 4. MODEL OF UNCERTAIN DESIGN PARAMETERS AND OPTIMIZATION 

MODEL WITH UNCERTAIN DESIGN AND INPUT PARAMETERS 

The need to take into account the uncertainty of the design parameters is caused by: 

 impossibility of providing accuracy of design parameter values in production 

conditions; 

 possible changes in the further iterative design process. 

Design parameters can take any value within a specified range. If we consider them to be 

uncertain, then for each such parameter an uncertainty distribution function must be specified. 

The definition domain of distribution function changes during optimization and does not 

exceed the range in which the solution is searched. To ensure the possibility of solving 

optimization problems, it is necessary to consider the uncertain design parameter in the form 

of uncertain variable, including deterministic and epistemic variable. The deterministic 
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variable provides the possibility of optimizing the objective function. The epistemic variable 

formed on the basis of expert information, takes into account the impressive of the design 

parameter. 

So, we consider that the uncertain design parameter x’ is modeled by the sum x’= x + δ, 

where x is deterministic design variable and δ is uncertain variable representing the 

impressive of this variable. The area for determining the uncertainty distribution function of 

δ depending on the preferences of DM can be given by absolute or relative limits. Let 

],[ ba xx  be an interval for x’, xa≥0, xb≥0. In the first case, the uncertainty distribution 

function of δ is defined on the interval [-δ a, δ b], δ a≥0, δ b≥0, δ b+δ a < xb- xa and x takes 

values from the range [xa+δ a, xb-δ b]. In the second case, the uncertainty distribution function 

of δ is defined on the interval [-kax, kbx], 0≤ka≤1, 0≤kb≤1, kbx+kax < xb-xa and x takes values 

from the range ]
1

,
1

[
b

b

a

a

k

x

k

x


. In future we assume that the interval for δ is symmetric with 

respect to the mean value equal to 0, ka=kb, δ a=δ b. This option is most natural for expert. 

We derive an analytic expression for the expected mean, which is used as a deterministic 

duplicate of uncertain objective function. 

Let 
'
ix  be independent uncertain design parameters, xi be deterministic design parameters, 

δi be independent uncertain input parameters with inverse distribution functions 
1
i
, i = 

1, …, p, and ξj, j = 1, …, n, be independent uncertain input parameters with inverse 

distribution functions
1 j . 

If ),( 'xf  is a continuous strictly increasing function with respect to '
1x , …, 

'
qx  and 

strictly decreasing with respect to 
'

1qx  , …, 
'

px , also a continuous strictly increasing function 

with respect to ξ1, …,ξm and strictly decreasing with respect to ξm+1, …, ξn, then the expected 

mean for ),( 'xf will have the form: 



 

d))(),...,(),(),...,(

),(x),...,(x),(x,...,)(x(f)],x(f[E

nmm

p1qq

'

pqq



















11

11

11

1

11

1

111

1

0

1

1 11   (1) 

5. CALCULATING THE PARAMETERS OF THE PROPULSION SYSTEM FOR 

SUPERSONIC MANEUVERABLE AIRCRAFT 

We consider the task of preliminary design (PD) of a supersonic maneuverable aircraft, 

namely the calculation of aircraft propulsion system parameters ensuring the satisfaction of 

the requirements for the range of supersonic cruise flight (SCF) and priority tactical and 

technical requirements (TTR) in the subsonic region under conditions of parametric 

uncertainty is considered [15, 16]. 

Traditionally, PD is decomposed into several different disciplinary stages, where the 

parameters corresponding to the discipline are determined with the other parameters fixed, 

which ensure the satisfaction of TTR. Then, the iterative process of multidisciplinary 

optimization takes into account the links between several stages and different TTR. Since 

TTR are often contradictory, the choice of interrelated values of the aircraft design 

parameters, which ensure a compromise between the requirements of different disciplines is 

carried out.  The values of the design parameters are formed as the results of solving various 

multicriteria optimization problems 

TTR to supersonic maneuverable aircraft contain requirements for subsonic and supersonic 

characteristics. At the preliminary design stage, the layout and propulsion parameters that satisfy the 

priority TTR on subsonic are first determined. Then the calculation of the parameters of the 

propulsion ensuring the performance of TTR on supersonic is performed with the fixed parameters 
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ensuring the performance of TTR on subsonic. The main requirement for supersonic modes is the 

requirement for the range of supersonic cruise flight (SCF), which depends to  large extent on the 

parameters of the propulsion system in the SCF mode.  

Maximizing the range of the SCF for a given Mach number is equivalent to maximizing 

К/ce, where K is the aerodynamic quality of the aircraft, ce  is the specific fuel consumption 

factor. The indicator of the level of wave resistance kw  is a complex parameter reflecting the 

subsonic and supersonic aerodynamic characteristics of aircraft. An aircraft with a high value 

of kw  is easier to construct and to ensure the performance of subsonic TTR. However, as kw 

increases, the maximum range of supersonic flight decreases. 

Thus, the problem of finding compromise solutions for choosing aircraft propulsion 

system parameters arises that provide the largest possible range and the largest possible value 

of the level of the wave resistance. 

Supersonic cruising flight is considered with Mach number M = 1.5 at flight altitude  H = 

11 km. This task of calculating parameters is presented as a two-criteria problem of finding 

Pareto solutions with criteria К/ce и kw [15, 16]. 
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where l is the wingspan, q is the velocity pressure magnitude at a given altitude and speed, 

kosw is the Oswald coefficient, dryP  is the relative thrust of the engine in the "maximum" 

mode, reheatP is the relative thrust of the engine in the "full afterburner" mode, P0R is the 

prospective thrust of the engine in the mode of "full afterburner" (H = 0, M = 0), STCopt is 

supersonic throttling factor, corresponding optР , 
eqvfC is the coefficient of equivalent friction, 

Swet is surface area of the aircraft surface, dryec is specific hourly fuel consumption at the 

engine operating mode "maximum", 
P
ec is slope of specific supersonic throttle characteristic. 

It is believed that the parameters of the geometry Swet, l and the prospective thrust P0R , 

which ensure the performance of the main (subsonic) TTR, were previously calculated. 

In conditions with uncertain design and input parameters, the two-criteria maximization 

problem with duplicates of the expected average will have the form:  

 

max (Е[К/ce], Е[kw]). 

 

The results of calculations for three optimization models are presented in the paper. In the 

first model the input parameters 
eqvfC , kosw  are considered uncertain. In the second model 

the design parameters reheatP , dryec ,
P

ec are considered uncertain. In the third model, the input 

parameters 
eqvfC , kosw and the design parameters reheatP , dryec ,

P

ec  are considered uncertain. 

For uncertain parameters linear uncertainty distribution functions are given. The linear 

distribution function of uncertainty, reflecting the absence of expert preferences in the range 

of values of an uncertain parameter, can be regarded as corresponding to the uniform 

distribution of a random parameter. This makes it possible to compare results obtained using 
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the theory of uncertainty and statistical multivariate modeling, without additional 

transformations. 

Geometry parameters and characteristics of the engine correspond to the aircraft type 

F/A-22. 

Multicriteria genetic algorithm was used to calculate optimal parameters. The following 

parameters of the multicriteria genetic algorithm from the Matlab Optimization Toolbox 

were used. The population size is 10,000 chromosomes, the number of generations is 400. 

The remaining parameters were left by default. 

Fig. 5.1 shows approximation of  Pareto fronts for the model with uncertain input 

parameters for different ranges of uncertain input parameters. Using the Jensen’s Inequality 

[3], it is easy to show that depending on the convexity/concavity of the objective function 

relative to the input parameters, the Pareto front for the model with uncertain input 

parameters can move up/down relative to the Pareto front for deterministic model with 

nominal values of the input parameters. The blue Pareto front corresponds to the calculation 

with the exact nominal values of the parameters. 

 

 
Fig. 5.1. Approximation of the Pareto fronts for different ranges of uncertain input parameters 

Consider the second model. The first objective function 
eс

K
 is strictly decreasing with 

respect to reheatP , dryec , 
P

ec . In accordance with formula (1) ][
eс

K
E has the form:  
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Fig. 5.2 shows the Pareto fronts approximation for the model with uncertain design 

parameters for different ranges of their variation. 

 
Fig. 5.2. Approximation of the Pareto fronts for different ranges of uncertain design parameters 
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From Fig. 5.2 it can be seen that Pareto-fronts in the calculation with different ranges of 

uncertain design parameters are shifted in the direction of the worst values of the objective 

functions relative to the Pareto-front for a deterministic model with nominal values of design 

parameters, i.e. solutions for the model with uncertain design parameters will always be 

more conservative. 

This task was solved using the Monte Carlo method to compare. The random variables 

reheatP , dryec ,
P

ec  were modeled in the intervals  [-k reheatP ; k reheatP ], [-k dryec ; k dryec ],          

[-k
P

ec ; k
P

ec ]  with a uniform distribution. 

Fig. 5.3 shows the Pareto-fronts approximation for calculating deterministic equivalents 

using the Monte Carlo method. 

 

 
Fig. 5.3. Approximation of Pareto fronts obtained by the Monte Carlo method 

Pareto fronts obtained from the second model with uncertain design parameters and 

obtained by the Monte Carlo method practically coincide. The Monte Carlo calculation time 

can be several orders of magnitude greater. This is because in the model with uncertain 

design parameters at each iteration of the genetic algorithm the expected mean of the 

functions K/ce, kw are calculated once. In Monte Carlo method a large number of 

computations of the functions K/ce, kw are required with the subsequent determination of the 

mean values E[K/ce], E[kw] (depending on the required accuracy). In solving this task by the 

Monte Carlo method there are 2000 calculations of K/ce, kw  at each iteration. 

Fig. 5.4 shows approximation of Pareto fronts for the model with uncertain input and 

design parameters for different ranges of their changes. 
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Fig. 5.4. Approximation of Pareto fronts for various ranges of uncertain design parameters with a 

range of uncertain input parameters 15%. 

By calculations of the model with uncertain design and input parameters it is impossible 

to estimate the influence of each type uncertainty parameters (input and design) on the 

optimization results, so it is advisable to carry out calculations on all three models. 

6. CONCLUSION 

The paper substantiates the choice of Liu’ uncertainty theory for solving the problem of 

preliminary design for epistemic indeterminate parameters from the point of view of 

computational costs. A model of uncertain design parameters with epistemic uncertainty and 

an optimization model with uncertain design and input parameters are proposed. Using the 

proposed model, the task of calculating the propulsion system parameters for the supersonic 

maneuvering aircraft is solved. A comparison is made with the results of deterministic 

optimization. The results are presented for three optimization models under conditions of 

parametric uncertainty: with uncertain input parameters, with uncertain design parameters, 

with uncertain design and input parameters. The results are compared with the Monte Carlo 

method. Solution time using the proposed model is two orders of magnitude smaller. Further 

research is planned to focus on the development of optimization methods for non-monotonic 

functions, as well as robust optimization models.  
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