
Adv Syst Sci Appl 2018; 02; 107-120

Published online at http://ijassa.ipu.ru/index.php/ijassa/article/view/539

Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

An Approach for Developing Context-aware

Adaptive Information Systems

Mahmoud Hussein1

1) Faculty of Computers and Information, Menoufia University, Egypt

E-mail: mahmoud.hussein@ci.menofia.edu.eg

Abstract. Context-awareness and adaptability are highly desirable features for modern

information systems that are operating in dynamic environments. Unfortunately, such information

systems are still difficult to build. Issues like (a) lack of an approach to compose a system from a

set of functional services and context providers and (b) lack of a mechanism to enable runtime

adaptation of the system in response to changes in its operating context need to be solved for easy

and effective development of such information systems. In this paper, we introduce a novel
approach to developing context-aware adaptive information systems. In composing the system,
our approach explicitly separates but relates the system model and the context model, so that they
and their relationships and changes can be clearly captured and managed. We also support
runtime changes to the system, the context model, and their adaptation logic in response to the
context changes. We do so by maintaining runtime representations of their models, and then we
use these representations to realize the required changes. We have developed a tool to enable
modelling the system and generate its implementations from their models. To demonstrate the
viability of our approach, we used it to develop a context-aware adaptive travel guide system. We
also assessed the performance of our approach through measuring the overhead caused by
performing the system adaptation at runtime. The results demonstrate that our approach is capable
of performing runtime adaptation with a small overhead.

Keywords: Information Systems Engineering, Context-awareness, System Adaptation, Context

and System Modelling, Model Driven Development.

1. INTRODUCTION

There is an increasing demand for information systems that are aware of their contexts and

dynamically adapt themselves at runtime in response to changes in these contexts [19].

Consider, for example, a context-aware travel guide system that a tourist can use to plan his

trip to visit some attractions. This system needs to be composed of a set of functional services

(e.g. route planner and attraction finder) that takes the context information (e.g. weather and

traffic information) into account to operate effectively (e.g. give the tourist better suggestions

for routes and attractions). Existing approaches focus on composing the system’s functionality

(e.g. [4, 6-8, 10, 14, 25-26, 29]), but they leave the task of capturing the context and relating

it with the system to the system developers. As such, the system implementation stage become

more complex and requires a developer with experience in building such type of systems. In

practice this expertise is usually lacking, and it will be a tedious task for the developers.

While the travel guide system is in operation, it needs to adapt itself to keep achieving the

tourist needs. For example, when the tourist wants to include a route planning service that was

not provided to him free initially, the system should adapt itself by adding such service (i.e.

changing system’s functionality), the context providers needed by that service to operate

effectively such as a traffic information provider (i.e. adapting the context model), and some

adaptation logic to enable the switching between different route planning services based on

108 M. HUSSEIN

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

their availability and provided qualities (i.e. changing the adaptation logic itself). Most of

existing approaches supports system’s functionality changes. However, existing approaches

intertwined the context with the system as discussed above. As such, the addition of a context

provider and relating it to the system becomes a difficult and error prone task. In addition, they

use goal-policy [14, 29], utility-policy [7-8, 26], or action-policy [4, 6, 10] to capture the

system’s adaptation logic. Most of these approaches are not able to change the adaptation logic

at runtime except the approach proposed by Andrade et al. [2] that has the ability to change

the adaptation logic manually at runtime by the system developer. However, the

communications between the system developer and the running system are usually infrequent

and sometimes impossible [18]. As such, the process of changing the system adaptation logic

needs to be done automatically without the developer involvement.

To address the above drawbacks, in this paper, we propose a model-driven approach to

developing information systems that are able to dynamically adapt themselves in response to

changes in their contexts, which we call context-aware adaptive systems. Our approach has

the following novel features. Firstly, in composing the system, we explicitly separate but

relate the system model and the context model, so that their relationships, changes, and

changes impact across the system and its contexts can be clearly captured and managed.

Secondly, our approach enables the runtime changes to the system, its contexts, and their

adaptation logic. We do so by maintaining runtime representations of their models and having

two sets of rules: adaptation rules and adaptation meta-rules and. In response to context

changes, the adaptation rules are used to decide the required changes to system and its contexts

while the adaptation meta-rules specify changes that need to be applied into the adaptation

rules themselves. In addition, our runtime environment enables applying the required

adaptation actions. Finally, our tool can be used to model a context-aware adaptive system and

generate its implementations from their models.

The remainder of the paper is organized as follows. We start by introducing a motivating

scenario in section two. Our approach to modelling context-aware adaptive information

systems is described in section three. In section four, we discuss our tool support for modelling

and realizing context-aware adaptive systems. In this section, we also measured the runtime

overhead of adding the context-awareness and adaptability features to an information system

to assure our approach’s applicability. Section five analyzes existing work with respect to our

approach. Finally, we conclude the paper in section six.

2. MOTIVATING SCENARIO AND REQUIREMENTS ANALYSIS

The travel guide information system helps a tourist to find attractions, plan his trip by

providing suitable routes, and locate a restaurant. Below are a few scenarios the tourist

experiences in using this application during his visit to Melbourne one day.

Scene 1: In the morning, the tourist starts to plan his trip. Based on his preferences (e.g.

outdoor attractions) and the weather forecast for that day (e.g. sunny), the travel guide suggests

to him a number of attractions such as Melbourne Aquarium, Royal Botanic Gardens,

Melbourne Zoo, etc. He selected some of these attractions to visit using his rented car, and

then a set of routes are displayed to him. These routes are calculated based on his current

location, his attractions list, his driving preferences (e.g. shortest route), and current traffic

information (e.g. blocked and congested roads). He selected a suitable route and started to

explore the attractions.

Scene 2: At lunch time, the application suggested to him a number of nearby restaurants

that matches his food preferences while taking into account the locations of the remaining

attractions he is planning to visit. When he selects a restaurant, the trip route is re-planned

automatically to take into account the restaurant location.

 AN APPROACH FOR DEVELOPING CONTEXT-AWARE ADAPTIVE INFORMATION SYSTEMS 109

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

To develop the travel guide system that meets the tourist needs, a set of general

requirements need to be considered:

Compose a context-aware system (Req. 1): The travel guide application need to be

consisted of a set of functional services (i.e. attractions finder, restaurant locator, and route

planner) that interact with each other to meet the tourist needs, while considering some quality

requirements (e.g. fast route planner). In addition, these services should take into account the

context information with a certain quality (if required) to give the tourist better suggestions.

For example, the route planner needs the traffic information updated to the last minute to

provide accurate estimations for the possible routes travel times and to display the routes that

are less congested first. As such, there is a need for an approach that can be used to compose

a set of functional services and context providers to provide the required context-aware

functionalities while considering their quality requirements.

Adapt the system while it is in operation (Req. 2): The travel guide provider may want

to provide the attractions finder service free, while the tourist should pay to use the other

services. As such, while the travel guide system is in operation, the tourist may wants to include

the route planner service that is not provided free to him initially. To include such service,

several changes need to be applied into the running system. Firstly, the system needs to be

adapted by incorporating the route planner service (i.e. adding a functional service). Secondly,

to find a suitable route for the tourist, there is also a need to acquire the tourist driving

preference and current traffic information and use them in calculating and suggesting the

routes (i.e. changing the context model by including context providers and their relationships

with the system functionality). Finally, the traffic information may become unavailable for a

period of time (due to communication failure with road side units, for example), and then the

travel guide provider need to have two route planners. One of them considers the traffic

information in calculating the routes while the other does not take it into account. To switch

between these two route planners while the system is running, the system adaptation logic

needs to be changed, so that a suitable route planner can be selected based on the traffic

information availability.

3. THE APPROACH

To support the development of context-aware adaptive systems, we propose a model-driven

approach. Model-driven development is the notion of constructing a model of the system that

can be transformed to a real system [9]. In this section, we introduce an organisational

approach and associated notation that can be used to model such systems and in the next section

we discuss how to transform a system model created in this notation to a real system.

3.1. Composing Context-aware Adaptive Systems: An Organizational Approach

To develop a context-aware adaptive information system such as the travel guide system,

it need to be composed of a set of functional services and context providers that interact with

(related to) each other to meet the user needs (Req. 1). In addition, while the system is in

operation it needs to adapt itself in response to context changes to preserve the achievement of

the user goals (Req. 2).

A system as an organisation is “a set of dynamic relationships between its roles to maintain

the system viability in a changing environment” [21]. The relationships can be seen as defining

the system, where they are used to specify the system roles position descriptions. These

descriptions specify what tasks the system roles should do, while there are players who

actually perform the tasks by playing these roles. In addition, in response to environment

changes, the system manager may change the system roles, their relationships, and their

players’ bindings to maintain the system viability. For example, a business organization is a

110 M. HUSSEIN

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

collection of roles (e.g. public officer, secretary, etc.) that are related to each other through

contracts (relationships) [12]. These contracts define the permissible interactions between the

organization roles and their mutual obligations (i.e. what tasks a role can request from others).

In addition, the organization roles are played by employees or outsourced to external

organizations. Furthermore, to maintain the business viability in response to business market

changes, the business manager may add roles, hire employees, etc [24].

Similarly, we can see the travel guide system as an organization. In this organization, there

are a set of functional and contextual roles that interact with each other to provide the system

required functionally while taking the context information into account. In addition, these

functional and contextual roles are played by functional services and context providers

respectively (i.e. Req. 1). Furthermore, there is an organizer role that is able to adapt this

organization in response to context changes to keep achieving the user needs. For example,

add the route planning service and the other elements related to it when the tourist needs such

service (i.e. Req 2). Because of the above correspondences, we followed the organizational

approach in modelling context-aware adaptive information systems.

Following the organizational approach, a meta-model for a context-aware adaptive system

is shown in Figure 1. The system composition is consisted of a set of roles that are related to

each other through contracts and each role can be played by one or more players. We have

three types of roles: functional, context, or organizer as shown in Figure 1. The functional

roles represent the systems functionality while context roles capture the context model. The

organizer role bound to its player is used to manage the system by adapting it in response to

context changes. In addition, to capture the system elements’ different relationships, we have

two types of contracts: functional and contextual. The functional contract is formed between

two functional roles (i.e. role A and role B) to capture their functional interactions and mutual

obligations. On the other hand, the contextual contract is formed between a context source and

a context consumer to capture the contextual requirements and their required quality.

Furthermore, for each type of role, we have a corresponding player (i.e. context provider,

organizer player, and functional player). In the following, we describe these concepts in

details with examples from the travel guide system.

Fig. 1. A meta-model for context-aware adaptive software systems

3.2 Modelling System’s Functionality and Context Model

Using the above meta-model concepts, we introduced a modelling language that can be

used by the software engineer to model a context-aware adaptive system. The basic elements

of this language are shown in Figure 2 and Listings 1 and 2. We introduced these specific

graphical notations and textual representation to ease the system modelling task compared to

using general purpose languages (e.g. UML) and to enable the system code generation from

its model [17, 23]. A UML profile was an option for defining our domain-specific language

[11], however the contracts in our model are more complex (see Listings 1 and 2) and it cannot

AN APPROACH FOR DEVELOPING CONTEXT-AWARE ADAPTIVE INFORMATION SYSTEMS 111

Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

be captured easily using the UML profile concepts. In the following, we describe our

modelling language elements and use them to model the travel guide system.

The Functional System Model: The system’s functionality is modelled as a set of

functional roles that interact with each other though functional contracts. In addition, each role

can be played by one or more functional players.

Functional Contracts: The functional contracts are used to capture the relationships

between the system functional elements and they have the following items. First, each contract

has an identifier and it is formed between two functional roles. For example, the contract “FC4”

is formed between the user and route planner roles as shown in Figure 2. Second, it has a set

of permissible interactions between the contracted roles. Each interaction as shown in Listing

1 has (a) an identifier (e.g. i2) and a name (e.g. request routes), (b) zero or more input

parameters (e.g. destination and current location), (c) a direction to specify who is responsible

for providing the operation included in that interaction (e.g. “AtoB” which mean the route

planer role is responsible for providing route calculation operation), (d) zero or more context

parameters (e.g. blocked and congested roads), and (e) a return type (e.g. routes).

Third, the contract defines a set of conversion clauses that specifies the acceptable

sequences of interactions between the functional roles. We used Interaction Rule Specification

(IRS) language to specify these temporal constraints as shown in Listing 1 [15]. For example,

“c1” specifies that “request routes” operation must be invoked before invoking “select a route”

operation. Forth, to define the system non-functional requirements (e.g. response time,

availability, and reliability), we specify a set of obligations on the functional interactions and

we followed the Web Service Level Agreement (WSLA) language in defining these

obligations [20]. For example, the obligation “o1” in Listing 1 specifies that the request route

operation “i1” should not take more than 5 seconds in calculating the routes. Finally, the

interactions between the functional roles can be permitted or blocked based on the context

information. For example, the interaction “i2” cannot be performed when the traffic

information is not available and then it needs to be blocked. To do so, each contract has a set

of regulation rules to regulate its interactions. We used Event-Condition-Action rules to decide

permitting or blocking an interaction [22]. An example of such rules is the rule shown in

Listing 1. This rule is triggered when the interaction “i2” is requested (i.e. i2.activated). When

the traffic information is not available, the interaction “i2” is blocked (R2) while it is permitted

otherwise.

Fig. 2. The context-aware travel guide system model

112 M. HUSSEIN

Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

Interaction Clauses:

i1: {requestRoutes (Destination, CurrentLocation), AtoB, Routes};

i2: {requestRoutes1 (Destination, CurrentLocation), ContextParameter

(BlockedRoads, CongestedRoads), AtoB, Routes};

i3: {selectRoutes (RouteID), AtoB};

Conversion Clauses (Temporal Constraints):

 c1: {i1 precedes i3 globally} c2: {i2 precedes i3 globally}

Obligations:

 o1: {i1, ResponseTime, LessThan , 5 seconds}

 o2: {i2, ResponseTime, LessThan , 7 seconds}

Regulation Rules:

R1: {Block the interaction i2:
 When i2.activated;

 if TrafficInformationAvailability == False;

 do i2.block()};

Functional Roles and their Players: The functional roles represent the system’s

functionality where each role position description is derived from its relationships (contracts)

with other functional roles (i.e. an abstract definition of the tasks that need to be performed by

a player who will play that role). The functional role also has one or more functional players

to provide its actual functionality at runtime. For example, there are two route planning

algorithms that can play the route planner role as shown in Figure 2. RoutePlanner1 considers

the traffic information in calculating the routes while RoutePlanner2 do not take the traffic

information into account.

The Context Model: The context model is represented through a set of contextual contracts

that are formed between context sources and context consumers to capture the system

contextual requirements. In addition, there are a set of context providers to make the context

information available to the system.

Contextual Contracts: The contextual contract defines what context information required

by a system element (i.e. the context consumer in Figure 1 such as functional contract,

organizer role, or functional role) and the quality of this required context (e.g. accuracy,

freshness, etc.). For example, in Listing 2, a contextual contract “CC6” is used to specify that

the functional contract four needs to know (a) the congested roads with freshness up to the last

minute and accuracy greater than 80%, and (b) the blocked roads with accuracy greater than

95% so that the route planner can calculate the routes effectively. In addition, it needs to know

the traffic information availability to decide permitting or blocking the interaction “i2”.

Listing. 2. The contextual contract between the traffic information role and the contract FC4

Contextual Contract ID CC6: TrafficInformation_FC4

Parties: Context Source:TrafficInformation;

Context Consumer: FC4;

Context Attributes:

a1: CongestedRoads;

a2: BlockedRoads;

a3: TrafficInformationAvailability;

Context Attributes Quality:

 q1: {a1, freshness, LessThan , 1 minute}

 q2: {a1, accuracy, GreaterThan, 80%}

 q3: {a2, accuracy, GreaterThan, 95%}

Context Roles and Context Providers: The system contextual requirements are captured

through a set of contextual contracts as discussed above. These contracts are then used to drive

the context roles position description, where each context role bound with a context provider

(each context role can have one or more context providers) is responsible for providing some

context information. For example, a weather role bound to its provider (i.e. the weather service)

Listing. 1. The functional contract between the user and the route planner functional roles
Functional Contract ID FC4: User_RoutePalnner

Parties: Role A: User; Role B: RoutePlanner;

 AN APPROACH FOR DEVELOPING CONTEXT-AWARE ADAPTIVE INFORMATION SYSTEMS 113

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

is responsible for providing current temperature and rain level to the attraction finder service,

so that a correct suggestion is given to the user based on current weather conditions.

3.3 Engineering System’s Adaptability through Organizer Role and its Player

To make the system able to adapt itself in response to context changes, there is a need for

a mechanism to first decide when and what to adapt and then apply the decided adaptation

actions. We do so through the system organizer role and its player.

We modelled the organizer player as a set of Event-Condition-Action rules that can be used

to decide when and what to adapt [22]. The event and condition part of a rule specifies when

to adapt, and the action part of the rule defines what to adapt. The events that activate the

adaptation rules are usually context changes where the system needs to adapt itself in response

to these changes. The rule condition is used to specify the context situation that needs a system

reaction(s). The rule action is a set of adaptation actions to cope with the context changes. In

general, the adaptation actions are to add, remove, or modify a system element. For example,

to change the system functional and context roles, we have three adaptation actions: add role,

remove role, and change role-player binding. In the same manner, we have actions to add,

remove, and change a functional contract and a contextual contract. To apply the adaptation

actions, the organizer role is engineered with a set of standard methods that are corresponds

to the adaptation actions so that the organizer player can invoke these methods to adapt the

system while it is in operation.

An example of an adaptation rule is shown blow. This rule is activated when the tourist

wants to include the route planning service in his application (i.e. event). In response to the

changes in the tourist needs (i.e. he wants the route planning service, condition), the application

adapts itself (i.e. actions) by adding a set of roles (e.g. route planner), adding a set of contracts

(e.g. FC3 and FC4), and bind players with the added roles (e.g. bind route planner role with

route planner one).
Rule “AdaptationRule1”: {

 When ValueChanges (RoutePlannerSelected);

 if RoutePlannerSelected == True;

 do AddRole(“RoutePlanner”), AddContract (“FC3”), AddContract (“FC4”),

 AddRole (“TrafficInformation”), AddContract (“CC6”), AddContract (“CC8”),

 Bind(“RoutePlanner”, “RoutePlanner1”), Bind(“TrafficInformation”,

 “RoadSideUnit”)};

When the running system is changed, its adaptation rules may need to be adapted too. For

example, after performing the adaptation actions in the above rule, we can see that the route

planner role has two players and the traffic information role has two context providers as

shown in Figure 2. As such, there is a need for some rules to decide the switching between the

added roles-players. To do so, we specified another set of rules (i.e. adaptation meta-rules)

that adapt the adaptation rules themselves. These rules have the same structure of the

adaptation rules describe above, but they have different adaptation actions (i.e. add rule and

remove rule). An example of such meta-rules is show blow. In this rule, four adaptation rules

are added to enable a correct selection of a route planner algorithm and a traffic information

provider when the route planning service is included into the running system.
Rule “AdaptationMetaRule1”: {

 When ValueChanges (RoutePlannerSelected);

 if RoutePlannerSelected == True;

 do AddRule(“SelectRoutePlanner1”), AddRule(“SelectRoutePlanner2”)};

 AddRule(“SelectRoadSideUnit”), AddRule(“SelectTrafficInfoProvider”)};

4. IMPLEMENTATION AND APPROACH EVALUATION

In this section, we describe the tool that has been developed to support the modelling and

realization of context-aware adaptive information systems, and how to use this tool to develop

114 M. HUSSEIN

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

the travel guide system described in section two. We also measure the performance overhead

of adding the adaptability feature to a software system using our approach to assure its

applicability.

4.1 Tool Support for Modelling Context-aware Adaptive System

We have developed a tool to enable the modelling of a context-aware adaptive system. It

enables the software engineer to specify the system roles, players, contracts, and adaptation

rules. Screenshots from our tool during the system modelling are shown in Figure 3.

Fig. 3. Screenshots from our tool during the modelling of the travel guide application

To simplify the process of specifying the adaptation rules, we provide a GUI that helps the

engineer in codifying these rules. This GUI is used to specify the rule conditions and

adaptation actions. The rule events are directly inferred from the rule conditions, where they

usually are the changes in the context attributes that are used in the rule conditions. An example

is shown in Figure 4, where the engineer can specify the current situation i.e. the user wants to

include the route planning service and a set of adaptation actions need to be performed in this

situation such as add route planner role (Figure 4-A), bind the route planner one player to

route planner role (Figure 4-B), and add functional contract “FC4” (Figure 4-C).

Fig. 4. Specifying the travel guide system adaptation rules using our tool

4.2 Realizing Context-aware Adaptive Systems

To realize context-aware adaptive systems, we used ROAD framework1 where it follows

the organizational approach as our approach does. This framework is an extension to the

Apache Axis22 to realize adaptive software systems [16]. To use this framework, we used our

tool to transform the model described in the previous section to a model that is compatible

with the ROAD framework. In the following we describe the major transformations we did

while the others are one-to-one mapping.

1 http://www.swinburne.edu.au/ict/research/cs3/road/
2 http://axis.apache.org/axis2/java/core/

http://www.swinburne.edu.au/ict/research/cs3/road/
http://axis.apache.org/axis2/java/core/

 AN APPROACH FOR DEVELOPING CONTEXT-AWARE ADAPTIVE INFORMATION SYSTEMS 115

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

First, the use of context information as extra parameter in a functional interaction is not

considered in ROAD model. But, during the system execution, the functional contracts are

used to mediate the interactions between the system roles. When an interaction reaches a

contract a set of rules are executed to decide permitting or blocking it (in ROAD these rules

are codified as Drools rules3). As such, we added a rule to these rules that is activated when a

contextualized interaction is received. This rule is responsible for updating the context

information required by this interaction before sending it to the destination role. An example

of such rule is shown blow. This rule updates the context information (i.e. CongestedRoads

and BlockedRoads) of the request route interaction when it is received at the functional contract

“FC4”.

Second, in ROAD model, the context information is maintained as a set of facts. Each fact

contains one or more context attributes. These facts can be provided or consumed by the

system roles or its functional contracts. In our model, the contextual contracts are used to drive

context roles descriptions, and then each context role can be seen as a collection of context

attributes. This makes a correspondence between a fact in ROAD terms and context role

derived from contextual contracts in our model. As such, we use the contextual contracts to

drive context roles descriptions, and then we transform each role position description to a fact

in ROAD model.

Third, to enable the execution of the adaptation rules and meta-rules described above, we

transform them to Drools rules, so that the Drools rule engine can be used for their execution

to decide the required adaptation actions while the system is in operation. The result of

transforming the “AdaptatioRule1” described above is shown blow. In transforming the rules,

we used the rule “When” part to specify the rule event (e.g. the user need of the route planning

service is changed). In addition, the rule “Then” part is used for capturing both the rule

condition and action. To evaluate the rule condition part, we created a class called

“ConditionEvaluator”. This class has a method called “evaluate” that takes a condition as an

input, and then it replace the condition variables with current context values and returns true

or false based on the condition evaluation. When the condition is evaluated to true (i.e. the user

wants the route planning service for example), a set of adaptation actions are added to the

adaptation script (e.g. actions.addAction(“AddRole_RoutePlanner”). By the same manner, the

adaptation meta-rule “AdaptatioMetaRule1” can be generated.

The adaptation rules are used to generate an adaptation script. This script is then used by

the organizer player to adapt the running system by invoking the organizer role standard

adaptation methods that are corresponding to the required actions. These standard methods

require some details to execute. For example, to add a role there is a need for the role name,

3 http://www.jboss.org/drools

http://www.jboss.org/drools

116 M. HUSSEIN

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

identifier and description. Here comes the role the maintained runtime representation of the

system models where they have these required details. As such, the organizer player parses

these representations to get the required details and generate the executable actions. For

example, adding the route planner role in the above script is transformed to

organizer.addNewRole(“FR2”, “RoutePlanner”, “Role represents route planning service”).

The organizer variable is a reference to the running system organizer role. A similar

mechanism is used for changing the adaptation rules, where we have a reference

of the loaded adaptation rules (i.e. instance of KnowledgeBase 4 class) and the methods

addKnowledgePackages and removeRule are used to add and remove adaptation rules

respectively.

The above transformation process is automated in our tool. When the software engineer

completes the system modelling, he can press a button that generates the files required by the

ROAD framework to deploy an instance of the system. This instance contains the system roles,

their contracts and the generated organizer player. To have a fully running system, we have

developed a set of functional players and context providers. For example, we used Google

maps5 services to develop he route planners, attractions finder, and restaurant locator players.

We also have developed a GUI to enable the user interactions with the provided services as

shown in Figure 5.

In Figure 5-A, the application only includes the attraction finder service which is provided

free initially. This service suggested to the tourist a set of attractions based on his preference,

his current location, and the weather forecast. He can select some of them to be included in his

attractions list. To plan a route to see these attractions, the tourist requests the route planning

service to be included in his application. As such, the application is adapted to include such

service by performing the adaptations described above. After the internal adaptations are

performed, the application GUI is changed also by including the route planning service. When

this service becomes available, it acquires tourist location, his attractions list, and traffic

information to suggest a suitable route (see Figure 5-B).

Fig.5. The context-aware adaptive travel guide application in action

4.3 Performance Evaluation6

The overhead in our approach is the extra time needed to adapt the system while it is in

operation. This can be calculated by the time required to monitor the context, decide the

required adaptation actions, and act these actions.

Monitor the context. In our approach, there is a need to keep track of some context

variables that cause system adaptation. When any of the variables that the adaptation rules are

interest in changes, this change is notified to the organizer player to decide the needed

4 http://docs.jboss.org/jbpm/v5.1/javadocs/org/drools/KnowledgeBase.html
5 http://code.google.com/apis/maps/documentation/webservices/
6 A PC with Intel Core 2 Due 3 GHZ CPU and 3 GB RAM is used as the test-bed and Drools-5.1is used as the rule engine.

http://docs.jboss.org/jbpm/v5.1/javadocs/org/drools/KnowledgeBase.html
http://code.google.com/apis/maps/documentation/webservices/

 AN APPROACH FOR DEVELOPING CONTEXT-AWARE ADAPTIVE INFORMATION SYSTEMS 117

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

adaptations. The time required to notify the system organizer with a context variable change

equals to 14.59 milliseconds in average.

Decide required adaptation actions. When the context is changed, the adaptation rules

need to be evaluated to decide the required adaptation actions. The overhead in the decision

making process is laid in rules loading time at the beginning and their execution time in

response to context changes. To measure that overhead, we used sets of rules with sizes 10,

20, 30, 40, and 50. Figure 6-A shows that the rules loading time varies from 1.81 to 2.05

seconds based on the adaptation rules size. This is not much overhead where it is usually

performed once at the system start-up. In addition, the time to execute the rules is between

14.8 to 29.9 milliseconds (see Figure 6-B) which cannot be considered as an overhead also.

Fig.6. The adaptation rules loading and execution times

Apply the adaptation actions. We have different adaptation actions that can be performed

to adapt the system in response to context changes. Table 1 summarises the average time

needed to apply some of the required adaptation actions in milliseconds. In Table 1, we only

show the actions for adding some elements to the system, where they are of interest from the

user point of view (i.e. they are added where the user wants them). The adaptation actions for

removing parts of the system have a small overhead and are performed while it is running. As

such, they do not affect the user interactions with the system. Due to space limitation, we do

not present them here.

Table 1. The time required to apply the required adaptation actions in milliseconds

Adaptation action Required

time

Adaptation action Required

time

Add Functional/Context Role 198.953 Change Role-Player

Binding

0.0348

Add Functional Contract 0.204 Add Adaptation Rule 0.0096

Add Contextual Contract 1.565

A delay that the tourist can experience in using the travel guide system is happened when

he wants to include the route planning service. To include this service, it takes around 422

milliseconds which cannot be considered as a delay to the tourist.

5. RELATED WORK AND DISCUSSIONS

A number of approaches have been proposed to support the process of developing context-

aware adaptive systems. Some of them propose a way to model and realize such systems [4, 8,

14, 25-27, 29] while the others provide a framework or a middleware to help the software

engineer in realizing the context acquisition and interpretation [5, 13, 28] or the system

runtime management [1-3, 7, 10]. In this section, we analyse existing and our approaches in

relation to the requirements we have identified in section two.

Compose a context-aware system: Existing approaches to developing context-aware

adaptive systems can be classified into two categories. On the one hand, a set of approaches

consider the system functionality as a single service and the context information is used to

118 M. HUSSEIN

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

adapt this service operational parameters [27, 29]. On the other hand, a set of approaches has

been proposed to compose a system from a set of components that are changeable at runtime

to cope with context changes [4, 8, 14, 25-26]. However, they capture the relationships

between the system and its context implicitly during the system development except few who

only consider these relationships explicitly at design time [4, 27, 29]. As such, the system

implementation complexity is increased and the system-context relationships changes become

difficult and error prone. In addition, in composing system’s functionality, existing approaches

connect the composed components directly (i.e. linking the components required and provided

interfaces directly) [4, 8, 14, 25-26]. As such, in large scale systems, the composed elements

complex interactions and their mutual obligations become difficult to capture and manage. In

our approach, we explicitly represent the relationships between the system and its context and

between the system functional elements themselves. As such, we can clearly compose and

realize a context-aware adaptive information system. Similar to our approach Sheng et al. [27]

propose approach who only consider these relationships explicitly only at design time and they

also consider the system as a single service

Runtime adaptation of the context model: At runtime the context model may change by

including a context attribute or remove an existing one as shown in our motivating scenario.

However, most of existing approaches have only a design time context model and usually it

disappears during the system implementation where it is intertwined with system’s

functionality and/or management. Few approaches keep the context model explicit at runtime

[26, 28], so that they can switch between different context providers or include new providers

while system is in operation. However, they do not have the ability to change the context model

itself by adding, removing, or modify the system required context attributes. Our approach has

an adaptable runtime representation of the context model and its management enables its

runtime changes.

Adaptation logic runtime changes: Existing approaches use goal-policy [14, 29], utility-

policy [8, 26], or action- policy [1-2, 13] to capture the system adaptation logic. Most of these

approaches do not support the runtime changes to the system adaptation logic except Andrade

et al. [2] who enable the system developer to change this logic manually. However, the

adaptation logic of the travel guide system need to be changed automatically without the

developer involvement as the system may include or exclude parts of its adaptation rules while

it is running. To do so, our approach maintains a runtime representation of the adaptation rules

and we have a set of adaptation meta-rules that decides the required changes to the adaptation

rules in response to context changes. In this paper, we adopted the action-policy approach in

capturing the adaptation logic because of its expressiveness and availability of tools that

supports runtime changes of the rules.

6. CONCLUSION

In this paper, we have proposed a model-driven approach to developing context-aware

adaptive information systems. We have considered the system model, the context model, and

their relationships explicitly from modelling to realization and to runtime execution and

adaptation. In addition, we have developed a prototype tool for modelling the system and

generating its implementations from their models. Furthermore, we have demonstrated our

approach through the development of the context-aware adaptive travel guide system. We also

measured the overhead of adding the runtime adaptability feature to a software system using

our approach.

Compared to existing approaches, our approach has the following key contributions. Firstly,

we explicitly separate but relate the system model and the context model, so that their

relationships and changes can be clearly captured and managed. Secondly, the relationships

 AN APPROACH FOR DEVELOPING CONTEXT-AWARE ADAPTIVE INFORMATION SYSTEMS 119

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

between the system functional elements are represented explicitly, so that the functional

elements interactions, mutual obligations, and changes can be clearly captured and managed.

Thirdly, our approach supports the runtime adaptation of the system, the context model, and

their adaptation logic in response to context changes. Finally, our tool supports the system

modelling and the generation of its implementations from their models.

As future work, our approach can be enhanced in several directions. First, software systems

are usually deployed in environments which are not totally anticipated at the system design

time. While we have a runtime representation of the system aspects (including rule-based

management) to be able to cope with unanticipated changes, runtime system management

strategies and decision-making techniques are required to fully realize this capability. Second,

we have applied our approach to the tourist travel guide case study, and the results were

promising. We will perform more validations to assess the applicability and practicality of our

approach.

REFERENCES

[1] Adamczyk, J., Chojnacki, R., Jarząb, M., & Zieliński, K. (2008). Rule Engine Based

Lightweight Framework for Adaptive and Autonomic Computing International

Conference on Computational Science (Vol. 5101, pp. 355-364).

[2] Andrade, S. S., & de Araujo Macedo, R. J. (2009, 18-19 May 2009). A non-intrusive

component-based approach for deploying unanticipated self-management behaviour.

Paper presented at the Software Engineering for Adaptive and Self-Managing Systems,

2009. SEAMS '09. ICSE Workshop on.

[3] Asadollahi, R., Salehie, M., & Tahvildari, L. (2009, 18-19 May 2009). StarMX: A

framework for developing self-managing Java-based systems. Paper presented at the

Software Engineering for Adaptive and Self-Managing Systems, 2009. SEAMS '09.

ICSE Workshop on.

[4] Ayed, D., Delanote, D., & Berbers, Y. (2007). MDD approach for the development of

context-aware applications. Paper presented at the Proceedings of the 6th international

and interdisciplinary conference on Modeling and using context, Roskilde, Denmark.

[5] Capra, L., Emmerich, W., & Mascolo, C. (2003). CARISMA: context-aware reflective

middleware system for mobile applications. Software Engineering, IEEE Transactions

on, 29(10), 929-945.

[6] David, P.-C., & Ledoux, T. (2006). An Aspect-Oriented Approach for Developing Self-

Adaptive Fractal Components Software Composition (SC'06) (Vol. LNCS 4089, pp. 82-

97).

[7] Elkhodary, A., Esfahani, N., & Malek, S. (2010). FUSION: a framework for engineering

self-tuning self-adaptive software systems. Paper presented at the Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of software

engineering, Santa Fe, New Mexico, USA.

[8] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., & Gjorven, E. (2006). Using

Architecture Models for Runtime Adaptability. IEEE Softw., 23(2), 62-70. doi:

http://dx.doi.org/10.1109/MS.2006.61

[9] France, R., & Rumpe, B. (2007). Model-driven Development of Complex Software: A

Research Roadmap. Paper presented at the 2007 Future of Software Engineering.

[10] Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B., & Steenkiste, P. (2004). Rainbow:

architecture-based self-adaptation with reusable infrastructure. Computer, 37(10), 46-

54.

[11] Giachetti, G., Marín, B., & Pastor, O. (2009). Using UML as a Domain-Specific Modeling

Language: A Proposal for Automatic Generation of UML Profiles Advanced Information

Systems Engineering (Vol. LNCS 5565, pp. 110-124).

http://dx.doi.org/10.1109/MS.2006.61

120 M. HUSSEIN

 Copyright ©2018 ASSA. Adv. in Systems Science and Appl. (2018)

[12] Governatori, G. (2005). Representing Business Contracts in RuleML. International

Journal of Cooperative Information Systems, 14(2), 181-216.

[13] Gu, T., Pung, H. K., & Zhang, D. Q. (2005). A service-oriented middleware for building

context-aware services. J. Netw. Comput. Appl., 28(1), 1-18. doi:

http://dx.doi.org/10.1016/j.jnca.2004.06.002

[14] Heaven, W., Sykes, D., Magee, J., & Kramer, J. (2009). A Case Study in Goal-Driven

Architectural Adaptation Software Engineering for Self-Adaptive Systems (pp. 109-127):

Springer-Verlag.

[15] Jin, Y., & Han, J. (2005, 15-17 Dec. 2005). Consistency and interoperability checking for

component interaction rules. Paper presented at the Software Engineering Conference,

2005. APSEC '05. 12th Asia-Pacific.

[16] Kapuruge, M., Colman, A., & King, J. (2011, Aug. 29 2011-Sept. 2 2011). ROAD4WS --

Extending Apache Axis2 for Adaptive Service Compositions. Paper presented at the

Enterprise Distributed Object Computing Conference (EDOC), 2011 15th IEEE

International.

[17] Kelly, S., & Tolvanen, J. P. (2008). Domain-specific modeling: enabling full code

generation: Wiley-IEEE Computer Society Pr.

[18] Kramer, J., & Magee, J. (2007). Self-managed systems: an architectural challenge. Future

of Software Engineering, 2007. FOSE'07, 259-268.

[19] Liaskos, S., Litoiu, M., Jungblut, M., & Mylopoulos, J. (2011). Goal-Based Behavioral

Customization of Information Systems. In H. Mouratidis & C. Rolland (Eds.), Advanced

Information Systems Engineering (Vol. 6741, pp. 77-92): Springer Berlin / Heidelberg.

[20] Ludwig, H., Keller, A., Dan, A., King, R. P., & Franck, R. (2003). Web service level

agreement (WSLA) language specification. IBM Corporation, 815-824.

[21] Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge the biological roots of

human understanding. 1st ed edn. Boston: New Science Library. Distributed in the

United State by Random House.

[22] McCarthy, D., & Dayal, U. (1989). The architecture of an active database management

system. ACM SIGMOD Record, 18(2), 215-224.

[23] Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-

specific languages. ACM Computing Surveys (CSUR), 37(4), 316-344.

[24] Mintzberg, H. (1994). Rounding out the manager's job. Sloan Management Review, 36,

11-26.

[25] Morin, B., Barais, O., Nain, G., & Jezequel, J.-M. (2009). Taming Dynamically Adaptive

Systems using models and aspects. Paper presented at the Proceedings of the 31st

International Conference on Software Engineering.

[26] Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., . . . Scholz,

U. (2009). MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-

Oriented Environments. In B. Cheng, R. de Lemos, H. Giese, P. Inverardi & J. Magee

(Eds.), Software Engineering for Self-Adaptive Systems (Vol. 5525, pp. 164-182):

Springer Berlin / Heidelberg.

[27] Sheng, Q. Z., Jian Yu, Segev, A., & Liao, K. (2010). Techniques on developing context-

aware web services. International Journal of Web Information Systems, 6(3).

[28] Taconet, C., Kazi-Aoul, Z., Zaier, M., & Conan, D. (2009). CA3M: A Runtime Model and

a Middleware for Dynamic Context Management. Paper presented at the Proceedings of

the Confederated International Conferences, CoopIS, DOA, IS, Vilamoura, Portugal.

[29] Zhang, J., & Cheng, B. H. C. (2006). Model-based development of dynamically adaptive

software. Paper presented at the Proceedings of the 28th international conference on

Software engineering, Shanghai, China.

http://dx.doi.org/10.1016/j.jnca.2004.06.002

