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Abstract: Generally, most of the real plantgerate in a wide range afnknown operating
conditions but bounded parameter uncertaintieshim control systemrheseuncertaintiesn the
control systentausedegradation of system performance and destabilizatiogeneral, it is not

easy to design a controller for interval tirhéelay process plant, because of interval dead time
Therefore, robst control of these uncertainties asvital to operate the plant under stabilized
condition With a viewto conquering the uncertainty) this paper anew stability conditions are
developed for determing the stability of interval process plants basaed oR o u Thhoeefnend

then a robust PI/PID controller is designed for the interval process plant with and without time
delay based on these newly developed stability conditions for stability of interval polynomial by
using Particle Swarm Optimization akijbm. A set of inequalitiesfor a closed loop
characteristic polynomial of an intervakocess planin terms of controller parameteere
derivedfrom thesenewly developed stabilitgonditions.These inequalities are solved to obtain
controller paramets with the help of PSO algorithnThe PI/PID controller designed in this
proposed method stabilizes the given interval plant with and without time delay at all operating
conditions The proposed method has the advantage of having less computationalxétyrapie

easy to implement on a digital computer. The viability of the proposed methodology is illustrated
through numerical examples of its successful implementation. The efficacy of the proposed
methodology is also evaluated against the available agmsgresenteinh the literatureand the
results were successfully implemented.

KeywordsKhar i t onovds theor em, parametric uncertainty
particleswarm optimization

1. INTRODUCTION

Generally, many of the real plantperate in a wide range of unknown operating conditions
bounded under parametric uncertainties called interval plants, in control sy$temsrge
uncertainty present in the control system causes degradation of system performance and
destabilization. The&fore, robust @ntrol of these uncertainties V@tal to operate the plant

under stabilizeadondition This necessitates a robust controller design which could stabilize
the plant for all the operating conditions. Hence designing a robust controllerefor th
parametric uncertain plants havinmknown, butbounded parameter uncertainties has
become the problem of researctowadays With a view to minimizing the stated
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uncertainties, many solutions are proposed in the literature for the simulation, design and
tuning of controllergl-3]. Recently, affordable results have been reported on computation of
all stabilizng P, PI and PID controllers which are mentioned h&he.problemin [4] of
stabilizing a linear timénvariant plant using a fixed order compesavas considered by
usingthe HermiteBiehler TheoremA feasible Robust PID controllers have been developed

in [5] using the minimax search, a evolutionary algorithm based oRarticle Swarm
Optimization The problem of designing robust and optimdd bntrollers for a given linear
time-invariant plantwas proposed inf@]. Desigh of a robusPID controller for a firsorder

lag with pure delay (FOLPD) modeh [8] using PSOenabled automated quantitative
feedback theory (QFTand compared with manuajraphical technique#A design method

was proposed for calculating tbetimum values PID controller for interval plants using the
PSO algorithm Most of the practical systems operdi@sed on approximate polynomial
models;the parameters of these modelsuld lie within an interval but not hawpecific

values and are unknown. Therefore, the stability analysis of polynomials subjected to
parameter uncertainty has received considerable attention after the celebrated theorem of
Kharitonov [10], which asse&s robust stability under the condition that four specially
constructed extreme polynomials, called Kharitionov polynomials are HurRibbust
stability of interval polynomial is also discusskdre by many researcherémong these
discussions, some imgant methods have been presented here from the literAtuobust
controllerhas been designdd1] for interval plants based ddhar i t onovdt heor e
results Nieof [12] for fixed polynomials A systematic optimization approaalas proposed

[13] to design a robust controller using the welbwn Kharitonov and HermiBiehler
stability theoremgor singleinput/singleoutput process systems in the presence of unknown
but bounded parameter uncertainti@he problem of robust stabilizatigh5] of a linear time
invariant systenwas consideredubject to variations of a real parameter veas®d to design a
robustcontroller The design of a robusbursecontrollerwas proposed in [16pr a cargo

ship interacting with an uncertain environment gsSOenabled automated Quantitative
Feedback TheonyA fractionatorder proportionalntegral controller was proposed and
designedin [17] for a class of nonlinear integerder systemd$o guarantee the desired
control performance and the robustness & ttesigned controllers to the loop gain
variations A robust controller was designed in [18] for interva plants based on the result

of Khar it on oWithtakiewoto reducing the test of Hurwitz stability of the entire
family, several invstigations have been presented in the literature. Among these, a few
imperative investigations amliscussed herencluding; an algorithmhasbeenpresented in

the design of a robust Pl and PID contro|@0]. This method is based on approximating the
fuzzy coefficients by the nearest interval system and then a robust controller is designed
using the necessary and sufficient conditions for stability of the inteygédmsThe Inverse
Bilinear Transformation (IBT)s proposedin [21] to design a robustoatroller using the
necessary and sufficient conditions for a disctisbe interval plantsThey designed a robust
controller using the necessary and sufficient conditions for a chemical process plant with
delay subjected to unknown, but bounded paramateertainties referred to an interval
process plant with interval timeeldy. Srinivasa Raet.al[22] presented a new algorithm for

the design ofthe robust PI controllefor a process control interval plansingRout he d s
theoremand Khar i temrAoobuét®l contioledasign approactvas discussed in

[23] by finding the controllers using pole placement method for active suspension system
with parametric uncertaintyA pure gain compensator c(s) = K stabilizes the entire interval
plant family such that distinguished set of eight of the extreme planésstableZ4]. The

first order controller is made bthe experimental setuin [25] which wasdeveloped by
Ghosh.They prove that to robustly stabilize the extreme plants which are obtairtakifg
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all possible combinations of extreme values of the plant numerator has degree m and the
plant denominator is monotonic with degree n, the number of extreme plants can be high a
Next =2""1in [26]. An explicit equation of control parameters dafg the stability
boundary in parametric spaeas derivedbased orthe plant modein time domain and by

using the extraordinary feature results fraime Kronecker sum operatior2q]. The
stabilizing values of the parameters of a PI contrallere compted based on plotting the
stability boundary locumethod in [28] A complete survey of these extreme points is given

in [29]. The recessary and sufficient conditeim [18] and[30] for interval polynomials are
proposedising the results 4iL2] for fixed polynomials.

In process industries due to the presence of transportation lag, recycle loops, and dead
time corresponding to composition analysis, time delays frequently occur. The mathematical
model of uncertain processes has described by the inteneatlélay model in the presence
of time delay. Unfortunately, as compared with the successful development of controller
design for the rational interval model, much less effort has been devotkd processes
described by an interval tirgelay model; ths is because the process delay is a source of
instability and can render many established teclesdnadequaté new approacli32] was
proposedo determine the entire set sffabilizingPI/PID parameters for time delay process
with bounded uncertaintiasing thecombination of thgeneralizedKharitonov theorem and
the Hermit Biehler theorernthe design of a Smith predictor for the operation of processes
under the variation of process gain, time constant and dead time based on the caatept of
inferental control frameworkwas presented ir8R]. By considering the interval timgelay
process,an alternative Smith predictor desigm [33] was proposedor the purpose of
ensuring robust perforance. Tie use ofthe structured singular valu® designrobug
controllerswas presented in [34fpr interval timedelay processeshe designersof the
robust stabilizing controllesind construcion of prefilter with interval time delayhave been
considered in [30jo guarantee both robust stability and perforneanc

Particle swarm optimization (PSO), first introdddey Kennedy and EberhdB5] is one
of the modern heuristic algorithms. It was developed through simulation of a simplified
social system, and has been found to be robust in solving continuous aonliienization
problems [9] and[36-37]. The PSO technique can generate a -gjgality solution within
shorter calculation time and stable convergence characteristic than other stochastic methods.

In this note a PI/PID controller is designed for an im&rprocess plant with and without
time delaybased on theewly developechecessary and sufficient stability conditiombese
conditions are used to derive a set of inequalities in terms of controller parameters. Th
inequality constraints from the chataristic polynomial are solved consequently to obtain
the controller parameters with the help of PSO algorithm. The efficacy of the proposed
method isdemonstrated by implementing witipical numerical examples available in the
literature.In comparisorwith the method available in the literatJgd, [8], [18], [30] and
[31] the proposed method in this paper is simple and involves less computational complexity.
The paper is organized as follows: Sectiodeacribesdevelopmenbf stability conditions
for robust stability of interval polynomiaSection3 gives thedesign ofrobuststabilizing
PI/PID controller with and without time delay process pla&ection4 proposes PSO
algorithm to find the controller parameters. In Sectpthe proposed method &pplied to
design a robust PI/PID controller for an interval progeast

2. DEVELOPMENT OF STABILITY CONDITI ONS FOR INTERVAL
POLYNOMIAL

According to Andersoet.al[38] the necessary and sufficient condition for robust stability of
interval polynomiad of ordern ¢ 3 is positive lower bounds on the coefficients of an
interval polynomial.
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Therefore, consider an interval polynomial of ordef
P(s)=ai,ps ,wherep I [&,h].
P(s)=ps+p, =[a;,b]s+[ay,b,]

Therefore, as peknderson38], the robust stality condition is

a, >0anda, >0 i.e.a;>0 fori=0,1.

Similarly for ordem=2

P(s)=aiops = p,s" +pis+p, =[a,,b,]s" +[a, b 1s+[a,.b,].
Therefore, the robust stability condition is
a,>0,a >0 anda, >0 i.e.a; >0 fori=0,1,2.

Lemma 2.1
Consider a real Hurwitz polynomial Q(s) of the form
Q(e)=q,s" +0q,,8" +..+qS +...+qS+q (2.1)
i=012,....... n
Wherey; is real and positive >0.
If any complex number z such

that R, >0, f(z) >|f(- z), moreover, 1f(2),. . >|f(-2) ., where C is a Closed

contour,then, according o Ro ut h e 8% thetfdll@vong tevonpolynomials can be
formulated.

Q= 21Q)+Q-9)] .z, 22)

1
Q= 2_8[ Q(s)- Q(-s)] |52:X (2.3

Theorem 2.1: For stability ofQ(s)the two polynomial$Q, and Q,formed by the alternate

coefficients of a Hurwitz polyomialin accordance with equation®.2) and @.3) must have
negative real zeros.he proof of this is given in B.

2.1 Necessary conditions for stability of an interval polynorsa
Consider an interval polynomial of order n > 3 of the form

P(s)=p,s"+p,,S"" +..+psS +..+ s+,
Wherep, i [a,b] fori =0123,.....1.

The necessary conditions for an interval polynomial to be stable is given as
b 2 a >0for i=0123,.....n (2.4)

2.2 Sufficient conditions for stability of interval polynomial for n > 3
2.2.1. For Fourth-order Interval Polynomial (n= 4)

Consider the fourtlorder interval polynomial as

P(s) = p,s* + pss® + p,S° + pys+ g (2.9
Wherep, I [ag,b5], piT [a.0,], po1 [@,,b,], psl [ag,b;]andp, 1 [a,,b,]
Using Lemma2.1, TheP(s)can be represented into two polynomigdsandP; as given

below.

3 =%[ P(s)+P(-S)l| 5 =12, by]1x° +[ a1 x+[ag by ] (2.9

Copyr ROGSABSAE Adv. in Systems Science and Ap(2018)



96 D.SRINIVASA RAO, M. SIVA KUMAR AND M. RAMALINGA RAJU
1
P1:2—S[P(S)' P(-s)] 32:X=[a3,b3]x+[al,b1] (2.7)

According to the Theorem.2, for robust stability of interval polynomi&l(s)the above

polynomialsPo andP: must have negative real zeios.

[a;.b,] 2 >4 3y, 1 a4,b4] (2.9
- [al7bl] < (29)
[asb;]

Apply interval arithmeticto the above equations (2.8) af®l9), the stability conditions
for the interval polynomial are

aZ > 4byb, (2.10)
b2 > 4a,a (2.11)
A A3y
s Y (2.12)
by
-b <0 (2.13)
as

From the above four equations, the sufficient conditions for the robust stability of fourth
order interval polynmial P(s) are

aZ > 4byb, (2.14)
“%cg (2.15)
3
2.22. For Fifth-order Interval Polynomial (n=5)
Consider thdifth -order interval polynomial as

P(s)= pss® + p,s* + pss® + p,s” + pys+ g (2.16)
Where
Pol [89. 0], Pl [a.b, ], poI [a@,0,], P31 [a5,b5], P41 [&4,b,]and
ps| [as.bs]
Using Lemma2.1, TheP(s)can be represented into two polynomigdsandP; as given
below.
1
Ry = J[P(S)+P(-5)]| o, =[asby]x* 4@, b, ] x+ [ 2 by ] (217)
1
P :2—3[ P(s)- P(- 3)]‘52:X =[asbs]1x* +[ag,by 1 x+[ 2 b;] (218

According to the Tieorem 21, for robust stability of interval polynomi&l(s)the above

polynomialsPo andP: must have negative real zenos.
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[a,.b,]% >4 8.0y ][ a,.b,] (2.19)

[a; 1b3]2 >4[a;,b ][ as,bs]

Apply interval arithmetido the above equations {B) and (2.2)) the stability conditions for

(2.20)

the interval polynomial are

a5 >4byb, (2.21)
bs > 4aya, (2.22)
aZ > 4bb; (2.23)
bZ > 4a,a, (2.24)

From the above four equations, the sufficient conditions for the robust stabilifyhof f

order interval polynomial P(s) are

a5 > 4byb,

a; > 4b;b

(2.25)

(2.26)

In a similar manner, the robust stability condiBofor interval polynomial of degree
n>4 can be determinedThe robust stability conditions for higherder interval
polynomials are represented in a tabular form in Talle

Table2.1. Robust Stability conditions for various higherder interval polynomials

Order of the Robust stability conditions
polynomial Necessaryonditions Sufficient conditions
n=3 a >0 Wherei=0,1,2,3. ai > 30)b,
n=4 | a >0 Wherei=0,1,234. a2 > 4bb,and 'b—ai <0.
3
n=> 2> dnp,and a2>4bh,
a, >0Wherei=0, 1,4, 5. & 4 & -
2 2
n=6 a, >0Wherei =0, 1,...5, 6. a2>30b,and  a; > 4b,.
2 2
n=7 | a >OWherei=0,1,.6, 7. a, >3b,and a; >3k,
a; >3nhy , bf >4a,a, and
n=8 a, >0 Wherei=0, 1,2,..,7,8. "% 0.
b
2 2 )
by >4a,3; by >4a,3,, b <Oand
6
"=9 | & >0 Wherei=0,1,2,.89. 3,
—2<0
bi >4aya, , by >4aa,,
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n=10 ;> I = +10. -
a >0 Wheri=0,1,2,,10 b2 >4a,a,,and Fas<o

Using these developed stability conditions, the stability of interval polialsrnan be
determined easily without formulating the foufharitonows polynomials, unlike
Khar i ttleearem: A ®bust PI/PID controller (which can stabilize the given plant under
large uncertainty) can be designed easily using these stability cosdifidhe design
procedure is given in following section.

3. DESIGN OF ROBUST STABILIZING P I/PID CONTROLLER

3.1 Intervalplant without time delay

Consider a plant with parametric uncertainty without time delay represented by its transfer
function as

N(s,C) _ G +CS+.. 4G, 8" +,S" (3.1)

G(s,c,d)=
( ) D(sd) d,+ds+..+d ,s""+ds"

Where
cl C=[c ¢ ]fori=012,..m
di D=[d ,d"]fori=oz2..0
and the boundsc, ,¢",d” andd" are specied a priori aneh ¢ m.

Let the stabilizing PI/PID controller transfer function of the form given below

- Ki _ Ne(s)
Cpi(S)=Kp+ s Do) For Plcontroller 2

K N.(s)
Cop(s)=Ks +?'+ KDS:m

C

For PID controller  3.3)

Where K, = Proportional gainK, =Integral gain anK , = Derivative gain

3.2. Interval plant with time delay
Consider a plant with parametric uncertainty with time delay represented by its transfer
function as
N(s,C)
D(s,d)
Where the numerator and denominator polynomials are of the form
N(sC)=¢, +C,S+...+C,,,S" " +C s"
D(sd)=d, +d,;s+...+d_,s""+d s
With the parameters being specified by their lower and upper bounds as follows:
ci C=[c ,c']fori=012,..m.
di D=[d;,d"]fori=012,...n.
t, ¢t, ¢t;. t,20
It is not easy work to design the stabilizing controller for interval 4il@ay process
plants, because of intervakad time. In order to extend the technique, the-fiostler
rational function of the appraxiation of the interval delay plans obtained using the

procedure given irCorollary 3.1 to solve the design ahe robust stabilizing controller
problemof an irterval timedelay plant.

G(s,c,d) g e (3.4)
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3.21. An interval approximate time delay model

The first order rational functionQ(s,t, ) of the approximation of the interval delay part
is given by
e'd° @d(st,). for t; ¢t, ¢t (3.5
The simplex form foO(s,t, )is given by the following corollary which is expressefd 8).
Corollary 3.1 : The interval functiom '*, wheret; ¢t, ¢t;can be approximated by a

first-order interval rational functiob(s, d), which is given by

O(st,)?

%)
oS
u (3.6)
9
(S

—
1- %HJ Wi
A é ¥
O(jmty ) .2 5 o >1 (3.7)
1+ qiw
820 lnax
- g
1- %DJW
S A Tl D (3.8
1+g  +tipiM
é2 l.'] min
T O(iWty ) max2 T €47 (3.9
1 O( ity ) min <T €4, (3.10

Wherew< w* andw* is the limited frequency thatehinequalities in Equati@n(3.7) to
(3.10 hold. The arbitrarily extended approximation of a desired degree is thertiest
approximation, since it covers the properties of phase frequency of original functioan for
wider rangeof frequencies, whereabe approximate original function can be in the other
forms of approximations for control in the loss of some system information within a very
limited frequency range.
The rational intervalunction, therthe approximate system model is given by

N(s,C)

G(s,c,d)= B(s d_)(A)(s,td ). (3.11

After simplification the 8.11) will become
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N(s,c)

G(s,cd)= D(sd)

(3.12

Where

N(s,c)=c, +c,s+...4C, ,s" " +C s"
D(s,d)=d, +d,s+...+d ,s" ' +d, s"
cl C=[¢ ¢ ]fori=012,....m.
di D=[d ,d']fori=012,..0.
t; ¢t, ¢t;. and the boundsc ,c¢",d” ,d",t jandt, are specified a priori andt m.

Now the system with robust stabilizing controller for Parametricddainty is as shown in
Fig.31.

Robust Controller

Plant ¥
Gis.cd)

_,
]

L |

Fig.3.1. Block diagram of interval Plant with a Robust Controller

Let the stalhizing PI/PID controller transfer function of the form given below

C, (s)=K( 1+i )= N(s) For PI controller (3.13
ts D.(s)
1 N.(s)
Cop(s)=K (1+—+1,)=—-= For PID controller (34
o) =K1+ 2ot tg) = 50 S (a9

WhereKc = Proportional gain¢, =Integral gairand ¢ , = Derivative gain.
Then the closed loop transfer function wéti®l / PID controllecan be defined as

T(s)= Co(5)G(scd) = Ne(s)N(s.) For PI controller (3.19
1+C,(s)G(scd) N,(s)N(sc)+D,(s)D(sd)
T(s)= Cop(s) G(s.c.d) = N(s)N(s.c) For PD controller (3.16

1+C,(S)G(s,c,d)  N.(S)N(s,c)+D.(s)D(s,d)

The Characteristic equation of this system waitial / PID controllers given as
1+C,,(s)G(s,c,d)=N,(s)N(s,c)+D.(s)D(s,d) forPlcontroller (3.17)
1+C,5(S)G(s,c,d)=N.(S)N(s,c)+D,(s)D(s,d)for PID controller (3.18)

WhereN(s,c) and D(s,d) are the numerator and denominator polynomials of the plant
considered respectivelyand N.(s) and D.(s) are the numerator and denominator

polynomials of PI/PID controller transfer function respesyv This PI/PID controller
robustly stabilizes the interval plants family, if for ali C and di D , then the
characteristic polynomial c& closed loop transfer functiagiven in equations (3.}7and
(3.189 hasall zeres have negative real values. Now apply the necessary and sufficient
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conditions of robust stability conditions given in Table.l to the -clicepl
polynomialN_(s)N(s,c)+D,(s)D(s,d) which leads to a set of inequalities in terms of

controller parameters. Thehese inequalities can be solved by using PSO with MATLAB
Optimization[40] programming so as to minimize the objective function to obtain controller
parameters. Then after obtaining the Contr
polynomials tocheck the stability and the clostabp step response to verify the results. The

PSO algorithm for the proposed method is given in sedtion

Read the given transter function G(s)

Yes

s G(S)
Time Delay?

1

Interval Approximation of
tune delay model

Read the Specifications of system

!

Formulate the constramts for PI/PID controller
using newly developed stability conditions

v

Solve the constramts to obtamn controller parameters
usmg proposed algorithm

!

Verify the stability and performance

Fig.3.2. Flowchart for the Proposed Algorithm.

4. APPLICATION OF PAR TICLE SWARM OPTIMIZATION ALGORIT HM

Kennedy and Eberhdg@5] first introduced the PSO method. It is one of the optimization
algorithms and a kind of evolutionary computation algorithm. The method has been found to
be robust in solving problems featuring nonlineaaityl no differentiability, multiple optima,
and high dimensionality through adaptation, which is derived from the gisyiehological
theory. PSO is inspired by social and cooperati@eaviourdisplayed by various species to
fill their needs in the sedncspace. The algorithm is guided by personal experience (P best),
the overall experienc€G best) and the present movement of the particles to decide their
positions in the nexdépace. Further the experiences are accelerated by two factors C1 and C2,
and tvo random numbers generated between 1J0 Whereasthe present movement is
multiplied by an inertia factor w varying between§mwmay.
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Application of PSO algorithm for determining the controller parameters is as follows:
Step 1: Initialization:
PSO parameters are chosen as
Population size (P) = 100
Number of Iterations (n) =1000
Cognitive coefficients C1 =2 and C2 =2
Inertia weightw =Wy, ay- iter X(Wiax- Winin)/
WhereWmax=0.9,Wmin=0.4
Step 2: Initial search space limits of control variaimeBI/PID Controller are selected as
For PI controller:
0<K, <10and0 <K, <10.(Without time delay)

0<K, <land0<#, <15(With time delay)

For PID controller:
0<K,<10,0<K, <10and0<Kp <10 (Without time delay)

0<K,<10<¢ <15and0<t, <10 (With time delay)

Step 3: Inital search space populations of Xi gemerated fromspecified intervals using
the given below equation
X? =X in+rand( ).(X X (4.2)
Where i =1, 2......, N, and rand () represents a uniformly dis&tbrandom number
within the range of [0,1]
Step 4: Initialize the iteration index n=1
During the initialization, parameters @fP1 / PID controlleare randomly generated
within allowablelimits.
Step 5: Evaluate the fitness function
To get effective performance, in this paper,fitvess function J is defined as
Minimize J
For PI controller: The fitness function J is chosen as Integral Square Error (ISE)

i,max " i,min)’

J=(t)dt (Without timedelay) 4.2)
0
Whereg(t) =1- output

2 2

Kc' KS ti-[io
Ke t?

For PID controller: The fitness function J is chosen as Integral Square Error (ISE)

J=

(With time delay) (4.3

J = e’(t)dt (Without time delay) (4.4)

0

Where ¢(t)=1- outpul

P o P
J=|—5=5 +|F—< +|F-5% (Withtime delay) 4.5
K. t tq
J is determined when the controller parameters are subjected to
KPmin ¢ KP ¢ KPmax; KImin ¢ KI ¢ Klmax; and KDmin ¢ KD ¢ KDmax;
Kenin CKp CK o i Limin €2, €L and £y S8, C 00

Step 6: Updateelocity. Foreach particle, the velocity can be updated by
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V™ =we V" +C, 2 rand( )3 (Pbest - X")+C,3 rand( )? (Gbest- X") (4.6)

Step 7: Updatposition Eachparticle changes itsogition by adding the updated velocity
to the previous position and it is represented as.

X(i,j)=X+yt 4.7)

Step 8: Repeat steps 5 to 7 until maximum generations are completed PSO algorithm is
run for each particle tevaluate fitness function several times and better
results are saved and applied to the proposed Pl/@ibtroller.

5. DESIGN OF ROBUST STABILIZING CONTROLLER

In this section, a design procedure for a robust PI/PID altertrof a plant with parametric
uncertainty is illustrated.
Example 1
Consider a wing aircrafiLl8] whose transfer function with parametric uncertainty is given by
4,74] s+ 1
G(s.cd)=— _ [54,74] s [290’ 66] (5.1)

S +[28,46]s +[504,808]s"+[301,339]s+[-0.1,0.1]
As the necessary conditios? a, >0 (for i=0, 1, 2, 3, 4) are not satisfied for the above
characteristic polynomial, Hence the given interval plant is unstable. Thereby, it is required
to design a robustontroller, whichstabilizes the given plant.

Design of PI controller
The transfefunction of the PI controller is given by

Cn(s)=K, +ﬁzm
D.(s)

Then the closed Iloop transfer function witra Pl controller becomes

T(s)= [54K§,74KP] s? +[?OKP +54K, ,1636KP +74K, ]s+[ 90K, 166K, ]2

[1,1]s°+[284.6]s +[504,808]s +[ 54K, +30.174K, +339]s

+[ 90K, +54K, - 0.1,166K, +74K, +0.1] s+[ 90K, 166K, ]

Fromthe above equatigithe charactestic equation othe closed loop interval systemwith
PI1 controller can be taken as

[1,1]8+[284.6]s" +[504,808] s’ +[ 54K, +30.174K, +339] &’
+[ 90K, +54K, - 0.1166K, +74K, +0.1] s+[ 90K, 166K, ] =0
The step response PI controlleK (= 1.3172 and, = 1.9378) using ZiegleNichds

settings[41] are shownin Figure 5.1 From this Figure 5,1it has been observed that the
designed PI controller from Zieglticholstuning methoctannot stabilize the given interval

plant at all operating conditions. Hence it is necessary to red#sggiPl controller to

stabilize given intervgblant By applying the necessary and sufficient conditions from Table

1 to theabove 5th order polynomial (5,3the following sé of inequality constraints are
obtained. In order to make this set of constsinto the feasible closed set, a small positive
number 6U6 is introduced into the constrai

(5.2)

(5.3)

ol

as to findK ,and K, such that the objective functioh= pe’(t )dt is minimized, subjected to
0

the following constraints.
Inequality constraints for proposed method:
Necessary conditions:

Copyr ROGSABSAE Adv. in Systems Science and Ap(2018)



104 D.SRINIVASA RAO, M. SIVA KUMAR AND M. RAMALINGA RAJU

- 90K, +e<0

- 90K, - 54K, +0.1+e<0

- 54K, - 301+e<0

Sufficient conditions:

- 2916K 2 - 3250.8K , - 906.01+3054.4K, +e<0
- 254016+664K,, + 296K, +04+e<0

Step Response
2 ' ' [ 1T T 1

First Kharitonov
Second Kharitonov
=== Third Kharitonov
Fourth Kharitonov| 4

Amplitude
)

0 1 1 1
0 5 10 15 20

Time (seconds)

Fig.5.1 Closed loop step response withd®htroller for all extreme Plants using
the ZieglerNichols

The linear programming problem consists of two decision variables and five constraints.

The controller peameterd, and K, are restricted to small values by choosing the objective

function J properly. The pur pose oafeasibtei ng
set closed. In this workthe PSO algorithnproposed in sectiod is used to minimize
objective functionlt attempts to explaithe problem®f minimization, subjected to linear as
well as nonlinear constraints. By applyirtige proposed algorithmthen the values of
controller parameters are obtainesl K, = 0.5766 and&, = 0.01. The closed loop step

response athe systenwith a Pl controllefor both proposedhethodq K, = 0.5766 and, =
0.001) and the method given j&8] (K, = 0.5 and, = 0.1) are shown in Figes 52 and5.3
for U = 1 Theamamnal ltcontrodidr parametels’ =0.6 andz;” = 11655 and
nominal PID controller parameteks? =0.68 ¢ =6.993 and ¢ =1.7482fare designed by

the ZieglerNichols settings.The time domain specifications of Figuré2 and 5.3 are
shown in Tables.1 and which describes the efficacy of the proposed method for the design
of the robust PI controllefThe step response compariswinfour extreme plants wita Pl
controllerobtained by the proposed method and the method givil8]ris shown in Figure
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5.4
Step Response
1.6 T ] ] 1 1 1 T T

Amplitude

First Kharitonov
= Second Kharitonov
=== Third Kharitonov
Fourth Kharitonov

0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Time (seconds)

Fig. 5.2. Closedloop step respondge the PI controllefor all extremeplants usinghe proposed method

In order deternme the robustness of proposed method, the given interval plant G(s,c,d)
from equation (5.1¢an be written as

64s+128
G(s)= 54
(=) s* +3.7s% +64s® +32s &4
Here G(S) is obtained by averagingetupper and lower bound of s coefficients of
G(s,c,d).Theclosed transfer function of wing aircraft with PI controller is given by

64K ps” + (128K, + 64K, )s+128K,
s® +3.7s* +65.65° + (64K, +32)s? + (128K, +64K, )s+128K,
The closed loop step response of the system with Pl contrddler (0.5766 and, =

0.001) from proposed methods is shown in Figure 5.5. The Pl contdategned from
proposed method castabilize the given plant if any changes occur in the uncertain
parametersvithin the bounds

(5.5)

Ti(s)=
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Step Response
1.6 T T T T T T T !
- First Kharitonov
1.4 —— Second Kharitonov | ]|

12 = Third Kharitonov

2 Fourth Kharitonov

Amplitude
(=]
(= -]

S
(=)
1
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1
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N
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0 5 10 15 20 25 30 35 40 45
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Fig.5.3. Closed loop step responsethe Pl controllefor all extreme plants using tmeethod
givenin [18].

Step Response
1.6 T T T T T T T T

1.4

1.2

[

-------- First Kharitonov(Proposed)
Second Kharitonov(Proposed) i

Amplitude
(=
%

0.6
Third Kharitonov(Proposed)
-------- Fourth Kharitonov(Proposed)
0.4 First Kharitonov (Method [18]) | ]

= Second Kharitonov(Method[18])
Third Kharitonov(Method [18]) .
Fourth Kharitonov (Method [18])

0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Time (seconds)
Fig.5.4. Closed loop step respongethe Pl controllefor all extremeplants forproposed
method and thenethod given if18].
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Step Response

15¢F .

Amplitude

0 1 1
0 5 10 15

Time (seconds)
Fig.5.5. Closed loop step responsethe Pl controllefor changes in the uncertain parameter to determine

the robustnest®r proposednethod
Table 5.1. Time domain spafications forproposed methd and Exsting method irj18]

Proposed method Existing method 18]

Name of
the
I 0,
Khanton_ov % peak Peak | Rise | Settling % peak Peak Rise | Settling
Polynomial overshoo

overshoot | Time time | time ISE ¢ Time time time ISE

MP to(sec) | t(sec) | ts(sec) | 103

MP tp(sec) | t«(sec) | ts(sec) | 10*

First 17.492 3.514 | 1.501 | 7.0534 | 4.22 | 32.4147 | 4.008 1.508 | 10.808 | 1.101

Second 20.826 1.707 | 0.878 | 5.0156 | 0.093 | 24.3994 | 2.488 0.880 | 8.2771 | 0.158

Third | 29.702 | 3.683 | 1.349 | 14220 | 122 | 576720 | 3.820 | 1.378 | 26.828 | 16.00

Fourth 31.419 1.988 | 0.718 | 7.7175 | 0.631| 42.659 2.166 0.741 | 8.326 0.022

It has been observed from Figu&2 and5.3that the designed Rbntroller, whichuses
the proposed stability conditions, robustly stabilizes the plant very quickly when compared to
the method given ifil8]. From Table 5.1the degyned PI controller stabilizes the plant with
lesser time domain parameters than the existing methbds been observed from figure
5.5, thatthe designed PI controller from the proposed metisodsed to determine the
robustness in any changes in thecertain parametsrof the given plantin our proposed
method, the controller parameters are obtained based on the minimizatie aldjective
function (ISE). This Integral Square Error obtained from our proposed method is less
compared to other methodsvailable in the literature. This shows the efficacy of the
proposed method in terms of time domain specificationsttatSE. The proposed method
involves five set of equations for NLP to solve. Wherei@i® methodin [18] requires eight
setof equatios. Thus,the proposed method requires less computational complexity than the
method given ifl18]. It is also observethatthe computation time required for solving the
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Fig.5.6. Closed loop step response with PID controller for all extreme Plants using
the ZieglerNichols

NLP problem with minimum number of equations using proposed stability conditions and
PSO algorithm is much less than the method givg@8h Thus, the developed PI controller
using necessgrand sufficient conditions of interval polynomial robustly stabilizes the Wing
aircraft. These stability conditions can be implemented easily for determining the stability of

higher order interval plants.
Design of PID controller
The transfer function ahe PID controller is given by
K N(s)
Con(8)=K; +?|+ Kps= D,(s)
Then the closed loop transfer function with PID controller becomes
[ 54K, 74K ]s* +[ 90K, +54K, 166K, +74K,]s* +
_ [90K, +54K, 166K, +74K, ]s+[ 90K, 166K, ]
T(s)= c Z - (5.6)
[1,1]s°+[2.84.6]s +[ 54K, +504,74K, +808] s’ +
[ 90K, +54K, +30.1166K, +74K, +339]s” +
[90K, +54K, - 0.1166K, +74K, +0.1] s+[ 90K, 166K, ]
From the above equatigrthe characteristic equation thfe closed loop interval system
with PID controller can be taken as
[1,1]s° +[2.84.6]s" +[ 54K, +504,74K, +8038]s’ +
[90K, +54K, +30.1166K, +74K, +339]s° + (5.7)
[90K, +54K, - 0.1166K, +74K, +0.1] s+[ 90K, 166K, ] =0
The step response [Plcontroller (K, = 1.3172K, = 1.9378and Kp=0.1791) using
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