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Abstract: In this article we propose two algorithms for discourse prosodic feature interpretation. 

The first algorithm based on wide phonetic categories and second algorithm based on audio 

signal melodic cross-correlation functions and short-timed energy series – as well as methodical 

recommendations for their use are proposed as a part of the problem of audio signal language 

identification based on a prosodic approach. An experimental evaluation of both algorithms is 

proposed. Neural networks are used as a decision rule. Wide phonetic categories were pause, 

pitch, noise. We have expanded wide phonetic categories to pause, pitch, noise, five levels of 

pitch, sites of decreasing energy, main maximum, adverse maximum. The total number of 

categories was 14. These algorithms can be applied for language identification or speaker 

identification.  At the same time there is no requirement to restore the speech signal after 

processing it by low-speed codec. Certainly, frames of the speech codec must contain such 

parameters as pitch, tone-noise parameter, energy. The base of speech signals consists of 10 

languages 10 speakers per language. Total time of the speech per speaker is 100 minutes. This 

time takes into account statistical regularities of languages. Tests for evaluation of the algorithms 

were carried out with a multilayer perceptron. 

Keywords: language identification, neural networks, discourse prosodic feature, wide phonetic 

categories. 

1. INTRODUCTION 

As numerous on-line human-machine interfaces are being developed, the problem of 

language identification stays unsolved. Moreover, those systems are often required to support 

numerous languages. There are four methods for language identification: acoustic, 

phonotactic, lexical and prosodic. In one or more of their aspects, the first three methods are 

based on the discourse signal parameters: acoustic, mel-frequency cepstral coefficients, 

mixed mel-frequency cepstral coefficients and others. The prosodic approach uses 

parameters such as discourse melody, rhythm, tone and others [5–9]. Prosodic parameters are 

difficult to describe and to interpret. Therefore, in the present article two algorithms are 

proposed for discourse prosodic feature description in order to use them in automatic audio 

signal language assessment systems. The first algorithm is based on wide phonetic categories 

[4]. The second is based on discourse melody cross-correllation function and short-timed 

energy series. 

The main difference between the proposed algorithms and the ones described in the 

literature lays in their utilization for language assessment of audio signals that have been 

processed using low-speed codecs. This is based on the fact that low-speed codecs transmit 
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in communication channels such parameters as basal tone frequency, tone-noise signal and 

amplification of quasi-periodic fragments. 

2. ALGORITHMS FOR PROSODIC FEATURES INTERPRETATION 

2.1. Algorithm based on wide phonetic categories 

Let L={L1,L2,…,LN}  be an ensemble of languages on which the language assessment 

procedure is performed, with N being the overall language number. Let every language be 

represented by an ensemble Li={l1,l2,…,lMi} of audio recordings from different speakers of 

this specific language, with Mi being the overall number of audio recordings for a given 

language Li.  

An audio recording is divided in quasi-stationary segments si(m) , each one of which 

having a duration of K samples, with i being the segment number of a given discourse signal: 

i = 1, 2, …, P,  and P being the overall number of segments for a given discourse audio 

signal recording m=1,…,K-1. Features are computed on each segment i, depending on its 

nature: vocal, non vocal or break 

 

   1 2i iA T s m ,i , , ..., P 

 
(2.1) 

 

T being the operation allowing to define the type of segment. The evaluation of the segment's 

short-timed energy is denoted as 

   1 2
ik iE E s m ,i , , ..., P   (2.2) 

with E being the computation of the segment's short-timed energy. If the algorithm is used 

without reconstructing the source vocal signal waveform, then the parameters Аi and 
ikE are 

computed from the vocal transmission. Thus series  PAAAA ...,,, 21 and  
Pkkkk EEEE ...,,,

21
  are 

formed. If the segment is classified as a break, then Ai=0. If the segment is classified as non-

vocal, then Ai=1. For each vocal segment the basal tone frequency (BTF) is computed as 

  0 1 2i iF F s m ,i , , ..., P   (2.3)
 

with F being the operation of basal tone computation. Afterwards the series 

 PFFFF 0...,,0,00 21  are formed. If the algorithm is used without reconstructing the source 

vocal signal waveform, the parameter F0i is computed from the vocal transmission. The 

basal tone frequency's range of variations is then divided into 5 intervals. Each vocal 

segment is attributed a number, depending on which BTF interval its frequency corresponds 

to 

 00 1 2
iuF UF ,i , , ...,F P 

 
(2.4) 

 

F0ui being the BTF level, UF the operation of BTF change computation and segment 

encoding with numerical values  PuFuFuFuF 0...,,0,00 21 . This allows the formation of BTF 

values series for audio signal segments. Afterwards segments during which the discourse 

short-timed energy increases or decreases are computed as
 

  1 2
iu kE UE E ,i , , ..., P 

 
(2.5) 

 

The encoding Eui=(+/–)1  depends on whether the energy variation is increasing or 

decreasing correspondingly, UE being the operation of audio signal short-timed energy 

computation. The series  PEuEuEuEu ...,,, 21 are formed. If the short-timed energy decreases 

for a given segment, its BTF value is multiplied by (-1). 

Principal and lateral BTF maxima on a segment between two breaks are used in order to 
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assess the principal and lateral accents. If the BTF and short-timed energy maxima 

correspond in time and are maximum for a given fragment, then this segment is considered a 

principal maximum. If the maxima do not correspond in time, then the fragment is 

considered a lateral maximum ),0( EuuFMAX i   with Θ being the operation of principal and 

lateral maxima computation for the BTF and short-timed energy series. This allows the 

constitution of the series 

 

 1 2 PMAX MAX ,MAX ,...,MAX
 (2.6) 

 

Therefore the final series  PXXXX ,...,, 21  of wide phonetic categories for a given audio 

record is constituted by elements Xi, where 
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(2.7) 

 

 

Figures 2.1 and 2.2 show the algorithm diagram that implements the discourse signal 

encoding. 

The autocorrelation function )(XR 


 is then computed on the series of wide phonetic 

categories X , with Ψ being the operation of autocorrelation function computation. 

If the algorithm is used without reconstructing the source vocal signal waveform, the 

BTF values are computed from the vocal transmission. If the algorithm is used with the 

source vocal signal waveform being reconstructed, then an algorithm for BTF evaluation is 

required. 

There are numerous algorithms for BTF evaluation [2]. This article presents the 

comparison of already implemented algorithms: the algorithm SIFT, based on the 

autocorrelation function; the algorithm AMDF, based on short-time average difference 

function; and the algorithm for BTF evaluation of the MELP language encoding algorithm. 

Table 2.1 shows the percentage values for correct BTF computation P(ОТ), erroneous 

assumption that a vocal fragment is non-vocal Р(НВ/В) and erroneous assumption that a 

non-vocal fragment is vocal Р(В/НВ). 
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Table 2.1. Evaluation of BTF correct evaluation 

Algorithm SIFT AMDF MELP 

Р(ОТ), % 87±1 89±1 95±1,5 

Р(НВ/В), % 7±1 6±1 3±0,5 

Р(В/НВ), % 0,5 0,5 0,5 

 

The algorithm MELP was used for BTF computation as its experimental evaluation 

proved it to be the most effective. 

 

 

 

Fig. 2.1. Algorithm diagram for vocal signal segments encoding 
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Fig. 2.2. Algorithm diagram for vocal signal segments encoding (continued) 

2.2. Algorithm based on basal tone melody cross-correlation functions and short-timed 

energy series 

The prosodic classification may be realized using basal tone melody cross-correlation 

function and short-timed energy of audio recordings. Each audio recording is divided in 

quasi-stationary segments si(m) of  K samples where i is the vocal signal number: 

i = 1, 2, …, P,  Р  is the overall number of segments in a vocal signal  m=1,…,K-1. For each 

segment i features are computed in accordance to the segment's nature: vocal, non vocal or 

break 

   1 2i iA T s m ,i , , ..., P 
 

(2.8) 

T being the operation of segment type computation and the computation of the short-timed 

energy for one segment being 

   1 2
ik iE E s m ,i , , ..., P 

 
(2.9) 

E being the operation of short-timed energy computation. The series  PAAAA ...,,, 21  and 

 PEkEkEkkE ...,,, 21  are formed correspondingly. If a segment is classified as a break then 

Ai=0. If a segment is classified as non-vocal, then Ai=1. For each vocal segment the BTF is 

computed 

  0 1 2i iF F s m ,i , , ..., P 
 

(2.10) 

F being the operation of BTF computation. Afterwards series  1 20 0 , 0 , ..., 0PF F F F  are formed. 

If the algorithm is used without reconstructing the source vocal signal waveform, the 
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parameter Аi, Eki, and F0i is computed from the vocal transmission.  

The cross-correlation function is computed on the BTF series and the short-timed energy 

series 

),0( EkFB   (2.11) 

Ф being the operation of BTF melody cross-correlation function computation and short-

timed energy series. The vector formed by the cross-correlation function values and series of 

wide phonetic categories is then given at the first layer of the neural network, that is used to 

infer the language group to which the presented vector corresponds. 

The feature computation algorithm is presented in Figure 2.3. 

 
Fig. 2.3. Diagram of the algorithm of vocal segment encoding 

3. METHODICAL RECOMMENDATIONS FOR THE USE OF ALGORITHMS FOR 

PROSODIC FEATURE INTERPRETATION ALGORITHMS AS A PART OF THE 

AUDIO SIGNAL LANGUAGE IDENTIFICATION  

Methodical recommendations were developed in order to apply the aforementioned 

algorithm. They contain a succession of phases. 

Phase 1. Discourse dataset formation for training. The training dataset must fulfill the 

following conditions: if N is the overall number of languages, dm
i 

the number of male 

speakers for a given language i, dm
i
 the number of female speakers for a given language i, 

then Vi(dm
i
, df

i
) = Vj(dm

j
, df

j
),  where i, j are the numbers of languages i, j = 1, …, N, meaning 

that all age groups must be represented in equal proportion among male and female speakers 

or that the volume of voice data for all age groups must be equal. The volume of voice data 

must be sufficient from a statistical standpoint in order for all the pronunciation variations to 

be described. The overall data volumes must be equal for every languages. 

Step 1. Reception from the source of a digital signal under the form St(fd, m, p, fr) , having 

the following characteristics: format "wav", sampling frequency fd = 8kHz, regime 

m = mono, datadepth  p = 16 bits, t being the audio signal number. 

Step 2. Filtering of the audio signal St(fd, m, p, fr)  for unwanted noise suppression. This 

allows to receive the filtered signal St
f
(fd, m, p, fr) = Ρ[St(fd, m, p, fr)],  where P is the filtering 

operation. 
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Step 3. Training and control dataset formation. A set of audio signals ZLi{S1
f
Li(fd, m, p, fr), 

S2
f
Li(fd, m, p, fr), …, SMi

f
Li(fd, m, p, fr)} is formed for each language Li, where Mi  is the 

overall number of audio signals for a given language Li. The complete set of audio signals is 

then denoted by Z = {ZL1, ZL2, …, ZLN}. 

Step 4. Treatment of all audio signals in every language made available by the vocal 

transmission. Z
vok

 = VOK(Z), VOK where denotes the processing of the voice transmission 

dataset , Z
vok

 = {Z
vok

L1, Z
vok

L2, …, Z
vok

LN}. 

Step 5. Audio signal parameter computation using the presented algorithms. Afterwards a 

set of parameters Z
vok

Li
Mod1

 = Mod1(Z
vok

Li), Z
vok

Li
Mod2

 = Mod2(Z
vok

Li) is created, where Mod1 

and Mod2 are the operation of parameter computation using the presented algorithms for 

prosodic parameters description. 

Phase 2. Neural network training. The neural network training operations allow the 

fine tuning of its parameters. Neural networks with different topologies are described by 

different mathematical models, therefore in every specific situation a neural network is 

described by a specific formula. Neural networks are defined for language groups. Their 

number is equal to the number of combinations of 2 elements out of N. 

Phase 3. Neural network performance evaluation 

Step 1. Reception from the source of a digital signal under the form St(fd, m, p, fr) , having 

the following characteristics: format "wav", sampling frequency fd = 8kHz, regime 

m = mono, data depth  p = 16 bits, t being the audio signal number. 

Step 2. Filtering of the audio signal St(fd, m, p, fr)  for unwanted noise suppression. This 

allows to receive the filtered signal St
f
(fd, m, p, fr) = Ρ[St(fd, m, p, fr)],  where P is the 

filtration operation. 

Step 3. Neural network’s testing. At the neural network's input, for each language pair Li 

and Lj, audio signals in the language i and j are given. The neural network's output gives an 

evaluation of the audio signal’s language identity, given t: the audio signal’s number: 

  f
t t d rL NET S fˆ ,m, p, f

 

(3.1) 

Step 4. Evaluation of the number of correctly assessed audio signal for each language 

pair. This forms the vector D = (d12, d21, d13, d31, …, dN(N–1), d(N–1)N), where dij is the number 

of correctly assessed audio signal for a given language pair LiLj, i ≠ j. 

Step 5. Hierarchical language tree construction based on the agglomerative hierarchical 

algorithm 

   
k i l j

min i j l
x ,x ω

k
ω

ρ ω ,ω min d XX ,
 


 (3.2) 

where ωi and ωj are the languages Li and Lj, and ρ(ωi,ωj) is the distance between Li and Lj. 

The hierarchical language tree is the base upon which language groups are formed. 

4. DISCOURSE DATABASE FORMATION 

An audio signal dataset was formed in order to conduct test according to the presented 

methodical recommendation. Its content is summarized in the Table 4.1. 

Audio records were taken from internet translation resources: television and radio, which 

implies that the discourse were processed using different codecs. 

In order to exclude the influence of the dataset's constitution on the experiment results, 

the number of speakers in each language was chosen equal. The overall duration of the audio 

signals was as well equal. The dataset was split equally in training and validation subsets. 

Samples from the validation set were not present in the training set. For experimental 

purposes, all audio records both in the training and validation datasets were divided in 10-

seconds long fragments. 

The speakers' age repartition was approximated: men and women aging from 20 to 50 

years old. 80% of each speaker's audio signal time was used for training, 20% for validation. 

The separation into training and validation was performed randomly. 
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Table 4.1. Contents of the dataset used for prosodic feature models experimental validation  

Language 
Number of 

speakers 

Overall audio 

signal duration 

for each speaker, 

min 

Speaker sex 

(m-male,  

f-female) 

Repartition in the 

training/testing 

sets, % 

Chinese  10 100 5m/5f 80/20 

English 10 100 5m/5f 80/20 

Finnish 10 100 5m/5f 80/20 

French 10 100 5m/5f 80/20 

German 10 100 5m/5f 80/20 

Japanese 10 100 5m/5f 80/20 

Farsi 10 100 5m/5f 80/20 

Portuguese 10 100 5m/5f 80/20 

Russian 10 100 5m/5f 80/20 

Spanish 10 100 5m/5f 80/20 

5. NEURAL NETWORK DEFINITION AND TUNING 

Pattern recognition tasks are in most cases solved using statistical methods. However in the 

case of vocal data in different languages, it proves difficult to build the repartition function 

of the considered parameters. Therefore in the present article neural networks were used for 

vocal segments classification. 

As stated in literature, for classification-type problems, the number of neurons in the 

network's first layer is equal to the number of elements in the feature vector that is given at 

the entrance [3]. The number of output neurons depends on the type of problem and the 

output number interpretation rules [3]. The number of neuron in the intermediate layers is 

given by the formula [3] 

 
 

2

1 1
1

y p p

w y x y y

xp

N N N
N N N N N

Nlog N

 
      

    

(3.3) 

where Ny  is the neural network's (NN) output vector's number of element, Np is the 

number of elements in the test dataset, Nх is the number of element in the input vector and Nw 

is the overall number of neurons. 

The choice of the NN's class and architecture is a non-trivial problem for which exact 

solutions do not exist [3]. In order to choose the number of neurons, one can highlight two 

methods: the more neurons, the more reliable the network will be and the more neurons, the 

worse the network will approximate the transfer function. The neural networks were 

implemented in MATLAB, using the environment's built-in functions. 

The following architectures were experimentally evaluated: Kohonen maps, cascade-

forward NN, Elman networks, multilayer perceptron, Hopefield networks, probabilistic 

networks, networks with Radial Basis Functions (RBF), counter-propagation network with 

Learning Vector Quantization. 

The networks were trained with built-in MATLAB functions [1]: quasi-Newton 

algorithm, Levenberg-Marquardt algorithm with Bayes regularization, Fletcher-Reeves 

conjugate gradient method, Polak-Ribiére conjugate gradient method, Powell-Beale 

conjugate gradient method, gradient descent, gradient descent with variable learning rate, 

Levenberg-Marquards algorithm, scaled conjugate gradient method, gradient descent with 

momentum, gradient descent with momentum and variable learning rate, one step secant 

method, random increment method and elastic error backpropagation algorithm. 

For the first phase, in order to build the limited groups of 10 languages, experiments were 

performed with each separated language pair, accounting for 45 neural networks in total. 

The best results have been obtained using a multilayer perceptron. Therefore this 

architecture has been selected for fine tuning. 

Since the language given at the NN's entrance is a priori unknown, it was decided to use a 
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unified architecture for each language pair. 

6. EVALUATION OF THE WIDE PHONETIC CATEGORIES ALGORITHM 

According to the formula and the starting conditions for NN testing Ny = 2, Np = 600,  the 

number of neurons in the hidden layers is then 117 ≤ Nw ≤ 2015 for the wide phonetic 

categories model. 

Since Nw is between 117 and 2015, at the moment of the NN architecture definition the 

number of neuron was chosen from 100 to 2000, correspondingly to the number of neurons 

from 1 (one layer from 100 to 2000  neurons) to 20 (20 layers of 100 neurons) in the 

following configurations: from 100 to 1000 neurons with a 10 neuron step in a given layer or 

from 1000 to 2000 with a 100 neuron step. The maximal number of neurons in one given 

layer was 800. 

In order to build the different multilayer perceptron architectures for the 45 language 

pairs, a vector D=(d1,2, d2,1, d1,3, d3,1, di,j, dj,i, dN,N–1, dN–1,N) of goal indicators for assessment 

confidence was built, with N being the overall number of languages in the Automatic 

Language Assessment System. Therefore the length of the vector is D=90. Each element di,j, 

dj,i = 100.  

The vector Dk=(d
k
1,2, d

k
2,1, d

k
1,3, d

k
3,1, d

k
i,j, d

k
j,i, d

k
N,N–1, d

k
N–1,N) of goal indicators for 

assessment confidence for the current architecture has as well 90 elements. The distance 

between D and Dk is defined as 

 

     
2 2 2

1 2 1 2 2 1 2 1
k k k

r , , , , i , j i , jD d d d d d d      
 

     
2 2 2

i i 1 1 1 1
k k k

j , j , N ,N N ,N N ,N N ,N... d d d d d d        
 

(3.3) 

Thus, the lower the distance Dr, the better the NN tuning. At the end it was found that Dr 

lays in the interval from 59.1861 to 532.4106. The best value, Dr = 72.5358, was obtained 

for a NN with 1400 neurons overall, organized in one layer of 800 neurons and 2 layers of 

600 neurons. The results of language assessment are presented in the Table 6.1. 

Table 6.1. Average confidence values for language identification 

  

Chinese English Finnish French German Japanese Persian 
Portugu

ese 
Russian Spanish 

Chinese 
  94.5 95.1 96.2 95.9 97.5 96.6 95.2 94.4 97.9 

English 93.8   97.4 92.8 93.8 93.6 98.1 94.5 94.0 97.8 

Finnish 93.8 93.7   93.2 93.4 93.9 93.9 96.1 93.7 94.3 

French 94.2 93.6 93.2   93.9 93.4 94.0 94.8 93.8 94.4 

German 94.5 92.6 93.7 92.5   94.6 94.0 97.5 96.3 93.9 

Japanese 83.6 94.1 74.0 98.3 93.3   94.0 84.9 94.4 98.0 

Persian 84.4 94.0 74.6 93.3 93.8 83.6   92.7 84.3 93.2 

Portuguese 94.2 93.6 93.5 93.9 94.2 94.5 93.5   93.9 98.4 

Russian 94.4 95.1 94.1 95.3 93.4 94.0 94.4 94.3   94.5 

Spanish 93.9 94.3 93.4 93.2 94.2 93.8 94.1 94.5 93.2   

 

The languages were used to form groups using the agglomerative algorithm. Language 

pairs were used in quality of patterns to be recognized. The average confidence value for 

fixed first and second order error rates was used as a measurement of the distance between 

the two languages of one pair. The distance between classes is defined by the distance to the 

nearest neighbor: 

   
k i l j

min i j l
x ω ,x ω

kρ ω ,ω min d XX ,
 



 
(3.5) 
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where ωi,ωj  are the languages Li and Lj, and ρ(ωi,ωj) is the distance between Li and Lj. 

This allows the creation of a graph of hierarchical classification. This graph can then be 

used to assess groups of languages close to each other. 

7. EVALUATION OF THE BASAL TONE MELODY CROSS-CORRELATION 

FUNCTION AND SHORT-TIMED ENERGY SERIES ALGORITHM 

According to the formula and the NN test starting conditions, Ny = 2, Np = 600, Nx = 797, the 

number of neurons in the hidden layer is 117 ≤ Nw ≤ 2806 for the cross-correlation function 

and BTF and short-timed energy series model. 

Since Nw  is comprised between 117 and 2086, at the time of the NN architecture 

definition the number of neurons in a layer was varied from 100 to 3000, correspondingly 

layers having from 1 (1 layer from 100 to 3000 neurons) to 20 (30 layers of 100 neurons 

each). The following configurations were used: from 100 to 1000 neurons with a 10 neuron 

step by layer, from 1000 to 3000 with a 100 neuron step. The maximum number of neurons 

was 800, Dr = 89.1449. 

The results of language identification are presented in the Table 7.1. 

 

Table 7.1. Average confidence values for language  

 Chinese English Finnish French German Japanese Persian 
Portu-

guese 
Russian Spanish 

Chinese   97.7 94.7 92.8 97.8 97.9 93.8 91.7 93.1 92.1 

English 91.2   91.4 92.3 92.9 94.8 92.7 97.7 90.3 92.0 

Finnish 90.9 91.5   95.8 94.7 94.6 95.4 90.9 93.6 95.9 

French 92.1 92.9 92.4   93.9 96.7 97.5 92.1 91.8 91.8 

German 92.5 90.2 91.4 90.4   91.8 92.2 92.4 93.0 95.4 

Japanese 80.6 91.8 90.1 82.3 71.9   90.7 90.5 94.7 97.2 

Persian 71.1 91.5 82.3 91.6 82.6 78.2   97.5 92.5 91.5 

Portuguese 90.7 91.0 92.0 92.0 93.2 93.4 92.1   94.5 92.5 

Russian 91.0 91.7 90.6 92.6 92.3 92.4 91.7 91.6   96.2 

Spanish 90.5 92.9 90.9 92.8 91.2 93.1 91.4 92.1 93.6   

8. CONCLUSION 

The algorithms presented in the article aim at a complex description of discourse prosodic 

feature for their usage in special data processing tasks, in particular audio signal language 

assessment. As seen in the presented tables, prosodic feature description using wide phonetic 

categories allows for high-confidence language identification. However this performance 

insignificantly surpasses cross-correlation function. Distance indicators for current results of 

language assessment with respect to the goal indicator Dr scored at  Dr = 72.5358 for the 

autocorrelation model from wide phonetic categories and Dr = 89.1449  for the signal's cross-

correlation function model from basal tone value and short-timed energy series. 

The presented algorithms demark themselves from others in that they are used for audio 

signal language identification, after vocal transmission, but without reconstructing the source 

vocal signal waveform. 
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