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Abstract: The situation when two independent transport flows are passing through the same edge
of a transport network with different speeds is quite common for modern cities. The precision of
mobile GPS devices, which are widely used for traffic monitoring, does not allow to determine the
characteristics of transport flows in this situation because of their proximity. It causes difficulties
in the analysis of the traffic situation, which may result in significant errors of transport routing
systems. We propose a method to get the average speed of transport flows from common GPS
traffic data using machine learning techniques. To do that we introduce a formal statement for
the flow separation problem, which makes it possible to divide the problem into two sequential
parts: statistical and optimizational. We analyze the possible approaches to the solution of both,
construct features space for the statistical part and determine the complexity of the optimizational
one. The developed techniques were implemented and tested to be working on real traffic data.
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1. INTRODUCTION

Traffic data analysis plays important role in different areas of civil engineering such as
infrastructure planning [1], transport flows control [2], and vehicles routing [3].

There is plenty of ways to collect the traffic data that can be used for different purposes.
There are ways, based on counting flow through a section [4, 5], but in this work we focus
on a way that based on following movements of individual particles in a system [6–10].
We consider GPS data from drivers’ mobile devices, which are commonly used to estimate
average speeds on different parts of a transport system. Commonly used ways to analyze the
traffic data include time series analysis [11], and classification [12].

Modern routing systems consider average speed on a road to build optimal route for a
vehicle. However, there is an effect called flow separation that may cause serious errors in
average speed estimation. It is commonly observed before crossroads or exits from highways
and consists in velocity heterogeneity across the flow. The problem that prevents us from
considering the effect with standard engineering approaches is low precision of mobile
GPS devices [13, 14]. It makes it impossible to determine the lane a vehicle holds on a
road. Nevertheless, the accuracy becomes more and more important characteristic of routing
systems and its improvement is of our interest.

Here we propose to apply machine learning techniques to get separate estimation of each
transport flow in case of their separation. We use statistical approach to find the most likely
value of the average speed of each flow and state optimizational problem to determine the
distribution of the vehicles between flows.
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While the flow separation effect arises in many applications [6, 15], the problem was
neither stated, nor solved for the purposes we consider here.

2. INFORMAL DESCRIPTION

For simple explanation and intuition behind the problem take an example. Consider a two-
lane road which is 8 meters wide and splits into two one-lane sleeves that go in opposite
directions. Assume that cars can’t change the lane along the way. Let’s say the satellite can
determine the position of a car with precision of 15 meters. This means that for any car that
moves through the two-lane segment there is no way to detect immediately the lane it is
moving through. When the car took its sleeve, we can conclude about the lane it was on and
estimate the speed of the whole flow on that lane with the average speed of the car when it
was on the two-lane segment. However, this information is out-of-date by the time when the
car has left the two-lane segment and the speed of the flow could be changed during the time
the car was changing to the sleeve.

One possible way to deal with the problem is to track cars that are following the current
one and are still on the move through the two-lane segment when the current car left. We can
pick those have similar behavior in the past and assume that they should be moving along the
same lane as the current car used to. Those cars can help us to build a real-time estimation of
the speed of the flow. The following section generalizes and formalizes the problem.

Fig. 2.1. Illustration for heterogeneous transport flow

3. FORMALIZATION

Consider a continuous (does not contain forks, exits or crossroads) segment s0 of a multilane
one-way road. Assume that the road has branching into W directions at some distance after
the segment. Denote them as {direction1, . . .directionW}. Consider also s−1, s−2,
. . . s−b — a continuous chain of straight segments of the road before s0.

Every vehicle on every segment has the following parameters: average speed
v(vehicle), time of exit τ(vehicle) from the segment and the further direction on the
next branching δ(vehicle) ∈ {direction1, . . .directionW}.

At every moment t for every vehicle the parameters can be known or unknown. Using this
we can divide all of the vehicles into three groups: G1(t), G2(t), G3(t). Their description you
can see in the Table 3.1.

Note that there is a time lag between the moment when a vehicle left the segment s0
and the moment when we found out its further direction. This time lag depends on the
average speed of the flow, changes with time and plays crucial role in division into the groups.
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Table 3.1. Groups of vehicles

G1(t) G2(t) G3(t)
speeds on vs−b

, . . . , vs0 known known unknown
further direction known unknown unknown

Formally: ∃ lag(t) such that

G1(t) = {vehicle|τ(vehicle) < t− lag(t)},

G2(t) = {vehicle|t− lag(t) ≤ τ(vehicle) < t},
G3(t) = {vehicle|t ≤ τ(vehicle)}.

Assume that the further direction ({direction1, . . .directionW}) is determined by
the lane the vehicle is passing through.

We calculate the average speed of a flow as Exponential Moving Average with parameter
λ of speeds of the vehicles in it:

AvSp(t) = λv(t) + (1− λ)AvSp(t− 1), λ ∈ (0, 1)

The parameter λ is assumed to be given. It is usually tuned for a system of average speed
estimation beforehand.

In respect to the introduced assumption, at the moment t average speeds on each lane

AvSp1(t− lag(t)), . . . ,AvSpW (t− lag(t))

can be calculated using information about vehicles in G1(t). At the same time,

AvSp1(t), . . . ,AvSpW (t)

are impossible to calculate because of lack of information about G2(t) vehicles. This may
cause serious errors in speed estimations and eventually in routing results.

This paper deals with the problem of estimation of AvSp1(t), . . . ,AvSpW (t). We are also
interested in distribution of the vehicles between traffic flows. For practical purposes, it is
especially important to have solutions of the problem for cases when the average speed differs
significantly on lanes.

4. SEQUENCE SEPARATION

Let us consider a sequence of real numbers (speeds of vehicles as they are passing) {ul}nl=1.
It can be broken into W subsequences (according to the transport flows):

{ul}l∈L1 , {ul}l∈L2 , . . . {ul}l∈LW
,

where {Lw}Ww=1 is an unknown splitting of {1, . . . n}. Every element L of a splitting is a
subsequence of {1, . . . n} and contains elements in ascending order.

Let’s consider the statistics of Exponential Moving Average as a function of element of
the splitting:

A(Lw) = λ

|Lw|∑
i=1

(1− λ)i−1uli , li ∈ Lw.

The function represents the average speed of the flow that contains only vehicles with
indexes from Lw.
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The problem is to find splitting {Kw}Ww=1 such that the values of A on the elements of
{Kw}Ww=1 are as close as possible to the values of A on the true splitting {Lw}Ww=1, which is
unknown.

To formalize the sense of distance, introduce the loss function:

F =
W∑
w=1

αw(A(Lw)− A(Kw))2, αw > 0.

4.1. Vector representation
Introduce 2W vectors of size n each:

Definition 4.1:
jw = j(Lw, λ) : jkw :=

{
0 k /∈ Lw
(1− λ)m−1 k = lm ∈ Lw

where jkw is the slightly modified indicator that a vehicle k is actually in the flow w.

Definition 4.2:
iw = i(Kw, λ) : ikw :=

{
0 k /∈ Kw

(1− λ)m−1 k = km ∈ Kw

where jkw is the slightly modified indicator that a vehicle k is assumed by the model to be
in the flow w.

In the vector jw, the components with numbers in {lm}|Lw|
m=1 are equal to (1− λ)m−1, all

the other components are zeros. Similarly for the vector iw.
Define the loss for the flow w:

Definition 4.3:

Fw =
|Lw|∑
m=1

(1− λ)m−1ulm −
|Kw|∑
m=1

(1− λ)m−1ukm

Form vector u out of the sequence {ul}nl=1.
Then

Fw = iTwu− jTwu = (iTw − jTw)u

.

Note that the total loss now is F = λ2
W∑
w=1

αwF
2
w = λ2

W∑
w=1

αw(iTw − jTw)u(iTw − jTw)u

4.2. Risk minimization
We introduce a class probability distribution on 1, . . . , n, and assume that numbers belong to
classes independently. A number belongs to class t if it lies in Lw.

Matrix P of size n× T contains probabilities that index i belongs to the subsequence Lw.
Also piw is the probability that the i-th component of jw is not zero: [jw]i 6= 0.

Definition 4.4:
P(jw) — probability of the realization of jw. It is the probability that the floww really consists
of vehicles with indexes that correspond to nonzero components of jw.

Introduce the expected loss on a flow of the prediction iw:

Definition 4.5:
Ew(i) = Ejw{F 2

w|iw = i} =
∑
jw

F 2
wP(jw)

∣∣
iw=i
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Lemma 4.1:

Ew(iw) = iTwuu
T iw − 2(

∑
jw

P(jw)jw)TuuT iw + uT (
∑
jw

P(jw)jwj
T
w)u

Proof
From definition 4.3 and the expressions followed:

Ew(i) =
∑
jw

(iT − jTw)u(iT − jTw)uP(jw) =
∑
jw

uT (i− jw)(iT − jTw)uP(jw) =

=
∑
jw

uT (iiT − jwiT − ijTw + jwj
T
w)uP(jw) =

=
∑
jw

(uT iiTuP(jw)− uT jwiTuP(jw)− uT ijTwuP(jw) + uT jwj
T
wuP(jw))

Decompose the sum:

•
∑
jw

uT iiTuP(jw) = iTuuT i
∑
jw

P(jw) = iTuuT i

•
∑
jw

uT jwi
TuP(jw) =

∑
jw

P(jw)jTwuu
T i = (

∑
jw

P(jw)jTw)uuT i

•
∑
jw

uT ijTwuP(jw) =
∑
jw

iTuuT jwP(jw) = iTuuT (
∑
jw

P(jw)jw) = (
∑
jw

P(jw)jTw)uuT i

•
∑
jw

uT jwj
T
wuP(jw) = uT (

∑
jw

P(jw)jwj
T
w)u

Joining the sum, we get the statement of the lemma.

Lemma 4.2:
k-th component of the vector π(pw, λ) =

∑
jw

P(jw)jw can be written as:

[
∑
jw

P(jw)jw]k = pkw

k−1∑
s=0

(1− λ)s
∑

M⊂{1,...k−1}:|M |=s

(
∏
m∈M

pmw
∏
m/∈M

(1− pmw ))

Proof
A component of expectation of a vector is equal to expectation of the component of the vector
because of linearity of mathematical expectation.

[
∑
jw

P(jw)jw]k =
k−1∑
s=0

(1− λ)sP{[jw]k = (1− λ)s}.

[jw]k = (1− λ)s ⇔ [jw]k 6= 0,∃M ⊂ {1, . . . k − 1}, |M | = s :
∀m ∈M : [jw]m 6= 0, ∀m /∈M : [jw]m = 0.
P{[jw]k 6= 0} = pkw.
As the event {[jw]k 6= 0} is independent, we can get the formula.

Similarly, for Π(pw, λ) =
∑
jw

P(jw)jwj
T
w :
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Lemma 4.3:

[
∑
jw

P(jw)jwj
T
w ]lk =



pkwp
l
w

l−1∑
s=0

(1− λ)s
k−l+s∑
m=s+1

(1− λ)m
∑

A⊂{1,...l−1}:|A|=s

∑
B⊂{l+1,...k−1}:|B|=m−s−1( ∏

a∈A∪B
paw

∏
a∈{1,...k−1}\(A∪B∪{l})

(1− paw)

)
, k > l

pkw
k−1∑
s=0

(1− λ)2s
∑

M⊂{1,...k−1}:|M |=s
(
∏
m∈M

pmw
∏
m/∈M

(1− pmw )), k = l

(4.1)

Proof
A component of expectation of a matrix is equal to expectation of the component of the
matrix.

Case k = l is very similar to previous lemma. Consider k 6= l. The matrix is symmetric,
so prove for k > l.

[
∑
jw

P(jw)jwj
T
w ]lk =

l−1∑
s=0

(1− λ)s
k−l+s∑
m=s+1

(1− λ)mP{[jw]l = (1− λ)s; [jw]k = (1− λ)m}.

[jw]l = (1− λ)s ⇔ [jw]l 6= 0, ∃A ⊂ {1, . . . l − 1}, |A| = s : ∀a ∈ A[jw]a 6= 0,∀a /∈
A[jw]a = 0

[jw]k = (1− λ)m ⇔ [jw]k 6= 0,∃B ⊂ {1, . . . k − 1}, |B| = m : ∀b ∈ B[jw]b 6= 0,∀b /∈
B[jw]b = 0

Take into account that l ∈ B.
As the event {[jw]k 6= 0} does not depend on {[jw]k′ 6= 0}∀ k′ 6= k, we can derive the

formula from the statement of the lemma.

Both vector π and matrix Π depend only on parameter λ and column pw of the matrix P .
Therefore, Ew(i) is a quadratic function, and its minimization is a particular case of discrete
quadratic programming problem.

If P consists of 0 and 1, Ew(i) has evident zero in i = π(pw, λ). In other words, if vector
jw is not stochastic, optimal value of i is iw = jw.

Total risk function, which is the cumulative expected loss for all flows:

E(i1, . . . , iW ) = Ej1,...,jW {F |i1, . . . iW} = λ2
W∑
w=1

αwEw(i)

E(i1, . . . , iW ) = λ2
W∑
w=1

αw(iTwuu
T iw − 2π(pw, λ)TuuT iw + uTΠ(pw, λ)u)

5. FEASIBILITY SET

Describe the set of all possible vectors that iw can be chosen from. It is denoted I and consists
of indicator-like vectors for all possible subsequences [k1, . . . , kd] of 1, . . . , n. Formally:

I =

{
i
∣∣∣∃d ≤ n,∃[k1, . . . , kd] subsequent of [1, 2, . . . , n] : ik =

{
0 k /∈ [k1, . . . , kd]
(1− λ)m−1 k = km

}
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Fig. 5.2. Illustration for the lemma 5.1

Lemma 5.1:
conv(I) = K ∩ {x ∈ Rn−1 : 0 ≤ x1 ≤ 1}, whereK is a multifaceted cone with 2n− 2 facets
and ( 1

λ
, 0, . . . , 0)T as the apex.

Proof

• For each l 6= 1 consider set {x ∈I: xl = 0}. All of the points there lie in the n− 1-
dimensional hyperplane with ( 1

λ
, 0, . . . , 0)T . There are n− 1 such hyperplanes

• For each l 6= 1 consider set {x ∈I: xl 6= 1}. A vector from the set has the form ...
(1− λ)r

...

 if there are r non-zero coordinates among its coordinates number

1, . . . , l − 1.

Denote nl =



1
...
1
1
λ
0
...
0


, where 1

λ
is on the position l.
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Now, show that nTl

 ...
(1− λ)r

...

 = 1
λ

= nTl


1
λ
0
...
0

.

To do that we can use λ(1−λ)r−1+(1−λ)r
λ

= 1
λ
(1− λ)r−1:

nTl


...

(1− λ)d

...

 =
r−1∑
k=0

(1− λ)k +
1

λ
(1− λ)r =

1

λ

• All of the vectors with x1 = 1 share a hyperplane, just like all of the vectors with x1 = 0.

In this way, all of the vectors from I with same state of a coordinate (zero or non-zero),
share a n− 1-dimensional hyperplane. 2(n− 1) of them have intersection in ( 1

λ
, 0, . . . , 0)T .

Definition 5.1:

N =


1
λ

1 · · · 1
0 1

λ
· · · 1

...
... . . . ...

0 0 · · · 1
λ


It is easy to check that from the proof above follows:

conv(I) = {x ∈ Rn
∣∣NTx ≤ 1

λ
1;x ≥ 0}

For compact notation, make several formal definitions:
Definition 5.2:
I = [i1, . . . , iW ]

Mutual constraints on vectors i1, . . . , iW consist in that only one element in every row of
I is nonzero. It can be written in the form of sparsity constraints{

‖I‖0 = n
I1 > 0

Definition 5.3:
A = diag(

√
α1, . . . ,

√
αW )

Definition 5.4:
π = [π(p1, λ), . . . , π(pW , λ)]

Lemma 5.2:
E(i1, . . . , iW ) = E(I) = λ2(AITu)2 + λ2(AITu)(AπTu)T + const

Proof
Directly from the definition and lemma 4.1.

6. FINAL PROBLEM FORMULATION

To estimate AvSp1(t), . . . ,AvSpW (t) we propose to use information about vehicles from
G2(t). Let {vehiclem}nm=1 sequence of vehicles from G2(t) in descending order of exits
from s0. Then {um}nm=1 is a corresponding sequence of speeds of the vehicles on s0.
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In the applications, average speed of a flow is calculated as follows:

AvSpw(t) = λ

|Lw|∑
i=1

(1− λ)i−1uli + λ(1− λ)|Lw|AvSpl(t− lag(t));

These functions are very similar to A. To apply all of the results from thr previous
section, slightly modify the problem. Form û of size n+W , which is u stacked with
AvSp1(t− lag(t)), . . . ,AvSpW (t− lag(t)). Expand P with W ×W identity matrix.

New formulation for risk function:

E(i1, . . . , iW ) = λ2(AIT û)2 + λ2(AIT û)(AπT û)T + const

6.1. Optimization complexity
As a result of the analysis, the problem of optimization stage is equivalent to:

(AIT û)2 + (AIT û)(AπT û)T −→ minI ∈ I × · · · × I
‖I‖0 = n
I1 > 0

Where I is the set of extreme points of the convex polyhedron:

I = extr
(
{x ∈ Rn+W

∣∣λNTx ≤ 1;x ≥ 0}
)

This problem belongs to the class of mixed-integer linear programming problems, which
is proved to be NP-complete. There are several approaches to solving the problem. Some of
them are considered in [16, 17].

Because of asymptotic complexity of calculation of π and possible errors, which can be
caused by estimating P , we will not conduct further investigation of the optimization problem
and algorithms of its solution.

6.2. Distribution estimation
P is the only unknown parameter of the model. Possible ways to estimate the probability for
each vehicle depend on the data we have and include:

• without respect to the vehicle, as an unconditional probability.
• with respect to the type of a vehicle (a truck or a car)
• with respect to the short-term history of a vehicle (speed history)
• with respect to the long-term history of a vehicle (previous passages)
• with respect to the planned route of a vehicle (for routed vehicles)

7. PROPOSED SOLUTION

As it was already mentioned, if P consists of 0 and 1, the optimizational part becomes trivial.
Another remarkable feature of such matrices is that it can be built by any classification
method, which gives us a powerful tool of machine learning to perform the estimation.
Therefore, for practical purposes we will work with the class of matrices that consist of 0
and 1.

In the following experimental part we will work with information that can be extracted
from GPS tracks data. More specifically, every vehicle at each moment t is characterized by a
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vector, composed of its short-term speed history. We can use the metric space of these vectors
to build a classifier on information about some vehicles from G1(t) as a training set and use
it on a test set from G2(t).

8. EXPERIMENT

The data for the experimental part was provided by Yandex. In the model that was used for
data collection the roads system was approximated with a graph of straight segments. An id
was assigned to every vehicle that was available for data collection. Using this id we could
follow the tracks through the transport system. Collected data included length of every actual
segment, speeds of vehicles on it and times of their exits from the segment.

The data is very sparse because of low concentration of vehicles that were available for
data collection. We use assumption that the concentration of vehicles that were available for
observation is homogeneous and constant.

Also the data is noisy. Besides significant variance of speeds of vehicles, it was hard to
build proper tracks. For example, a track could be interrupted in one part of the transport
system and continued in another part.

In the experiments we used data collected during a weekday in the area of Third Ring
Road in Moscow. We considered parts of the roads that are adjacent to crossroads or exits
that meet three requirements:

• The number of recorded passages per day exceeds 5000.
• The number of vehicles in the classes doesn’t differ more than 1.5 times.
• Average speeds of vehicles in two classes differ by more than 10%.

These conditions are considered as necessary for flow separation problem. All of the
parts of the road have further separation into two, which means that in the further discussion
W = 2.

The classification problem was set for every straight segment of the road and was solved
for each time of injection of information into the system. In terms of section 2, for every
moment t and every s0 we composed train sample out of vectors of speeds on s0, s−1, . . . s−b
of vehicles from G1(t). Test samples were built similarly for vehicles from G2(t).

8.1. i.i.d. algorithms
Here we used an assumption about independency of the vehicles on the road. It is not always
true, but we were dealing with sparse data, which means that most of the vehicles we studied
did not follow each other immediately.

For each moment t for each segment s0 we built an i.i.d. classifier. For training set
we select vehicles that passed s0 in the h = 20 minutes interval. This time window is
characteristic for transport processes of such scale [18].

In the Table 8.2 we provided information about used algorithms with tuned and constant
parameters.

We used Accuracy to measure the performance of the algorithms because it is
proportional to a norm of P − P̂ as both of the matrices consist of 0 and 1:

Accuracy =

n∑
i=1

I(estimated classi = real classi)

n
=

=
1

n

n∑
i=1

I{pi1 = p̂i1} = · · · = 1

n

n∑
i=1

I{piW = p̂iW} =
1

nW

n∑
i=1

W∑
w=1

I{piw = p̂iw} =

Copyright c© 2017 ASSA. Adv Syst Sci Appl (2017)
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Table 8.2. Hyperparameters of i.i.d. classification algorithms

Algorithm Constant parameters Adjusted parameters

SVM [19]
RBF kernel with auto coefficienting,

weights associated with classes,
shrinking enabled

Penalty parameter

RandForest [20] gini criterion,
bootstraped sample

Number of trees-estimators;
maximal depth of a tree

BaggingKNN [21] [22] Base estimator is kNN,
bootstraped sample

Number of estimators;
The number of samples

to train each base estimator

GradBoosting [23] deviance loss (Log Reg)
Number trees-estimators;

learning rate;
maximal depth of a tree

LogReg [24] l2 norm of penalty,
weights associated with classes Inverse of regularization strength

NaiveBayes [25]
Hypothesis:

multivariate Bernoulli distribution
of binarized vectors.

Lidstone smoothing parameter

NeuralNet [26] Two layers with 10 and 3 neurons,
Activation function is logistic

Regularization term parameter;
The initial learning rate

Table 8.3. i.i.d. algorithms results

SVM RandFor BagKNN GradBst LogReg NB NNet
1 0.722 0.879 0.873 0.886 0.717 0.727 0.880
2 0.750 0.857 0.866 0.865 0.768 0.860 0.864
3 0.744 0.751 0.765 0.765 0.731 0.548 0.796
4 0.907 0.920 0.929 0.925 0.912 0.715 0.925
5 0.769 0.799 0.799 0.801 0.761 0.722 0.800
6 0.711 0.772 0.777 0.778 0.703 0.692 0.769
7 0.725 0.742 0.749 0.753 0.750 0.690 0.751

=
1

nW

n∑
i=1

W∑
w=1

(piw − p̂iw)2 =
1

nW
‖P − P̂‖2F

The averaged throughout a weekday performance of the algorithms one can see in the
Table 8.3. The results presented are obtained on test samples for 7 different two-lanes
problematic crossroads in Moscow. It is easy to notice that results very much depend on
the crossroad, which means that for some crossroads it is easier to solve the flow separation
problem. Authors tried to find the reasons why it is easier to solve the problem on some
crossroads, but apparent connections with the length of the segment or difference between
speeds of the flows were not found. Probably, the data collected on some crossroads was
simply more consistent then on the others.

9. RESULTS AND DISCUSSION

The results of the numerical experiment show that there is no general model that fits every
crossroad. Complex models like neural networks showed the best results. However, the
hyperparameters of each model were tuned differently for crossroads but performed nearly

Copyright c© 2017 ASSA. Adv Syst Sci Appl (2017)



20 I. O. MOLYBOG, Y. V. CHEHOVICH

the same for each segment near a crossroad, which means that every case of transport flow
separation has unique features that strongly depend on its position on the roadmap.

There are other possible approaches to estimate matrix P with matrices that do not consist
of 0 and 1. In those approaches, we have to solve the optimization problem stated in Section 5.
Despite its asymptotic complexity, we still can solve it because of its limited dimension.
Numerical results show that n is up to 10 for real problems and depend on lag(t)).

Empirically we can say that the problem of traffic separation is characteristic for certain
locations on the roadmap. As a result, there are other possible approaches for solving the
problem more accurate. For example, cameras set on a problematic crossroad could give us
exact solution to the problem without extra approximations and assumption.

However, the theory in Sections 3-5 is more general and can be applied to solve similar
problems for networks, where it is possible to follow movements of single particles of the
flow.

10. CONCLUSION

In the paper we propose a formal statement for traffic flow separation problem. We divide the
problem into two: statistical and optimization.

The statistical part can be solved numerically using algorithms for recovery probability
distribution. To simplify the optimizational part, we relax the problem and use standard
classification algorithms. We trained and tested several types of prediction models on the
constructed features space, compare their performance for several problematic parts of
Moscow road system.

The optimization part was theoretically analyzed, and stated in a form suitable for
relaxations and solution with standard optimizational techniques. Future works in this area
might be to solve the optimization problem explicitly in the algorithm, without relaxations of
the statistical part.

The theoretical results obtained in the work can find applications beyond the civil
engineering, in other areas related to study of flow dynamics.
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