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Abstract: The problem of anomaly detection arises in many practical applications. Currently it
is highly important to be able to detect outliers in data streams, as recent years have seen a rapid
growth in the amount of such data. Only a few techniques are applicable to real-time data and even
fewer could provide an interpretable anomaly score. Probabilistic interpretation of the anomaly
score could allow an analyst to choose the anomaly threshold based on the desired false alarm rate,
which is highly important in a number of real-life applications. We propose a modification of the
EXPoSE algorithm for anomaly detection in time series data, which produces a probabilistic score
of abnormality. The proposed algorithm is developed within the framework of conformal anomaly
detection and utilizes the expected similarity as a measure of non-conformity.

Keywords: anomaly detection, conformal prediction, time series, kernel methods, expected
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1. INTRODUCTION

There are many cases in which it is highly important to determine whether a new observation
comes from the same distribution or not. This problem is referred to as outlier or anomaly
detection. E.g. when a fitted model is applied to new data, it should be checked whether a
test data set belongs to the same population as the training data set. To address the issue of
novelty detection, anomaly detection techniques can be used. Anomaly detection has proven
to be helpful for certain medical purposes, fraud detection and machine diagnostics, to name
but a few. For instance, in [1] failure prediction for aircrafts is considered.

The definition of an anomaly varies between algorithms and applications. In general, an
anomaly “is an element whose properties differ from the majority of the other elements under
consideration which is called as normal data” [14]. In [15] anomaly detection is described
as follows: “Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behavior”.

Summing up, the problem of anomaly detection can be formulated as follows: the task
is to determine for every object in a test set whether it is a normal or abnormal instance in
comparison with observations from a training set.

Anomaly detection approaches can be divided in the following three groups [15]:

• Unsupervised approaches use only the assumption that most observations are normal.
Such assumption favours incremental and autonomous learning in data streams.
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• Supervised approaches require availability of a labelled training set containing instances
of both normal and abnormal objects.

• Semi-supervised approaches require a small amount of labeled data with a large amount
of unlabeled data.

In many practical cases a number of outliers is significantly smaller than a number of
target observations, and thus usual classification methods may yield unsatisfactory results
as classes in a dataset are very imbalanced. The significant dominance of target instances
over outliers is a natural property of real-life data: e.g. in case of air traffic safety problems
accidents happen very rarely. Another reason for that is the impossibility or very high costs
of reproducing faulty conditions when we consider a machine diagnostic task. In the light
of known and outlined difficulties, classical methods are not applicable to solving these
problems, thus a variety of outlier detection methods have been developed. Such problems
justify the need for specialized approaches to anomaly model selection [2], learning with
privileged information [6], construction of ensembles of non-parametric anomaly detectors
in data streams [3,7,8], usage of specific time-series models [9–13], and explicit rebalancing
of normal and abnormal classes [4, 5], among others.

Unsupervised anomaly detection does not require the training dataset to be labelled, thus
it is applicable to various problems, as in general it is not feasible to collect labels. Therefore
a number of applications adopts unsupervised approaches, e.g. based on density estimation
or clustering [16].

According to the surveys [15] and [17] unsupervised anomaly detection techniques could
be generally categorized as probabilistic (distribution- and density-based), prediction-based,
distance-based, classification-based, clustering-based and information-theoretic approaches.

Distribution-based methods estimate parameters of a target data distribution and
determine whether a test object comes from the same distribution that generated samples
from the training set. The main drawback of these methods is the necessity to select some
parametric class of data distributions. One of the tricks is to model the target distribution
as a mixture of Gaussians, however the number of Gaussians still have to be determined.
To mitigate this problem, other non-parametric techniques could be utilized, for instance
histogram-based or kernel density estimator (KDE). However, the number of bins should
be firstly specified, and the performance is highly sensitive to this hyper-parameter. For
multivariate problems a basic approach is to estimate a histogram per each input feature.
However some features could be correlated, in that case the information about such
dependency will be lost.

Prediction-based techniques predict future observations based on previous items and then
compare predicted and real data to identify anomalies.

Another type of approaches is based on the distance to the k-th nearest neighbour (kNN).
One of such techniques is the kNN-based outlier detector [18]. All objects are sorted w.r.t. the
average distance to k nearest neighbours and top n of them with the highest average distance
are claimed to be anomalies. LOF method, proposed in [19], exploits density based approach:
it uses the distance to the k-th nearest neighbour as an inverse estimate of a local density value.
However data could contain clusters with different densities leading to significantly increased
false anomaly detections.

Main drawback of distances-based anomaly detection methods is poor interpretability
of their output. To address this issue Conformal Anomaly Detector (CAD) was proposed by
Laxhammar [16]. Having a probabilistic interpretation of the degree of anomalousness allows
choosing a threshold with a false alarm rate guarantee. Zhao and Saligrama stated in [20] that
“while [modern anomaly detection] approaches provide impressive computationally efficient
solutions on real data, it is generally difficult to precisely relate tuning parameter choices
to desired false alarm probability”. At the same time according to Burnaev and Nazarov,
conformal prediction could be used for constructing non-parametric confidence intervals with
a specified confidence probability [21, 22].

Copyright © 2017 ASSA. Adv Syst Sci Appl (2017)



24 ALEKSANDR SAFIN, EVGENY BURNAEV

Some techniques adopt approaches used for classification tasks. Tax and Duin proposed
Support Vector Data Description [23] and later it was refined in [24]. The task of data
description is formulated as follows: given the unlabelled training data, construct a closed
boundary (or a set of them) that contains predominantly the target data, and outliers are
outside this boundary. In a simple case, boundary is supposed to be spherical, but in
general it is possible to determine an arbitrary-shaped flexible boundary by using kernel
functions. Moreover, SVDD is robust against the training data containing outliers and also
is capable of improving the accuracy by incorporating additional information about negative
examples, in case when the training dataset is labelled. According to the results of their study,
SVDD is shown to yield mostly comparable or even better results for sparse and complex
multidimensional datasets. An extension of SVM to the case of unlabelled data is outlined
in [25]. This approach which is referred to as one-class SVM has been adapted by Ma and
Perkins [26] for time series.

The problem of anomaly detection has many dimensions. In particular, data could be
not fixed but represented as a stream. A variety of techniques could be used for anomaly
detection. However, only a few can be used for data streams. Classical algorithms for
anomaly detection are not applicable due to their computational complexity and memory
consumption, since the number of elements in the set is growing and therefore it is not
possible to store all previously observed data. It is worth emphasizing that frequently the
concept of anomaly could change in the course of time. This phenomenon is called as
concept drift. In general, a streaming version of an anomaly detection algorithm should
have an ability of adaptation to a concept drift; therefore, such algorithms are usually based
on one of the following strategies of accumulating information about current changes in
data: namely windowing and exponential smoothing, which is also referred to as decay. The
above-mentioned issues are considered in the paper [14]. The proposed EXPoSE algorithm is
developed within the framework of reproducing kernel Hilbert space (RKHS) and exploits
the concept of kernel mean embedding. In a nutshell, the estimator used in the algorithm
could be described as a dot product of a kernel mean map and a feature map of the observed
data point. However, the produced anomaly score has a lack of intuitive interpretability and
therefore the false alarm rate could not be guaranteed when anomaly threshold is chosen.
In order to eliminate this drawback we utilize Lazy Drifting Conformal Detector procedure
proposed in [32] to construct the algorithm with probabilistic interpretation of the anomaly
score while based on the idea of kernel mean embedding proposed in [14].

The structure of the paper is the following. Sections 2 and 3 shed light on kernels and
conformal anomaly detection respectively. The proposed algorithm is described in Section 4.
In Section 5, the results of empirical evaluation (using Numenta Anomaly Benchmark) of the
proposed algorithm are outlined. Finally, Section 6 describes achieved results and the work
still to be done.

2. OVERVIEW OF KERNEL-BASED METHODS FOR ANOMALY DETECTION

In machine learning kernels are broadly used for handling data of diverse nature. Therefore
it is not surprising that a number of anomaly detection methods are based on the kernel
framework. In this section we give some necessary definitions and provide an overview of
such anomaly detection methods which uses kernels and therefore are applicable to data of
various types.

2.1. Introduction to Kernels
Reproducing kernel Hilbert Space (RKHS) is a Hilbert Space (H, 〈·, ·〉) of functions
f: X → R if the evaluational functional δ̄X : f → f(X ) is continuous.
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Reproducing kernel of H is a function K: X × X → R which satisfies the reproducing
property:

〈f,K(X , ·)〉 = f(X ),

〈K(X , ·), K(Y , ·)〉 = K(X ,Y).

The map φ: X → H with the property that K(X ,Y) = 〈φ(X ), φ(Y)〉 is referred to as a
feature map.

Definition 2.1 (Expected Similarity Estimation):
The expected similarity [14] of z ∈ X given the probability distribution P(x) is defined as:

η(z) = EX [φ(z)] =

∫
X
K(z, x)dP(x).

Definition 2.2 (Kernel embedding):
Kernel embedding of the distribution P has the form

µ[P] =

∫
X
K(x, ·)dP(x).

Expectation of any f ∈ H
EX [f ] = 〈f, µ[P]〉H.

Thus,
η(z) = 〈φ(z), µ[P]〉H.

Given the empirical distribution Pn(x) by observing n realizations {x1, . . . xn}
independently sampled from P, one could approximate µ[P] as follows:

µ[P] ≈ µ[Pn] =
1

n

n∑
i=1

φ(xi).

This approach is referred to as empirical kernel embedding [29] and given that ‖φ(x)‖ ≤
C,C > 0 the following guarantee has been proved by Schneider [30] for all ε > 0:

P (‖µ[P]− µ[Pn]‖ ≥ ε) ≤ 2e−
nε2

8C2 .

Considering above mentioned, having observed {x1, . . . xn}, the expected similarity
estimation for z ∈ X is

η(z) = 〈φ(z), µ[P]〉H ≈ 〈φ(z), µ[Pn]〉H =
1

n

n∑
i=1

K(z, xi).

2.2. EXPoSE
EXPected Similarity Estimation (EXPoSE) that was proposed in [14] is the method for
anomaly detection which could handle data streams.

For every new observation z the algorithm computes an anomaly score η(z) based on
computed empirical kernel mean map wt of previously observed items

η(z) =
〈φ(z), wt〉
‖wt‖2

.
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Kernel mean map could be evaluated using one of the following strategies. The first
strategy is to use a sliding window of length l:

wt =
1

l

t∑
i=t−l+1

φ(xi).

More flexible approach is to apply exponential smoothing to all previous observations:

wt = γφ(xt) + (1− γ)wt−1, t > 1.

The parameter γ reflects the influence of a new data item. However, as already was indicated,
the anomaly score provided by this algorithm could not be interpreted in a probabilistic
manner, therefore we propose an approach to transform the anomaly score produced by
EXPoSE. To that end, the idea of Conformal Anomaly Detection is adopted to build an
anomaly detector for online data.

3. CONFORMAL ANOMALY DETECTION

Laxhammar [16] proposed a Conformal Anomaly Detection (CAD) which is a distribution-
free procedure for probability-like confidence measure estimation based on non-conformity
measure (NCM) provided by some detector. The NCM A(x, y) reflects how different the
investigated object y is from other observations x. NCM could be for instance the average
distance to k neighbours, the distance to the k-th neighbour, residual in a regression model,
to name just a few.

Let us consider a time series xt, then compute scores ats = A(X−s:t , xs), s = 1, . . . , t,
where A(x, y) is an NCM used by the algorithm.

Then the empirical p-value is defined as:

p(xt, X:(t−1), A) =
1

t
|{s = 1, . . . , t : ats ≥ att}|.

The lower it is, the lower the probability of falsely rejecting the null hypothesis (xt is
anomaly) is, thus the more likely xt is an anomaly instance.

Shafer and Vovk proved [31] the fact that CAD could provide the following guarantee
when xt is i.i.d:

Px∼D(p(xt, X
−t, A) < ε) ≤ ε,X = (xs)

t
s=1.

It is clear that CAD could be computationally heavy as it requires computations of
A(X−s:t , xs) for s from 1 to t.

To mitigate this problem, an Inductive Conformal Anomaly Detection (ICAD) was
proposed by Laxhammar and Falkman in [27]. This approach relies on scores computed on
training set X̄ for every instance of the calibration set. For further simplicity, let us consider
relabelled sequence xt that starts from−n+ 1. Then, ICAD has the following setup for every
t ≥ 1:

x−n+1, . . . ,x0︸ ︷︷ ︸
X̄ training

,

calibration︷ ︸︸ ︷
x1,x2, . . . ,xt−1,xt.

In that setup, the conformal p-value of a test object xt is computed on the basis of modified
scores:

{ats = A(X̄,xs), s = 1, . . . , t}, X̄ = (x−n+1, . . . ,x0).

However, by relaxing deterministic guarantee to probably approximately correct
guarantee, it is achievable to adapt ICAD to use only fixed size calibration set. Offline ICAD
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was developed to use a calibration set only with fixed size m, sliding along the time series, as
illustrated:

x−n+1, . . . ,x0︸ ︷︷ ︸
X̄ training

, . . . ,

calibration︷ ︸︸ ︷
xt−m,xt−m+1, . . . ,xt−1,xt.

It should be highlighted that the conformal p-value in this case uses a subsample of the ICAD
non-conformity scores:

p(xt, X:(t−1), A) =
1

m+ 1
|{s = 0, . . . ,m : att−s ≥ att}|.

Vovk proved [28] the following guarantee for the offline ICAD:

Px∼D(p(x, X, Ā) < ε) ≤ ε+

√
log 1

δ

2m
.

4. PROPOSED APPROACH FOR ANOMALY DETECTION IN TIME SERIES DATA

In this section we outline the proposed algorithm for anomaly detection in time series. It
is worth emphasising that the developed approach does not require any assumption about
the data distribution and it outputs a probabilistic measure of anomality based on non-
conformity scores. Such measure of anomality is calculated using an adaptation of ICAD
to the case of potentially non-stationary and quasi-periodic time series. CAD and online
ICAD are computationally complex, therefore offline ICAD seems much suitable for the task.
Nevertheless, as offline ICAD uses a fixed training set, it should be noticed that one could
face problems in case of non-stationary time series. In the light of the discussed details and
difficulties, Lazy Drifting Conformal Detector (LDCD) has been proposed in our paper [32].

For simplicity we consider a univariate time-series X = (xt)t≥1 ∈ R, although
our approach is valid for multivariate data as well since we are going to use
kernel-based non-conformity measure. To begin with, the time series X should be
embedded into L-dimensional space. To that end, we further consider the sequence of
xt = (xt−L+1, . . . , xt) ∈ RL constructed by moving window of the width L on the time
series X:

. . . , xt−L−1,
xt−1

xt−L, xt−L+1, . . . , xt−1, xt
xt

, xt+1, . . . .

It should be noticed that such approach obviously produce t− L+ 1 embeddings from
the sequence of the length t. In other words, to produce the first such embedding, we need to
observe L instances initially.

As NCM we are using the expected similarity:

A(Tt,xt) =
1

n

n∑
i=1

K(xt,xt−m−i),

where Tt = {xs : s = t−m− n, . . . , t−m− 1}, K(x, y) is a kernel function.

data: . . . ,
Tt training︷ ︸︸ ︷

xt−m−n, . . . ,xt−m−1, xt−m, . . . ,xt−1,
test

xt, . . .
scores: . . . , at−m−n, . . . , at−m−1, at−m, . . . , at−1︸ ︷︷ ︸

At calibration

, at
test

, . . .
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The proposed approach could be described as follows:

1. Construct time series embedding in a sliding window,
2. Compute an+s = A(Tn+s,xn+s), s = 1, . . . ,m+ 1,
3. Evaluate the empirical p-value of its non-conformity score:

p(xt, Tt, A) =
1

m+ 1
|{i = 0, . . . ,m : at−i ≥ at}|.

The algorithm is depicted in the Figure 4.1.

Fig. 4.1. Flowchart of the algorithm

It is worth emphasising that the proposed approach could be implemented with time
complexity equal to O(n) +O(logm) in the case of using red-black tree for the calibration
set.

5. RESULTS ON NUMENTA ANOMALY BENCHMARK

The results of the EXPoSE LDCD comparison with several other algorithms is presented in
this section along with the testing methodology. The Numenta Anomaly Benchmark (NAB)
is utilized to test the proposed algorithm.

5.1. Datasets
The NAB corpus consists of 58 both real-world and artificial time series datasets. Real-world
data are obtained from such sources as AWS server metrics, Twitter volume, advertisement
clicking metrics, traffic data, to name just a few.

We also conduct experiments using Numenta Anomaly Benchmark on Yahoo! S5
dataset [34] which has been created to gauge the anomaly detectors performance on different
types of anomalies. This corpus is divided into 4 groups: first one contains real production
metrics from different Yahoo! properties, and the rest are synthetic time series.
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5.2. Scoring algorithm
Commonly used metrics for performance evaluation such as accuracy, precision and recall
do not suit well for anomaly detection, since they do not consider time. The NAB proposes
such an approach for scoring which rewards only early true detection, meanwhile penalizes
late detections and punishes false alarms very hard.

To capture early detections, NAB considers the area which is centred around the anomaly
point which is referred to as anomaly window. The window length is defined as 10% of the
length of the time series. All detections within this window are true positives, but only the
earliest one contributes in the total score, the others will be ignored. The detections outside
the anomaly window are false positives, missed anomalies are false negatives. True negatives
are not considered in the scoring mechanism.

Bellow we described scoring scheme used in NAB [33]. An example of time series is
provided in Figure 5.2. The first 15% of the time series is considered as probationary period
and during this period an algorithm learns patterns from the data and is not required to do
any detections. Then the algorithm is evaluated on the remaining part of time series. The
weights for accuracy calculation is evaluated using the smooth sigmoid function as depicted
in Figure 5.3.

Fig. 5.2. The purple shaded area is the probationary period. Anomalies are depicted as red points and red shaded
regions represent anomaly windows [33].

As the costs of true positive (TP), false positive (FP) and false negative (FN) vary among
distinct applications, in NAB this is captured by an application profile which reflects the
contribution of weights for TP, FP an FN detections.

The “Standard” application profile reflects scenarios in which misdetections have
identical costs. The “Reward Low FP” and “Reward Low FN” profiles penalize harder for
FP and FN respectively.

Profile ATP AFN AFP ATN
Standard 1.0 -1.0 -0.11 1.0

Reward Low FP 1.0 -1.0 -0.22 1.0
Reward Low FN 1.0 -2.0 -0.11 1.0

Table 5.1. The detection rewards on NAB application profiles

The reward for the detection depends on the relative position t of the alarm (about possible
anomaly) to the left side of the anomaly window:

σA(t) = (ATP − AFP )

(
1

1 + e5t

)
− 1.

The raw performance score on the dataset X with respect to application profile A is the
sum of the scores over all detections plus the impact of missed anomalies (false negatives)
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captured by the number of anomaly windows with no detections fdet:

SAdet(X) =
∑
y∈Ydet

σA(y) + AFNfdet.

The overall performance of the algorithm is the sum of raw performance scores over the all
datasets D: SAdet =

∑
X∈D S

A
det(X). The final normalized performance score is determined

by:

SANAB = 100
SAdet − SAnull

SAperfect − SAnull
.

Fig. 5.3. NAB weighted scores: detections outside the anomaly window are false positives and punished; only
earliest detection inside window is true positive and it will be counted, other will be ignored [33].

5.3. Results
Since proposed EXPoSE LDCD is conservative and demonstrates high level of false alarms,
we have applied the following simple pruning strategy to reduce the false alarm rate: we
output 1− p as anomaly score for the observation xt and if p is greater than 99.65%,
then output of the detector is fixed at 0.5 for the next n

5
observations (n is the length

of probationary period). The proposed approach has been validated on both the Numenta
Anomaly Benchmark corpus and the Yahoo! S5 dataset. Tables 5.2 and 5.3 reflect the results
of the algorithms comparison.

5.4. Automated kernel bandwidth tuning
Kernel-based methods are sensitive to the choice of bandwidth, therefore we modify the
algorithm to choose the bandwidth of the kernel based on the best value of the bandwidth
for Kernel Density Estimator obtained by 3-fold cross-validation. The proposed modification
demonstrates significantly better results on NAB dataset and is able to increase the score on
both Low FN and Low FP profiles, meanwhile it results in slight score decrease on Standard
profile.

6. CONCLUSION

In this paper we propose an algorithm for anomaly detection in time series data, utilizing
the concept of expected similarity and applying framework of conformal anomaly detection.
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Table 5.2. Results on Numenta Anomaly Benchmark

Detector
Profile Standard Reward Low FP Reward Low FN

Numenta HTM 70.1 63.1 74.3
EXPoSE LDCD +tuning 45.53 25.77 54.78

Windowed Gaussian 39.6 20.9 47.4
EXPoSE LDCD 37.93 20.14 45.11

Etsy Skyline 35.7 27.1 44.5
Bayesian Changepoint 17.7 3.2 32.2

EXPoSE 16.4 3.2 26.9

Table 5.3. Results on Yahoo! S5 dataset

Detector
Profile Standard Reward Low FP Reward Low FN

EXPoSE LDCD 51.88 38.76 58.95
EXPoSE LDCD +tuning 49.79 43.73 61.45

Numenta HTM 41.0 37.5 44.4
Bayesian Changepoint 35.7 17.6 43.6

EXPoSE 32.09 7.00 45.45
Windowed Gaussian 31.1 25.8 40.7

Etsy Skyline 23.6 18.0 28.9

Table 5.4. Average running time performance on NAB dataset

Detector
Performance items per second ms per item

Windowed Gaussian 1984.862 0.504
EXPoSE LDCD 1500.224 0.667

Bayesian Changepoint 428.639 2.333
EXPoSE 398.496 2.51

Numenta HTM 98.012 10.202
Etsy Skyline 4.582 218.229

Table 5.5. Average running time performance on Yahoo! S5 dataset

Detector
Performance items per second ms per item

EXPoSE LDCD 2548.293 0.392
Windowed Gaussian 2348.041 0.426

Bayesian Changepoint 1217.888 0.821
EXPoSE 383.711 2.606

Numenta HTM 103.777 9.636
Etsy Skyline 4.656 214.773

This approach has been rigorously validated on NAB corpus and Yahoo! S5 dataset using
Numenta Anomaly Benchmark. On both datasets the proposed approach excel the EXPoSE,
which produces expected similarity as anomaly score and expected similarity is used as non-
conformity measure in the LDCD procedure. Moreover, the developed algorithm shows great
running time performance, which is important for online detectors and achieves high results
on standard profile on Yahoo dataset. Also, the implementation of the algorithm could be
enhanced, as it has not been thoroughly optimised and it could be one of the directions for
future research. We also propose a tuning procedure for the kernel bandwidth parameter,
however there is still a significant room for improvements.
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