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Abstract. The paper presents the algorithm for calculating the maximal effective antitumor viral 

vaccine introduction regimens, using a computing experiment method (in silico) based on the software 

implementation of two mathematical models in the MatLab-Simulink system. The first model of 

antitumor vaccine therapy describes a two-stage mechanism of the tumor cells’ death as a result of the 

immune response. The effectiveness of immune response is measured in the number of antibodies 

formed by the immune system against virus-infected tumor cells. The second model of antitumor 

therapy with discontinuous trajectories of tumor growth is designed to evaluate the rate of the tumor 

cells’ death after the introduction of the viral vaccine. The effectiveness of the therapy is measured in 

the number of dying tumor cells after the introduction of a viral vaccine. 
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1. INTRODUCTION 

Vaccine therapy is one of the methods of immune therapy of the oncological diseases. It implies 

vaccination against the malignant cells formed in the body. As with any vaccination, the 

introduction of viral vaccines stimulates the body's immune system and causes the formation of 

antibodies specific to the tumor type. Experiments in tumor immunotherapy can be traced back 

to Ehrlich [1], and since the middle of the twentieth century the studies aiming to find the viruses 

that are able to affect malignant tumors without causing any harm to the humans commenced in 

the Soviet Union and were further continued in Russia [2-6]. 

One of approaches to developing effective antitumor vaccines implies using the viruses that 

are able to identify malignant cells and do not cause any damage to the normal tissues. The 

viruses selected for therapy should be clinically harmless and epidemiologically safe. Therefore, 

oncotropic viruses must have a genetically fixed absence of pathogenic properties and be unable 

to cause an acute infectious disease in a human body.  

Among the viruses that meet these criteria are the Venezuelan horse encephalomyelitis virus 

(VEE) [5-7] and rat parvovirus H-1 [15-23]. Both are not harmful to humans because they do not 

affect healthy tissues since they cannot replicate in the non-dividing cells [16-18]. Thus these 

viruses are able to identify the tumor cells based on their high proliferation rates, and specifically 

target them without attacking the normal tissues [18-19].  

Experimental studies of rat parvovirus H-1 indicate that there are two possible mechanisms 

of the tumor cells’ death as a result of vaccine introduction. Firstly, the virus blocks the cycle of 

the tumor cells [16-18]. Secondly, it produces specific protein formations on the tumor cell 

surface that stimulate the immune system to develop antibodies against these cells, resulting in 

their death [13-14, 19-21]. This corresponds to the results of the experimental studies of the 

impact of the VEE virus on tumor growth [4-6]. However, since such experiments require 
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extensive funding, these studies did not determine the maximal and minimal effective dosages 

and the optimal moment of vaccine introduction.  

Thus, the present study presents an algorithm that allows to determine the optimal dosage of 

the VEE virus-derived vaccine and the moment of its introduction that will ensure the maximal 

rate of tumor cells’ death, building on the mathematical models of anti-tumor therapy and 

vaccine therapy developed in [7-9].  

2. THE MATHEMATICAL MODEL OF THE VEE VIRUS VACCINE THERAPY  

The mathematical model of vaccine therapy describes the mechanism of two-stage death of 

tumor cells caused by the virus itself and as a result of the immune system stimulation against 

the infected tumor cells.  

Based on the experimental data on the growth of Erlich adenocarcinoma in mice after a 

single introduction of the VEE virus vaccine, one day after the tumor was transplanted to 

animals (Figure 1), the parameters of the model were estimated and its adequacy was tested 

using experimental dosages of the VEE virus vaccine [8-11]. The values of the model parameters 

are shown in Appendix 1. 

 
Fig. 1. Experimental curves of the Ehrlich adenocarcinoma growth without vaccine administration (control) and 

after single vaccine administration 

 

The mathematical model of the two-stage death of tumor cells after the viral vaccine 

introduction is described by the following system of differential equations (1-8) [7-10]:  
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where ( )V t is the number of viruses, ( )N t is the number of tumor cells without vaccine 

introduction, described by the following differential equation: 

                        
( )

( ) ( )
dN t

t N t
dt

=  , at 0 0( )N t N=                                                           (2) 

where  (t) is the rate of tumor cells’ proliferation,  
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( )VN t is the number of infected tumor cells after the vaccine introduction,  

1V CVt Z= +  is the moment of the start of immune response against viruses, 

1N CNt Z= +  is the moment of the start of immune response against tumor cells, 

1  is the moment of vaccine introduction,  

CVZ and CNZ are the time lag of immune response against the virus and infected tumor 

cells, 

( )V VA t t− is the number of antibodies against the virus, 

( )N NA t t− is the number of antibodies against infected tumor cells, 

( )Vt t −  and ( )Nt t − are the Heaviside step function,  

 AVK , ANK , and VK  are the dimension factors.  

The first component of equation (1) describes the dynamics of the tumor cells’ growth before 

the introduction of the viral vaccine. 

The second component of equation (1) describes the death of infected tumor cells caused by 

the virus.  

The first stage of the immune system stimulation is production of antibodies against the virus 

(Figure 2 – ( )VC t , ( )VA t ). At this stage the death of tumor cells is caused by the penetration of 

the virus inside the tumor cells (Figure 3).  

The third component of the equation describes the death of tumor cells caused by antibodies 

produced against the infected tumor cells (Figure 2 – ( )NC t , ( )NA t ). Reproducing in tumor cells, 

the viruses induce the development of new protein formations on the surface of the tumor cell 

membranes. Such infected tumor cells are perceived by the immune system as foreign to the 

body. As a result, immune system produces antibodies specific to the tumor cells, and they 

destroy the infected tumor cells (Figure 3). 

The patterns of immune response to the foreign cells are based on Marchuk's mathematical 

model of infectious diseases [24-27]. This model treats the immune response (production of T 

and B cells) as a combined action. Therefore in the present study the immune response means the 

formation of antibodies and plasma cells specific to the VEE virus and infected tumor cells. 

Using Marchuk’s model, the dynamics of the number of viruses is described by the following 

equation:  

( )
( ) ( ) ( ),V V V

dV t
V t A t V t

dt
 = −      (3) 

where 0 1( )V V =  is the initial dose of the viral vaccine, 1  is the moment of the first 

administration of the viral vaccine, V  is the rate of viruses’ reproduction within the cell,  

V  is the death rate of viruses when they interact with antibodies ( )VA t . 

In the vaccine therapy model, the initial condition 0 1( )V V =  denotes the dosage of the 

vaccine. The immune response of the body to the virus introduction results in production of 

antibodies and plasma cells. Their numbers are calculated using the following four differential 

equations [24-25] for each of the two stages of the immune response – against the virus and 

against the infected tumor cells.   

The dynamics of the number of antibodies to the virus ( )VA t : 

      1

( )
( ) ( ) ( ) ( ),V

A V V AV V V V V V

dA t
C t t A t t V t t A t

dt
   = − − − − − −                              (4) 
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where A  is the rate of formation of antibodies from a single plasma cell, AV  is the 

death rate of antibodies due to interaction with viruses ( )VA t , V  is the rate of decrease in the 

number of antibodies due to natural destruction. 

The dynamics of formation of plasma cells CV(t):  

                 1 1

( )
( ) ( ) ( )V

VC V CV V VN

dC t
V t A t t C t C

dt
    

  
= − − − − − , at 1 ,( )V VNC C =          (5) 

where С  is the rate of formation of plasma cells, CV  is the dimension factor, CVZ  is 

the time lag of the immune response to the formation of a plasma cell clone. The second term 

of this equation defines the deviation of the actual number of plasma cells from the norm CVN. 

The equation for the dynamics of the number of antibodies ( )NA t acting against infected 

tumor cells is as follows:  

               
( )

( ) ( ) ( ) ( ),N
AN N N AN N N V N NN N N

dA t
C t t A t t N t t A t t

dt
  = − − − − − −         (6) 

where AN  is the rate of formation of antibodies from a single plasma cell, AN  is the 

death rate of antibodies ( )NA t due to interaction with infected tumor cells ( )VN t , NN  is rate 

of decrease in the number of antibodies due to natural destruction.  

The dynamics of formation of plasma cells ( )NC t : 

                   ,
( )

( ) ( ) ( )N
CN V N N CN N N NN

dC t
N t A t t C t t C

dt
   

  
= − − − −              (7) 

 at 1( ) ,AN NNC C =  where CN  is rate of formation of plasma cells, CN  is the dimension 

factor, ZCN is the time lag of the immune response to the formation of a plasma cell clone 

against the infected tumor cells. 

Dynamics of antibodies ( )VA t against the virus and against infected tumor cells ( )NA t are 

shown in Figure 2. 

 
Fig. 2. Population dynamics of antibodies ( )VA t against the virus and against infected tumor cells AN(t) for 

experimental dosage 0 0,015V = on 1 = day 1 (the first and second stages of the immune response) 
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In the equations that describe the dynamics of the formation of antibodies (6) and plasma 

cells (7), the number of infected tumor cells was calculated as ( ) ( ) ( ),V N NN t N t P t=   where 

( )NP t accounts for the proportion of rapidly proliferating cell fraction as the size of the tumor 

increases [14]: 

             
2 2

21
( ) 1 ( ) ,

1

p p

p p

t
P t arctg

K t

 

 

 
= −  

−   

                                  (8) 

where p  and Kp are constant parameters, t is the current time of the tumor cell 

population growth, 
*

1
,p

t
 = where *t  is the moment when the numbers of the rapidly and 

slowly proliferating cells are equal. 

The fraction of rapidly proliferating tumor cells is located near the blood vessels 

(oxygenated fraction), while the fraction of slowly proliferating cells is pushed to the tumor 

periphery (hypoxic fraction). The process of the change in the proportion of the rapidly and 

slowly proliferating cells with the increase in the tumor size is described in the Skipper model 

[31]. As the number of the fast-proliferating tumor cells decreases, the virus ceases to affect 

them. This causes the decrease of the tumor sensitivity to the viral vaccines and of the number 

of infected tumor cells ( )VN t  that can induce the immune response. As a result, the number of 

the antibodies developed against tumor cells is reduced, and the effectiveness of the viral 

vaccines declines. 

Thus, the mathematical model of vaccine therapy describes the mechanism of two-stage 

death of tumor cells caused by the virus itself and as a result of the immune system 

stimulation against the infected tumor cells.  

The calculated curves that describe the dynamics of the two-stage death of infected tumor 

cells ( )VN t and the production of antibodies and plasma cells at the each of the two stages of 

the immune system stimulation are shown in Figure 3 [8-10]. 

 
Fig. 3. Calculated growth curve of the total number of tumor cells N(t) (full line) that approximates experimental 

data (+) based on the mathematical model of antitumor therapy (dosage 0 0,015V = on 1 = day 1); the dotted line 

indicates the dynamics of the number of infected tumor cells ( )VN t . 
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Calculations show that the curve that describes the dynamics of the number of infected tumor 

cells is located below the experimental curve of the tumor growth.  This indicates that when the 

viral vaccine is administered, it does not infect the entire tumor cell population ( ).N t  Some cells 

remain uninfected ( )RN t and continue to multiply, causing a repeated growth of the tumor, as 

observed in the experiment (Figure 1). Some cells survive ( 0
VRN – after the 1st stage of immune 

response, 0
NRN – after the 2nd stage), causing a repeated growth of the tumor as observed in the 

experiment (Figure 1).  

3. THE MATHEMATICAL MODEL OF ANTITUMOR THERAPY WITH 

DISCONTINOUS TRAJECTORIES FOR ASSESSING THE TUMOR GROWTH DELAY 

AFTER THE TWO-STAGE DEATH OF TUMOR CELLS  

The mathematical model of antitumor therapy with discontinuous trajectories was developed to 

control and optimize the regimes of applying different antitumor therapy methods based on 

kinetic curves of tumor growth [8-10].  

Figure 3 shows the calculated growth curve of the total number of tumor cells N(t) (full line), 

which was obtained based on the mathematical model of antitumor therapy by approximating the 

experimental data. 

The duration of tumor growth delay was estimated based on the following assumptions 

adopted in the mathematical model of antitumor therapy [8-10]:    

1. The cell death occurs instantly at each of the two stages of the immune system stimulation. 

The abrupt decrease in the tumor size occurs at the moment when the maximal number of 

antibodies to the virus and infected tumor cells is produced.  

2. Reduction in the tumor size occurs only due to the death of the virus-infected tumor cells.  

3. The surviving tumor cells continue to grow at the same reproduction rate. The kinetic 

curves of their growth are described by the Gompertz function, keeping the parameters of the 

tumor growth without treatment (control), but accounting for the time shift caused by tumor 

growth delay 0( )V V and 0( )N V after each stage of their death (Figure 4). 

According to the basic antitumor therapy model [8-10], the kinetic curves of tumor growth 

without treatment are described by a simple differential equation  

                                                   
( )

exp( ) ( )N N N

dN t
t N t

dt
  = − , at 0(0)N N= ,                                   (9) 

 where 0N  is the initial number of tumor cells at the time of tumor transplantation to animals 

at t = 0, N(t) is the number of cells in the tumor at time t, N  and N  are the parameters of the 

Gompertz function, which approximates the experimental kinetic curve of Ehrlich 

adenocarcinoma growth without treatment (Figure 1) [5-7, 10-14]. 

Based on the assumptions listed above, tumor growth after the introduction of viral 

vaccines follows a differential equation describing the two-stage death of tumor cells: 

,0 1 0

, 1 0

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

              ( ) ( ) ( ) ( ) ( ( )),

V V V V V V N

N V N N N N

dN t
t N t t t S V N t t t t t N t V t t

dt

S N N t t t t t N t V

      

   

= − − − + − − − −

− − + − −

 (10) 

where ( )N t is the total number of tumor cells at time t, 

( )t  is the growth rate of a given type of a tumor, 

( )Vt t −  and ( )Nt t − is the Heaviside step function, 

1V CVt Z= + and 1N CNt Z= + are the moments of the tumor cells' death at each of the two 

stages of the immune system stimulation,  

 1  is the moment of the viral vaccine introduction,  
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 CVZ  and CNZ denote the time lag of the immune response against the virus and infected 

tumor cells, 

( )Vt t − and ( )Nt t − are the Dirac delta function describing instant death of tumor cells at 

each of two stages of the immune system stimulation, 

,0( )V VS V t and ,0( )V NS V t are the relative decrease in the tumor size at the time the tumor 

cells’ death at each of the two stages, 

,0( )V VV t and ,0( )N NV t are the tumor growth delay after cells’ death at each of the two 

stages of the immune system stimulation (Figure 3).  

In the vaccine therapy model, it was assumed that the relative decrease in tumor volume 

occurs only due to the death of the virus-infected tumor cells NV(t). Thus in this model the 

number of dying cells was calculated as the difference between the maximum and minimum 

number of infected cells: 

             1 2( ) ( ) ( )V V
V VV VN t N t N t = −      and     1 2( ) ( ) ( )N N

V VV NN t N t N t = − ,                  (11) 

where 1
Vt and 1

Nt are the starting moments for the immune response against the virus and 

against the infected tumor cells,  

         2
Vt   and 2

Nt  are the ending moments of the immune response. 

According to the model of antitumor therapy, the relative decrease in tumor size at the 

time of the tumor cells’ death at each of the two stages was determined from the following 

equations: 

                   0

( )
( , )

( )

V V
V V

V

N t
S V t

N t


=     и     0

( )
( , ) ,

( )

V N
N N

N

N t
S V t

N t


=                                    (12) 

         where ( )VN t and ( )NN t denote the total number of cells in the tumor at the time 

points Vt  and Nt . 

The death of tumor cells causes tumor growth delay, and its duration serves as a 

quantitative measure of the cells’ death depending on the dosage of the viral vaccine. The 

tumor growth delay ,0( )V VV t and ,0( )N NV t equals the time interval between the cells’ death 

and their subsequent recovery to the original size at the moment of vaccine introduction 

(Figure 3): 
                   0( ) ( ( , ))V V V VN t N t V t= +     и    0( ) ( ( , )).N N N NN t N t V t= +                       (13) 

Then the tumor growth after each stage of the infected cells' death is described by 

Gompertz equations with a time shift that accounts for the duration of the tumor growth delay 

as follows: 

                       0 0( ) exp( (1 exp( ( ( ))))),V
V N N V VN t t RN t V  − = − − −                              (14) 

                        0 0( ) exp( (1 exp( ( ( )))))N
N N N N NN t t RN t V  − = − − −                                  (15) 

where  0
VRN  and  0

NRN   is the number of  surviving cells after the 1st and the 2nd stages of 

immune response. 

Figure 3 shows the calculated curve that describes the total number of tumor cells N(t) 

(upper curve) derived from the mathematical model of antitumor therapy with discontinuous 

trajectories of tumor growth by approximating the experimental data. This curve describes the 

tumor growth N(t) following three Gompertz equations (one for a control group) with a time 

shift that accounts for the tumor growth delay after each stage of the cells’ death [8-10]. 

Appendix 1 shows the values of the parameters for the vaccine therapy model and the 

antitumor therapy model, estimated based on the experimental data provided in [10-14]. 
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4. ALGORITHM FOR CALCULATING EFFECTIVE ADMINISTRATION REGIMENS 

FOR VIRAL VACCINES 

Mathematical model of vaccine therapy and mathematical model of antitumor therapy with 

discontinuous trajectories of tumor growth were developed in MatLab-Simulink to conduct a 

computing experiment (in silico). The experiment aimed to identify the efficient vaccine therapy 

regimes for a wide range of VEE virus dosages and for different moments of vaccine 

introduction.  

The efficiency of the vaccine therapy was assessed after each of the two stages of immune 

response based on two parameters: 

1 – number of produced antibodies ( )VA t and ( )NA t ,   

2 – number of dying tumor cells ( )V VN t and ( )V NN t . 

The efficiency of vaccine therapy method was estimated by two criteria. The first was the 

number of antibodies formed by the immune system at each of the two stages of its 

stimulation. We needed to determine the dosage that results in the maximum number of 

antibodies against infected tumor cells [10-13]. When this condition is met, the tumor-bearing 

organism is able to restrain the growth of the surviving tumor cells. 

The second criterion was the tumor growth delay. It depends on the number of dying cells on 

each of the two stages of immune response.    

Therefore, the algorithm for calculating optimal regimen of the viral vaccine is based on 

defining a maximal effective dosage when the immune system produces the biggest number of 

antibodies. 

4.1. Calculating the viral vaccine dosage using the criterion of the production of antibodies 

against infected tumor cells 

Based on the model of vaccine therapy with a single introduction of the varying dosages of the 

viral vaccines at the varying moments (from the 1st to 35th day), the graphs that show the changes 

in the number of antibodies against the virus ( )VA t (Figure 4) and antibodies against infected 

tumor cells ( )NA t  (Figure 5) were developed [14].  

These graphs reflect two fundamentally different types of the production of antibodies 

against the virus and against the tumor cells, depending on the vaccine dosage. The number of 

antibodies against the virus increases in proportion to the dosage increase, i.e. there is a linear 

dependence between these variables (Figure 4). However, the increase in the number of 

antibodies against infected tumor cells 0 1( , )NA V  is non-linear, and depends on the tumor size 

at the moment of vaccine introduction (Figure 5). This non-linear dependence allows 

determining the virus dose 
max

0V = 0,024 that results in the maximal production of antibodies 

against the infected tumor cells. 
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Fig. 4. Maximum number of antibodies against the virus 
max

0( )VA V depending on the dose 0V  administered on day 

1 (the first stage of the immune system stimulation)

  

Fig. 5. Maximum number of antibodies against infected tumor cells 
max

0( )NA V depending on the dose of 0V  

administered at different moments (the second stage of the immune system stimulation); 1 = 1, 5, 15, 25, 35 days 

The non-linear dependence of production of antibodies on the dosage increase 0 1( , )NA V  may 

be due to the changes in the number of infected tumor cells on the 1st and 2nd stages of immune 

response. When the dosage is small, the number of the dying cells is low, but many cells get 

infected by the virus. With the further increase of the dosage exceeding 
max

0V = 0,024, the 

number of cells dying at the 1st stage of immune response increases. This leads to reduction of 

the number of infected cells, and the consequent decrease in the number of antibodies against 

these cells on the 2nd stage of immune response.  

Thus, with the administration of significant doses of the virus, almost the entire population of 

tumor cells is killed already at the 1st stage of immune response. This leads to a rapid and 

effective destruction of the tumor, but doesn’t stimulate the 2nd stage of immune response; 

therefore the antibodies against the infected tumor cells are not produced.  
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The effectiveness of production of the antibodies against the infected tumor cells depends on 

the tumor size. As indicated by the calculations [14], after 35 days the number of fast-

proliferating tumor cells starts to decrease, and this leads to the decline in the number of infected 

tumor cells and antibodies against them at the later stages of vaccine therapy. 

Thus, the calculations using the mathematical model of vaccine therapy allowed to define 

the maximal effective dosage of the VEE virus-derived vaccine and to identify the moment of 

its administration that results in the maximal number of infected tumor cells maxt [14].  

Based on the model of vaccine therapy the graphs that show the number of  infected tumor 

cells that die at the 1st and 2nd stages of immune response were developed based on equation 

(11) (Figures 6 and 7). 

 

Fig. 6. Calculated curves describing the dynamics of the tumor cells’ death 0( )V
VN V depending on the dosage on 

1 = day 1, 15, 25 (1st stage of immune response)  

 

Fig. 7. Calculated curves describing the dynamics of the infected cells’ death 0( )N
VN V depending on the dosage on 

1 = day 1, 15, 25 (2nd  stage of immune response) 
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There are fundamental differences in the dynamics of the tumor cells’ death on each stage 

of the immune response. On the 1st stage the number of dying cells increases with the increase in 

the dosage, and depends on the tumor size at the moment of vaccine introduction (Figure 6). On 

the 2nd stage the number of dying cells declines due to the decreasing number of produced 

antibodies, as shown by the 0 1( , )NA V  graphs (Figures 5 and 7). 

4.2. Kinetic curves of tumor cells’ growth after 1st and 2nd stages of immune response 

A model of antitumor therapy with discontinuous trajectories (Equations (9)-(16)) was used to 

forecast the dynamics of the tumor growth after the introduction of the viral vaccines in different 

regimes. Calculated curves of tumor growth are shown in Appendix 2. 

The model includes a threshold value 0
cut offN −

that indicates the minimal number of the tumor 

cells that can trigger the renewed experimental tumor growth. After each of the two stages of 

tumor cells’ death the tumor can resume its growth if the number of surviving cells 0
VRN and 

0
NRN exceeds the threshold 0

cut offN −
. Threshold value depends on the normal level of plasma 

cells VNC  and NNC (Equations (5) and (7)). Threshold value was defined based on proportion 

0
0

0,76
0,4

2 2

cut off N
N − = = = , where 0N  is the initial number of tumor cells (Equation (2)). If the 

number of surviving cells is below the threshold, then the tumor will not be able to resume its 

growth. In the model this is taken as complete elimination of tumor cells. In this case the lifetime 

of the vaccine-treated animals will be equal to the average lifetime of the experimental animals 

without treatment. 

The resulting kinetic curves that describe tumor growth after vaccine introduction on  1 = 1 

day (Figures 8-15) allow to identify two dosage ranges that determine two possible regimens for 

administering antitumor vaccines. 

The first regimen (with dosages exceeding 
exp

0 03 0,045V V=  = ) makes it possible to ensure 

that at the 1st stage of immune response the number of tumor cells drops below the threshold 

0
cut offN −

 (Figures 8-15), which is equivalent to elimination of tumor cells. 

The second regime (with dosages between 
exp

0 0,015V =  and 
exp

03 0,045V = ) does not 

produce the decline in the number of tumor cells below the threshold level 0
cut offN −

. However, 

these dosages cause the death of the tumor cells at both stages of immune response, and this 

initiates the production of antibodies against infected cells. When these antibodies exist, the 

process of tumor growth can be controlled through recurrent introductions of the viral vaccine. 

This regimen will stabilize the initial tumor size. If the initial tumor size is small, this regimen 

makes it possible to avoid the surgical intervention, with vaccine therapy acting as a regular 

vaccination against autologous tumor cells. 

The calculations show that if the vaccine is introduced on 1 =25 day (Appendix 2) with 

dosages between 
exp

0 0,015V =  to 0 0,1V = , the decrease of the number of tumor cells below the 

threshold level is not possible. Therefore if the tumor size is big, it needs to be surgically 

removed. However, if the surgical intervention is contraindicated, the tumor size can be 

stabilized through recurrent vaccinations. In any case, this decision rests with the physician. 

5. TIME FRAME FOR RECURRENT INTRODUCTION OF THE VIRAL VACCINES 

A model of antitumor therapy with discontinuous trajectories of tumor growth (Equations (9)-

(16)) was used to identify the time frame for recurrent viral vaccine introductions. The time 

length between the recurrent vaccine introductions T is equal to the interval between the 

moment of initial introduction 1  and 2  – the moment when the tumor size N( 1 ) = N( 2 ). 
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Kinetic curves of tumor growth after the viral vaccine is introduced on 
1  =1 day, with 

dosages between 
exp

0 0,015V =  to 
exp

0 02,67 0,04V V=  = , indicate that the time frame for 

subsequent introduction lies in the range of T = 14,5 days to T = 18,9 days depending on the 

dosage. Therefore, if the tumor size is small, it can be stabilized through recurrent introduction 

of these dosages within 14,5 – 18,9 days. 

When the tumor is already big, its size can be stabilized while it is dominated by the fraction 

of the fast-proliferating cells ( * 35t = days). If the vaccine is initially introduced on 1  =25 day, 

stabilizing regimen can be implemented through subsequent administration of dosages that 

produce two-stage immune response. Introduction of dosages in the range of 
exp

0 0,015V = to 

exp
0 03 0,045V V=  =  within the time frame of  T =30,5 can stabilize the tumor size on its pre-

treatment level as of day 25. This allows to avoid surgical removal of the tumor. 

6. PREDICTION OF THE FREQUENCY OF REPEATED VIRAL VACCINE 

ADMINISTRATION FOR THE CLINICAL SETTING 

The model used in this study allows to calculate the time frame for recurrent viral vaccine 

introductions for experimental animals. In humans, these time intervals will be different. 

However, it is possible to calculate their approximate duration by applying allometric 

relationship (16) that describes the dependence of the metabolic processes in mammals on their 

body weight [32, 33]:  

bm a =       (16) 

where m is the mammal's body weight,   is the speed of the mammal's metabolic processes, 

a and b are constant parameters. 

Research indicates that body weight and lifespan also follow an allometric relationship for 

both humans and laboratory mice [32-34]. 

If we find the logarithm of equation (16), we obtain a linear equation that connects the 

average body weight of various mammals and humans with their average life span Tl (Figure 8): 

ln ln ln lnm b Tl a b Tl c=  + =  +       (17) 

Regression analysis allowed to define the value of regression coefficient b = 2,4981, which 

characterizes the slope of the regression line.  

 
Figure 8. Dependence of the life span on body weight for ○ - mice, □ - rats, + - guinea pigs, х - rabbits, ◊ - dogs, 

and * - humans 
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Allometric relationships that define the tumor growth delay for mice and humans are as 

follows:  

         0( )human human bm a T V=       and     0( )mouse mouse bm a T V=                   (18) 

 Where 0( )humanT V  is the duration of the tumor growth remission in a human after the viral 

vaccine administration in clinical oncology, 0( )mouseT V is duration of tumor growth delay in a 

mouse in the experiment. 

The duration of tumor growth delay for a mouse and a human can be calculated using the 

following proportion  

                            

1

0

0

( )

( )

human human b

mouse mouse

T V m

T V m

 
=  

  
 

This proportion makes it possible to calculate the duration of tumor remission in humans 

based on the estimated tumor growth delay in mice (experimental group), average body weight 

of mice (experimental group), and human body weight: 

         

1

0 0( ) ( )
human b

human mouse

mouse

m
T V T V

m

 
 =   

 
                                                 (19)  

For the vaccine dosage 
max

0 0 0,024V V= =  that produces the maximal number of antibodies 

against infected tumor cells, the periods between recurrent introductions for a mouse and a 

human will be as follows: 

- For small tumors, when the vaccine is initially administered on 1  =1 day: 0( )mouseT V  = 

16,7 days, 0( )humanT V =1,3 years; 

- For bigger tumors, when the vaccine is initially administered on 1  =25 day: 0( )mouseT V  = 

30,5 days, 0( )humanT V =2,1 years. 

The period for the repeated vaccine introduction can be treated as a time when a patient needs 

to make a return visit to the therapist for examination. Examination will indicate whether the 

repeated administration of the vaccine is needed.  

7. CONCLUSION 

The software developed in MatLab-Simulink based on two mathematical models describing 

tumor growth after the introduction of antitumoral viral vaccines makes it possible to study the 

effectiveness of vaccine therapy for a wide range of dosages and times of introduction. The 

proposed algorithm for defining the optimal regimens of viral vaccine administration can be used 

for various types of experimental tumors and types of antitumor viral vaccines. 

The results of the computing experiment presented in this paper make it possible to assess the 

effectiveness of different regimes of vaccine therapy. They suggest two strategies for the viral 

vaccine treatment. The first strategy allows a complete elimination of the tumor cells. This 

strategy implies a single-shot administration of a high dosage that produces the death of tumor 

cells at the 1st stage of immune response. The second strategy does not lead to the complete 

elimination of the tumor, but makes it possible to stabilize its size through recurrent introduction 

of the viral vaccine. If the initial tumor size is small, this stabilization gives the possibility to 

avoid the surgical intervention, with vaccine therapy acting as a regular vaccination against 

autologous tumor cells. 

The present study also proposes the method of using experimental results to predict the 

duration of remission for the humans, based on allometric relationships. This method makes it 
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possible to define the time when a patient needs to make a return visit to the therapist for 

repeated examination and decision on whether further antitumor vaccine administration is 

required. 

The development of high-tech methods for the treatment of oncological diseases is directly 

related to the cost of experimental research. Utilization of mathematical modeling at the different 

stages of experimental studies and on the stage of transferring the results to the clinical setting 

can reduce the cost of experiments and the length of research. 
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APPENDIX 1. VALUES OF THE MODELS' PARAMETERS AFTER A SINGLE 

INTRODUCTION OF THE VIRAL VACCINE ON THE FIRST DAY OF THE TUMOR 

GROWTH 

 

Equation Parameter Description 

( )dN t

dt
– (9)  N = 3.3613, 

N = 0.0332 

N= 23 

0N = 0.75 

Parameters of the Gompertz function approximating 

the experimental growth curves of the tumor cell 

population without the vaccine administration (control 

sample) 

( )VdN t

dt
– (1) 1 = 1 Moment of the first introduction of the viral vaccine 

CVZ = 4.5 Time lag of the immune response against the virus 

CNZ = 10.5 Time lag of the immune response against the infected 

tumor cells 

1V CVt Z= +  Starting moment of the immune response against the 

virus 

1N CNt Z= +  Starting moment of the immune response against 

infected tumor cells   

( )dV t

dt
– (3) V = 0.1 Rate of virus replication 

V = 15 Death rate of viruses due to their interaction with 

antibodies  

0V = 0.015 Dosage of the viral vaccine – the initial condition of 

equation (2) 

( )VdA t

dt
 – (4) A = 100 Rate of antibodies’ formation from a single plasma 

cell 

AV = 70 Rate of decrease in the number of antibodies due to 

interaction with viruses  

A = 5 Rate of decrease in the number of antibodies due to 

natural destruction   

max
VA = 1.05 Maximum calculated number of antibodies 

( )VdC t

dt
– (5) C = 100 Rate of antibodies’ formation from a single plasma 

cell 

CV = 4.5 Dimension factor 

VNC = 0.001 Initial number of plasma cells 

( )NdA t

dt
– (6)  AN = 30 Rate of antibodies’ formation from a single plasma 

cell 

AN = 6.2 Rate of decrease in the number of antibodies due to 

interaction with tumor cells 

NN = 6.3 Rate of decrease in the number of antibodies due to 
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natural destruction   

max
NA  = 4.6445 Maximum calculated number of antibodies 

( )NdC t

dt
– 

(7) 

CN = 76.677 Rate of formation of plasma cells  

CN = 38 Dimension factor 

NNC = 0.0001 Initial number of plasma cells 

( )VdN t

dt
– (1) VK = 0.25 

AVK = 0.8 

ANK = 0.8 

Constant coefficients of the dynamic equation for 

infected cells after a single introduction of the vaccine  

( )P t – (8) 

 

p = 0.3 

pK = 0.95 

p = 1/t*     

Parameters of function P(t), describing the dynamic 

equation for reduction of the fast-proliferating fraction of 

tumor cells 

t*= 35 days Moment when the number of fractions of rapidly 

proliferating cells is equal to the number of fractions of 

slowly proliferating cells  

( )dN t

dt
–(10 ) V = 4.3 days Length of the tumor cells’ growth delay after their 

death at 1st stage of immune system stimulation 

CN = 9.8 days Length of the tumor cells’ growth delay after their 

death at 2nd stage of immune system stimulation 

sum = 14.1 days Total length of the tumor cells’ growth delay (1st and 

2nd stage of immune system stimulation) 

1
Vt = 5.82 

1
Nt = 12.32 

Starting moments of the 1st and the 2nd stage of 

immune response 

2
Vt =7.13 

2
Nt =14.288 

Ending moments of the 1st and the 2nd stages of 

immune response 

1( )V V
VN t =1.3125 

1( )N N
VN t =1.1458 

Maximal numbers of infected tumor cells before the 

start of the 1st and the 2nd stages of immune response  

2( )V V
VN t = 0.84 

2( )N N
VN t =0.1031 

Minimal numbers of infected tumor cells before the 

end of the 1st and the 2nd stages of immune response 

 
1( )V V

VN t = 0.472,  

1( )N N
VN t = 1.043 

Number of dead infected cells at the 1st and the 2nd 

stages of immune response  
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APPENDIX 2. KINETIC CURVES OF TUMOR GROWTH  

Kinetic curves are calculated for varying dosages on two moments of introduction:
1 = day 1 

(figures (a) – (b)) and 1 = day 25 (figures (c) – (d)). 

For each dosage, figure (a) shows the dynamics of tumor growth ( )N t after viral vaccine 

administration (dotted line denotes the dynamics of the number of infected tumor cells ( )VN t ), 

figure (b) shows the dynamics of the number of antibodies ( )VA t  against the virus (red line), and 

( )NA t  against infected tumor cells (black line) at two stages of the immune response.  

Dosage 0V  = 0,015 

 
а) 

 
c) 

 
b) 

 
d) 

 



78  N.A. BABUSHKINA, E.A. KUZINA   

 

 

Dosage 0V  = 0,024 

 
а) 

 
c) 

 

 
b) 

 

 
d) 
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Dosage 0V  = 0,03 

 
а) 

 
c) 

 
b) 

 
d) 
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Dosage 0V  = 0,04 

 
а) 

 
c) 

 
b) 

 
d) 
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Dosage 0V  = 0,045 

 
а) 

 
c) 

 
b) 

 
d) 
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Dosage 0V  = 0,06 

 
а) 

 
c) 

 
b) 

 
d) 
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Dosage 0V  = 0,075 

 
а) 

 
c) 

 
b) 

 
d) 
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Dosage 0V  = 0,1 

 
а) c) 

 
b) d) 

 


