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Abstract

In contrast to the traditional logistic model, a series of asymmetrical models have
been proposed for modeling bacterial growth. These models are similar to the
logistic model for the lag-phase and exponential phase of the population growth,
but quite different in the stationary phase − the growth becomes remarkably
slower after the inflection point. At this point, limiting factors within the pop-
ulation such as competition or environmental stress inhibit further exponential
growth. Moreover, models as variations of the traditional exponential model are
also proposed. The models presented demonstrate more general patterns and
representative properties, from which relevant algorithms can be developed for
calculating the population specific growth rate occurring in the exponential phase.
Keywords Maclaurin series, logistic growth, exponential growth, point of inflec-
tion, carrying capacity, specific growth rate

1 Introduction

The study of microbial kinetics is of particular significance to research in the fields
of microbiology and biotechnology [1]. Although existing models and methods
have been developed, an issue arises over the precision of potentially subjective,
traditional methods of culture analysis. Calculating population growth rate is
essential to microbial kinetic studies of substrate-culture interactions, and the
introduction of a new model for population growth increases the precision of the
method. Pinpointing this microbial specific growth rate, represented as µ or r,
with accuracy and precision is at the heart of consistency in understanding labora-
tory results. Furthermore, extending calculations to model the data uses growth
patterns to provide insight into characteristics of the microbe. An exploration of
four models incorporates a review and extension of the traditional exponential
and logistic growth function, and introduces the potential for exponential-like
and logistic-like functions using a modified form of the exponential Maclaurin
series.

Several models have been fit for microbial growth curves, modifications of the
idealized exponential (Malthusian) and logistic (limited) growth to fit the reality
of microbial patterns. Among growth models, competition models, and nutrient
uptake models are included theta logistic functions, trans-theta logistic func-
tions, time-delay logistic functions, general logistic functions. Michaelis-Menten
kinetics, Gompertz, von Bertalanffy and General von Bertalanffy, Verhlust, and
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Lotka-Volterra are specific cases of these models [2-11].
Exponential growth, or unlimited and ever-increasing growth, is represent-

ed by the general differential form dP
dt = rP , and its solution P (t) = P0e

rt[8].
Logistic growth is sigmoidal and limited. It is represented by the general dif-
ferential form dP

dt = rP (1 − P
M ), and its solution P (t) = MP0ert

M+P0(ert−1) [8]. Pre-
vious extensions to the logistic model involve the general logistic model and
the time-sensitive carrying capacity logistic model [8-11]. The general logistic
model takes the differential form dP

dt = rPα[1 − ( P
M )ν ]γ , which is simplified to

P (t) = M
[1+[(γ−1)βrM(α−1)t+[( M

P0
)β−1](1−γ)]1/(1−γ)]1/β

or P (t) = A + M−A
(1+Qe−r(t−t1))1/ν

,

(t1 is defined as time of maximum growth, A is the value of the lower asymp-
tote, Q is an initial condition constant, ν is a constant determining the point of
inflection, and α and γ represent constant inflection value parameters) [8]. This
introduces new parameters so that the curve can idealize scenarios previously
considered “less ideal” by existing models. The time-varying model introduces
the upper bound itself as a function of time, and it therefore cannot be def-
initely determined as an analytical solution. This model further complicates
the function with the introduction of a variable parameter. It is represented as
dP
dt = rP (1− P

M(t))[11].
The introduction of a series incorporates the concept of a traditional model

modified through extension. This new function is explored as a differential, and
characterized by its non-integrable form. The exponential and logistic models
represent the first two terms of a Maclaurin series. Previously, the remaining
terms were not considered significant, and the use of a series was disregarded [8].
However, discovering and incorporating the terms as an expanded series removes
inconsistencies between methods of calculation for parameters, such as rate of
increase. The convergence of the series represents an ideal model, that can be
characterized by the properties of several functions, and to which these functions
converge. The first terms reflect its most basic exponential and logistic prop-
erties. As it continues to expand and the series converges, truncation produces
a series of polynomial functions with exponential and logistic-like (sigmoidal)
growth patterns. The final closed model itself appears to grow infinitely, like an
exponential function, but at a slower rate, like a hyperbolic pattern. Indeed, ele-
ments of the series resemble the Taylor series expansions for the hyperbolic sine
(sinh) and cosine (cosh) functions, and the geometric series hyperbolic expansion,
in addition to the inherently exponential elements. The potentially hyperbolic
properties connect this model to the Monod and Michaelis-Menten models [2],
while they provide a basis for parametric data analysis through the function.
However, it is not a distinct hyperbola because the values of dP

dt approach infinity
as P approaches infinity, without any distinct limit or asymptote.

This new series relies on the parameters of growth limit, rate of increase, and



82 Anne Talkington: An Extension of a Logistic Model for Microbial Kinetics

population size related through time. It is unique in that it does not introduce
new factors or parameters with each additional term, but builds upon known
parameters. Manipulation of the series model over its interval of convergence
opens applications in both symmetrical and asymmetrical (semi-logistic) growth
patterns. Analysis of the curve to the upper bound of its convergence (below and
including the inflection point) produces a precise estimate for the initial takeoff of
the microbe; the rotation of the existing curve and intersection of another curve
are two approaches for determining the upper bound. Evaluating the series as a
whole, or as an individual polynomial function at any point of truncation, allows
for the ability to fit both limited and unlimited growth patterns.

The models, likewise, are consistent with numerical (nonparametric) methods
for determining microbial specific growth rate [12-13]. Numerical methods ana-
lyze the data without assumption, whereas the models provide a framework for
the data. Each introduces a degree of precision and understanding of the data.

2 Procedure

To determine the value of the specific growth rate numerically, an algorithm was
developed to analyze the data through elimination. It removes all subjectivity
and assumptions found in previous methods. The new algorithm focuses on
eliminating non-significant data points. Initially, all points past the point of
inflection are eliminated. This is defined as the point at which the concavity of
the data changes from up to down, or the second derivative changes from positive
to negative. Thus, the deceleration phase is disregarded in analyzing growth. The
next step is to isolate the growth phase from the lag and acceleration phases.
Further elimination is accomplished through regression. The natural logarithm
of the function is taken, and the slope of the linearized function is determined
from the line of best fit. Points from the left that lower the slope are eliminated,
and another regression line is fitted to the remaining points. The process is
repeated as the slope increases and iterations continue until either the change
in slope (indicative of growth rate) is not statistically significant, or until the
number of remaining points becomes too small. The slope of the regression line
for the final remaining points is the specific growth rate.

3 Cases of the Series - Discussion

There are four notable models that serve appropriate data set fit. Fitting an ap-
propriate model to the data set is critical for the most accurate approximations
of data parameters and descriptions of the populations.

The most basic is the exponential model [8, 14-15]. Also known as the Malthu-
sian model, it depicts unlimited growth. Biologically, there is no carrying capacity
of the population, and it therefore multiplies infinitely. Mathematically, there is
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no asymptote to describe limiting factors. These may include competition, lack of
nutrients, or density-dependent inhibition in the microbial population [16]. The
model is represented as a direct proportion between the rate of population change
and population size (Equation 1, Fig.1).

dP

dt
= rP (1)

Fig.1 Graphical representation of the exponential model for microbial population
growth

Of course, the simplest model given above does not reflect most biological
growth systems. More appropriate models were thus explored by researcher, as
stated below.

Microbial growth may be logistic [17]. This model is a special case of limited
growth in which rate of population decrease mirrors rate of increase. The popu-
lation grows exponentially but encounters one or more obstacles that prohibit it
from increasing indefinitely. As the definite limit M approaches infinity, growth
patterns approach the exponential model. Logistic growth, often used as a stan-
dard in population studies, is represented by the differential Equation 2 (see also
Fig.2).

dP

dt
= rP (1− P

M
) (2)

The logistic growth model introduces the first two terms of a Maclaurin se-
ries that can be used to model microbial growth. Limiting the series to two
terms introduces truncation error [14-15]. This error can be reduced with the
introduction of additional terms. Successive terms alternate in sign, and each is
smaller in value than the term it follows [14-15]. Extending the series another
step produces a differential function to the fourth power of P . This function is
similar to logistic growth in the lower portion of the curve, up to the point of
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Fig.2 Graphical representation of the logistic growth model

inflection. However, the point of inflection is no longer the midpoint between
the upper and lower limits of growth. Beyond the point of inflection, growth
reduces rapidly and tapers until it reaches its actual limit. The population may
have been subjected to extreme pressure over a short period of time, so realized
growth does not reach the theoretical, ideal estimate of M . This reduced upper
bound is characteristic of higher even degrees of P in the extension of the formula
due to factorial growth in the denominator. The end behavior of odd degrees of
P mimics exponential-like growth. The fourth-degree formula is represented as
Equation 3, and its graphical interpretation as Fig.3.

dP

dt
= rP − 2rP 2

M(2!)
+

8rP 3

M2(3!)
− 48rP 4

M3(4!)
(3)

Fig.3 Graphical representation of the fourth-degree model

The most idealized model is the use of the full infinite series, represented in
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its closed form for precision. It states that the rate of change of the population
and a function of the population size are directly proportional. The function of
population size is the Maclaurin series. The function, or the series, incorporates
the exponential model when M (the upper limit) approaches infinity. It incor-
porates the logistic model as the ideal symmetrical case in which the point of
inflection is the midpoint between the upper and lower limits of growth. If the
lower limit is 0, P represents population size at the point of inflection, and M
represents the upper growth limit, then this is represented as 2P = M . All of
the previous models converge, as a series of overestimates and underestimates,
to the model presented by the complete series. It is an exponential-like function,
but its predictions for population (P (t)) lie between the exponential and logis-
tic predictions. The Modified Alternating Maclaurin series is convergent for all
points up to and including the point of inflection. It satisfies the conditions of
the Ratio Test and Leibniz’s Theorem for this domain and range [14-15]. Past
the point of inflection, divergence becomes more extreme with additional terms.
As a model, therefore, it accurately produces the lower portion of the curve. If
the growth pattern is symmetrical, a 180o rotation about the point of inflection
projects the upper portion. If the growth is semi-logistic, it appears as portions of
intersecting logistic curves, and the point of intersection is the point of inflection.
In this scenario, the bottom portion of the curve is accurately described by the
model (Equation 4, Fig.4).

Fig.4 Graphical depiction of the Modified Alternating Maclaurin Series Model

dP

dt
=

∞∑
n=0

(−1)n(2nn!)rPn+1

Mn(n+ 1)!
(4)

Its expanded form appears as Equation 5.
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dP

dt
=rP − 2rP 2

M(2!)
+

8rP 3

M2(3!)
− 48rP 4

M3(4!)
+

384rP 5

M4(5!)
− 3840rP 6

M5(6!)

+ ...+
(−1)n(2nn!)rPn+1

Mn(n+ 1)!

(5)

Its simplified form appears as Equation 6.

dP

dt
= rP

∞∑
n=0

(−1)n

(n+ 1)
× (

2P

M
)n (6)

Its closed form appears as Equation 7.

dP

dt
= rln(1 +

P
M
2

)
M
2 (7)

The similarities of the function to the exponential function are evident in the
simplified form of the model. The factor rP represents exponential growth. In
addition, the behavior of the series is similar to that of exponential growth for
sufficiently small values of P (P << 1).

dP

dt
= rln(1 +

P
M
2

)
M
2

dP

dt
= r × M

2
× ln(1 +

2P

M
)

ln(1 +
2P

M
) ≈ 2P

M

dP

dt
= r × M

2
× 2P

M
= rP

This property does not apply when 2P
M is greater than 1, because ln(1 + x) =

x− 1
2x

2 + 1
3x

3 − 1
4x

4 + ... holds only for −1 < x ≤ 1.
Also like an exponential function, the graph of the population P over time is

concave up, as justified by the always positive second derivative:

d2P

dt2
= r

M

2

1

1 + P
M
2

(1 +
P
M
2

)
′
t = r

M

2

1

1 + P
M
2

1
M
2

dP

dt
= r2

M

2

1

1 + P
M
2

ln(1 +
P
M
2

) > 0

However, the rate of growth as P approaches infinity is much slower than that of
an exponential function since by limit comparison:

lim
P→∞

rP

r × M
2 × ln(1 + P

M )
= lim

P→∞

2P

M × ln(1 + P
M )

= ∞
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It is known that the numerator becomes infinitely large at a faster rate than the
denominator. L′Hôpital′s rule confirms this assertion by removing the infinite
term from the function, to arrive at the definite conclusion:

lim
P→∞

rP

r × M
2 × ln(1 + P

M )
=

lim
P→∞

(rP )′

lim
P→∞

(r × M
2 × ln(1 + P

M ))′

=
r

lim
P→∞

(r × M
2 ×

1
M

1+ P
M

)
= ∞

This property is the result of the alternating series succession of positive and
negative terms.

The positive and negative terms indicate the properties of the series at any
point of truncation. If truncated up to an even degree of P (say up to PN+1

where N is odd), then the solution P has an upper bound, and an inflection
point (see Theorem 2). The inflection point will always occur when P = M

2 as
justified by the second derivative of P (t) as follows.

dP

dt
=

N∑
n=0

(−1)n2nrPn+1

Mn(n+ 1)
(8)

d2P

dt2
=

N∑
n=0

(−1)n2nr(n+ 1)Pn

Mn(n+ 1)
(
dP

dt
) = r(

dP

dt
)

N∑
n=0

(−1)n(
2P

M
)n (9)

In the case 2P = M , we have

d2P

dt2
= r(

dP

dt
)

N∑
n=0

(−1)n

Hence, when N is odd, it holds that

d2P

dt2
|P=M

2
= 0

It follows from the Chain Rule of derivatives [14-15]:

d

dt
(
dP

dt
) =

d

dP
(
dP

dt
)× dP

dt

that the derivative of dP
dt with respect to t is equal to the derivative of dP

dt with
respect to P .

The value for dP
dt decreases at it nears its upper bound but never becomes

0. It is always positive (Theorem 3). Continued simplification of the Modified
Alternating Maclaurin series and its truncations, as shown below, reveals its
properties and its relationship to the form of a transcritical bifurcation.
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4 Simplified Series

dP

dt
= rP

∞∑
n=0

(−1)n

n+ 1
(
2P

M
)n

= rP [1− 1

2
(
2P

M
) +

1

3
(
2P

M
)2 − 1

4
(
2P

M
)3 +

1

5
(
2P

M
)4 − 1

6
(
2P

M
)5 + ...]

(10)

Theorem 1 For Equation (10),

(i) the closed form of the series on the right-hand side is dP
dt = rln(1 + P

M
2

)
M
2 ;

(ii) it holds that dP
dt > 0 at any time t.

Proof
(i) Equation (10) is simplified to dP

dt = r
∑∞

n=0
(−1)n2nPn+1

Mn(n+1) (by cancelling n!).
Then we have

dP

dt
= r

∞∑
n=0

(−1)n2nPn+1

Mn+1(n+ 1)
= rP

∞∑
n=0

(−1)n
(2PM )n

n+ 1
= rP

∞∑
n=0

(−2P
M )n

n+ 1

= rP [1 +
x

2
+

x2

3
+

x3

4
+ ...+

xn

n+ 1
+ ...](for x = −2P

M
)

=
rP

x
[x+

x2

2
+

x3

3
+

x4

4
+ ...+

xn+1

n+ 1
+ ...]

=
rP

x
(−1)ln(1− x) = r

M

2
ln(1 +

2P

M
)

by the Taylor expansion of natural logarithm: ln(1 − x) =
∑∞

n=0
xn

n for −1 ≤

x < 1. Hence, we have r =
dP
dt

ln(1+ P
M
2

)
M
2
, and this holds whenever −1 ≤ −2P

M < 1,

i.e., P ≤ M
2 .

Thus, the closed form of the series is given by

dP

dt
= rln(1 +

P
M
2

)
M
2 . (11)

(ii) This is implied by the closed form given in (i).

Theorem 2: For the following tail-truncated equation

dP

dt
= rP

N∑
n=0

(−1)n

n+ 1
(
2P

M
)n (12)
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(i) If N is odd (so the highest power of P is even), then d2P
dt2

is positive when

P < M
2 , is zero when P = M

2 , and is negative when P > M
2 . This is an asym-

metrical model.
(ii) If N is even (so the highest power of P is odd), then d2P

dt2
is always positive.

Since the second derivative is always positive, the first derivative is always in-
creasing. Therefore, if the first derivative is positive initially, the first derivative
is never zero or negative. (The least upper bound of P is finite and determined
as described in Theorem 3.)

Proof
It has been established above that in the case 2P = M

d2P

dt2
= r(

dP

dt
)

∞∑
n=0

(−1)n = r(
dP

dt
)[1− 1 + 1− 1 + ...]

For an even number of terms, or odd N :
Case 2P = M .
The truncation of the above equation results in an even pairing of terms that

cancel out, and the derivative is equal to 0.
Case 2P < M .

d2P

dt2
= r(

dP

dt
)

∞∑
n=0

(−1)n = r(
dP

dt
)[1−(

2P

M
)+(

2P

M
)2−(

2P

M
)3+(

2P

M
)4−(

2P

M
)5+ ...]

A grouping of the first 6 terms of the second derivative results in

d2P

dt2
= r(

dP

dt
)
[
[1− (

2P

M
)] + [(

2P

M
)2 − (

2P

M
)3] + [(

2P

M
)4 − (

2P

M
)5]

]
> 0.

Case 2P > M .

d2P

dt2
= r(

dP

dt
)

∞∑
n=0

(−1)n = r(
dP

dt
)
[
1−(

2P

M
)+(

2P

M
)2−(

2P

M
)3+(

2P

M
)4−(

2P

M
)5+...

]
A grouping of the first 6 terms results in[

[1− (
2P

M
)]+ [(

2P

M
)2− (

2P

M
)3]+ [(

2P

M
)4− (

2P

M
)5]

]
< 0. (each bracket is negative.)

For an odd number of terms, or even N :
The truncation of

d2P

dt2
= r(

dP

dt
)

∞∑
n=0

(−1)n = r(
dP

dt
)[1− 1 + 1− 1 + 1− 1 + ...]
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results in a pairing with an additional positive term that is not cancelled. So this
second derivative is positive.

Case 2P < M .

d2P

dt2
= r(

dP

dt
)

∞∑
n=0

(−1)n = r(
dP

dt
)
[
1−(

2P

M
)+(

2P

M
)2−(

2P

M
)3+(

2P

M
)4−(

2P

M
)5+...

]
A grouping of the first 5 terms of the second derivative results in[

[1− (
2P

M
)] + [(

2P

M
)2 − (

2P

M
)3] + (

2P

M
)4] > 0.

Case 2P > M .

d2P

dt2
= r(

dP

dt
)

∞∑
n=0

(−1)n = r(
dP

dt
)
[
1−(

2P

M
)+(

2P

M
)2−(

2P

M
)3+(

2P

M
)4−(

2P

M
)5+...

]
A grouping of the first 5 terms results in[

1 + [−(
2P

M
) + (

2P

M
)2] + [−(

2P

M
)3 + (

2P

M
)4]

]
> 0.

Theorem 3: For the above tail-truncated Equation (12),
(i) dP

dt is always positive (i.e., the right-hand side is always positive).
(ii) When N is odd (i.e., including up to an even power of P in the partial

sum), the equation rP
∑N

n=0
(−1)n

n+1 (2PM )n = 0 has a unique positive solution and
the supremum value of P is determined by this positive zero of the equation.

Moreover, it holds that rP
∑N

n=0
(−1)n

n+1 (2PM )n = rM
2

∫ 2P
M

0
1−xN+1

1+x dx. These models
are all asymmetrical.

Proof
(i) If N is even, this is clearly true.

Let gN (x) =

N∑
n=0

(−1)n

n+ 1
xn. Then

dP

dt
= rP

N∑
n=0

(−1)n

n+ 1
(
2P

M
)n = rPgN (

2P

M
).

Since xgN (x) =
∑N

n=0
(−1)n

n+1 xn+1, we have (xgN (x))
′ =

∑N
n=0(−x)n = 1−(−x)N+1

1+x ,
and hence it holds that[

xgN (x)
]
|
2P
M
0 =

∫ 2P
M

0

(
xgN (x)

)′
dx =

∫ 2P
M

0

1− (−x)N+1

1 + x
dx,
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implying

2P

M
gN

(2P
M

)
− 0 =


∫ 2P

M
0

1−xN+1

1+x dx, if N + 1 even,∫ 2P
M

0
1+xN+1

1+x dx, if N + 1 odd.

Therefore,

dP

dt
= rPgN

(2P
M

)
= rP×M

2P
×2P

M
gN

(2P
M

)
=

rM

2


∫ 2P

M
0

1−xN+1

1+x dx, if N + 1 even,∫ 2P
M

0
1+xN+1

1+x dx, if N + 1 odd.

It is obvious that dP
dt = rM

2

∫ 2P
M

0
1+xN+1

1+x dx > 0 when N is even (N + 1 is odd).
Next we consider the case that N is odd (or N + 1 is even). It follows from

the above proof that dP
dt = rM

2

∫ 2P
M

0
1−xN+1

1+x dx. When P ≤ M
2 (2PM ≤ 1), dP

dt is

positive because 1 − xN+1 is always positive except at the single point x = 2P
M ,

at which 1 − xN+1 is zero. We claim that dP
dt never becomes 0. In fact, if dP

dt
becomes 0 at some infimum time t0, it must strictly be after the time at which
the inflection point occurs. (At this point, dP

dt changes from positive with upward
concavity and begins to decrease. The value of the integral, likewise, begins to
decrease after the shift in dP

dt at this point, corresponding to the concavity, but

the value still must be positive. It follows that dP
dt cannot be 0 at the inflection

point.) Since d2P
dt2

is still negative at t0, P (t) by definition would have attained

its local maximum P (t0) (at a specific P (t0) > M
2 ). Now, let t1 be a nearby

point of t0, on the right of t0 such that M
2 < P (t1) < P (t0). (Since dP

dt |t=t0 = 0

and d2P
dt2

< 0 after t = t0,
dP
dt is negative after t = t0). Then the result would

become 0 = dP
dt |t=t0 = rM

2

∫ 2P (t0)
M

0
1−xN+1

1+x dx < rM
2

∫ 2P (t1)
M

0
1−xN+1

1+x dx = dP
dt |t=t1 ,

a contradiction. Because the value of P (t1) is less than the value of P (t0), the
inequality is inconsistent with the fact that dP

dt at t1 must be negative. Hence,
dP
dt never reaches 0, and it follows from the continuity of dP

dt that dP
dt can never

be negative. Therefore, dP
dt is always positive.

Proof of (ii) - Method for determining the supremum of P : Let us illustrate
the method using two (logistic), four, or six terms.

If N = 1, N+1 = 2 (the traditional logistic model), then dP
dt = ... = rP (1− P

M ).

Hence, dP
dt > 0 if and only if P < M . Observe that if P could exceed M , then

dP
dt would become negative and consequently P would be immediately lowered

making dP
dt positive. Therefore, dP

dt is always positive. Again, continuity indicates

that dP
dt must reach and cross through a point of 0 slope to become negative, which

is impossible.
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If N = 3, N + 1 = 4 (four terms), then dP
dt = rM

2

∫ 2P
M

0
1−x4

1+x dx = rP (1− 1
2
2P
M +

1
3(

2P
M )2− 1

4(
2P
M )3). The equation 1− 1

2x+
1
3x

2− 1
4x

3 = 0 has a real solution 1.621.
For example, this gives the maximum of P as 81.05, assuming M = 100.

If N = 5, N + 1 = 6 (six terms), then dP
dt = rM

2

∫ 2P
M

0
1−x6

1+x dx = rP (1− 1
2
2P
M +

1
3(

2P
M )2− 1

4(
2P
M )3+ 1

5(
2P
M )4− 1

6(
2P
M )5). The equation 1− 1

2x+
1
3x

2− 1
4x

3+ 1
5x

4− 1
6x

5 =
0 has a real solution 1.462. This gives the maximum of P as 73.1, assuming
M = 100.

Generally, for any odd N , dP
dt is always positive, and the supremum value of

P is determined by a positive real solution (that exists uniquely) of the equation

dP
dt = rM

2

∫ 2P
M

0
1−xN+1

1+x dx = rP
∑N

n=0
(−1)n

n+1 (2PM )n. The supremum values decrease

as N is increased. rP
∑N

n=0
(−1)n

n+1 (2PM )n = rM
2

∫ 2P
M

0
1−xN+1

1+x dx cannot be zero when

P ≤ M
2 ; the equation

∑N
n=0

(−1)n

n+1 xn = 0 does not have a solution less than 1

(hence divergence as the partial series extends to infinite form).
∫ α
0

1−xN+1

1+x dx > 0

if α ≤ 1 and
∫ β
0

1−xN+1

1+x dx < 0 if β is (sufficiently) large. There exists γ between

α and β such that
∫ γ
0

1−xN+1

1+x dx = 0;
∫ α
0

1−xN+1

1+x dx >
∫ β
0

1−xN+1

1+x dx for α ≤ 1 < β.
More precisely, an arbitrary α beyond the point of inflection presents a scenario
that is consistent with the definition of a maximum point and downward concavity
in this domain.

Hence, the equation
N∑

n=0

(−1)n

n+ 1
xn = 0 (13)

has a unique positive solution x0. The formula for calculating the supremum of
P is Psup = x0P = x0

M
2 .

In summary, each term is smaller than the term preceding it until P is equal
to the least upper bound. At P = M

2 ,
dP
dt has reached its maximum value and

will decrease but will still be positive, so the negative terms cannot be larger
than the positive terms before them. The slopes remain positive and decrease as
dP
dt approaches 0 at the least upper bound without ever reaching it. Therefore,
dP
dt will always be positive despite negative concavity (reduction in value) past

the point of inflection, and the limit of dP
dt as P approaches a set of arbitrary

values reveals an approximation of the least upper bound of the function. If the
limit reveals that dP

dt is less than 0 at a particular value of P , then the least
upper bound is below that value; the value can never be reached. At the upper
limit, a horizontal asymptote, dP

dt is 0. Therefore, dP
dt approaches this value at

the transition from a small positive value to a small negative value. When limit
comparison reveals that one value results in a positive dP

dt and the next value for

P results in a negative dP
dt , the bound must lie between these two points. In the
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logistic case, this limit is M .

By contrast, a function with an odd degree of P resembles the properties of an
exponential function. It is concave up as well as always increasing; the sum of the
alternating terms is positive, plus the addition of a positive term. It has neither a
point of inflection nor an upper bound. In terms of the second derivative defined
above, the incomplete pairings ensure positive concavity (Theorem 2).

The series and its truncations can be analyzed as a transcritical bifurcation
[18]. The concept of “harvesting”, initially applied to logistic growth, remains.
For even degrees of P , the model exhibits logistic-like properties and therefore
the potential for two positive zeros. In logistic growth (power of P is 2), zeros
are found as the solutions to a simplified, basic quadratic form of the equation.
In the general situation (power of P is even and larger than or equal to 4), by the
integral representation given in Theorem 3 (ii), dP

dt = 0 has two positive zeros,
one positive zero, or no positive (real) zeros. Such zeros in the forms of the series
can be determined by utilizing numerical methods. As the degree increases, the
amount of symmetry as found in logistic models decreases. As the number of
terms in the polynomial increases, and approaches the closed form of the series,
the equation becomes increasingly complex to solve.

In this parametric approach, fixed points are determined as the variable values
that set the equation at equilibrium. A harvesting term introduces a parameter
that affects the location of such points, and their position for approaching or
separating from one another as the differential increases or decreases.

The equation for transcritical bifurcation is as follows (Equation 14):

dP

dt
= rP

∞∑
n=0

(−1)n

n+ 1
× (

2P

M
)n −H (14)

Because the model is idealized, it can be used as a method to solve for rate of
growth. Such calculations are consistent with the numerical estimates. Like theta
logistic models, this model introduces precision through specific terms added to
the traditional logistic model. It is unique in that it achieves this precision
without the introduction of new parameters and accounts for lack of symmetry
(semi-logistic scenarios) through the model itself rather than a term in the formu-
la. This form of the series is appropriate to solve for growth rate of any indicator
(Equation 15):

µ = r =
dP
dt∑∞

n=0
(−1)n(n!2n)Pn+1

Mn(n+1)!

(15)
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Closed form of the series (Equation 16):

r =
dP
dt

M
2 ln(1 +

2P
M )

. (16)

Consider that: ln(1 + 2P
M ) = ln(2) when M = 2P .

The Modified Alternating Maclaurin Series accurately models the data as it
converges, over the domain of initial data collection to the point of inflection P .
The model converges with the condition that P ≤ M

2 . The applicability of the
Maclaurin series as a method for determining growth rate is categorized as one
of three cases, based on the relationship between P and M .

The following procedure applies for the first case of the Modified Alternating
Maclaurin Series: if data is symmetrical (ideally logistic) and P = M

2 .
1) The y-coordinate of the point of inflection (value substituted for P ) is the

midpoint between the upper and lower limits of growth (asymptotes). It is cal-
culated as lower limit + (1/2) (upper limit - lower limit).

2) dP
dt represents change in population (growth) over time. It should reach its

maximum value at the point of inflection. dP
dt should therefore reflect the change

at the point of inflection as a tangent line. It is determined more precisely as the
mean value of the rates of change surrounding the point of inflection. For even
greater precision, arbitrary ranges chosen to include the point of inflection can
be averaged and compared; the greatest value among these is taken as dP

dt .
3) M is the upper limit of growth. It is identified as a horizontal asymptote.
4) Values for P , dP

dt and M are substituted into the series to solve for r (µ).

Example of the First Case :

Fig.5 Graphical traditional method: µ=1.0374
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Graphical Traditional Method: µ=1.0374
Maclaurin Series Method:
P = 3; dPdt = 2.2;M = 6
µ = 1.0580
Error (disparity between the methods): 1.99 %

The following procedure applies for the second case of the Modified Alternat-
ing Maclaurin Series: if the point of inflection is less than half of the carrying
capacity, or P < M

2 .
1) The y-coordinate of the point of inflection (value substituted for P ) is less

than the midpoint between the upper and lower limits of growth (asymptotes).
It is calculated as the point in the center of the range of maximum change in
population over time (largest values of dP

dt ). When averages are taken for dP
dt , P

should be at or near the center of the range.
2) dP

dt represents change in population (growth) over time. It should reach its

maximum value at the point of inflection. dP
dt should therefore reflect the change

at the point of inflection as a tangent line. It is determined more precisely as the
mean value of the rates of change surrounding the point of inflection. For even
greater precision, arbitrary ranges chosen to include the point of inflection can
be averaged and compared; the greatest value among these is taken as dP

dt .
3) M is the upper limit of growth. It is identified as a horizontal asymptote.
4) Values for P , dP

dt , and M are substituted into the series to solve for r (µ).
5) Because P is low with respect to M , convergence of the series occurs more

rapidly than in the symmetrical first case. The result is more precise at a smaller
number of terms.

Example of the Second Case :

Fig.6 Graphical traditional method: µ=0.2817

Graphical Traditional Method: µ=0.2817
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Maclaurin Series Method:
P = 0.15; dPdt = 0.04;M = 1.3
µ = 0.2964
Error (disparity between the methods): 5.22 %

The following procedure applies for the third case of the Modified Alternating
Maclaurin Series: if the point of inflection is greater than half of the carrying
capacity, or P > M

2 .
1) The y-coordinate of the point of inflection (value substituted for P ) is greater

than the midpoint between the upper and lower limits of growth (asymptotes).
It is calculated as the point in the center of the range of maximum change in
population over time (largest values of dP

dt ). When averages are taken for dP
dt , P

should be at or near the center of the range.
2) dP

dt represents change in population (growth) over time. It should reach its

maximum value at the point of inflection. dP
dt should therefore reflect the change

at the point of inflection as a tangent line. It is determined more precisely as
the mean value of the rates of change surrounding the point of inflection. For
even greater precision, arbitrary ranges chosen to include the point of inflection
can be averaged and compared; the greatest value among these is taken as dP

dt .
Furthermore, the use of means contributes to the robustness and applicability of
the symmetrical case.

3) M is the upper limit of growth. It is identified as a horizontal asymptote.
In this case, use of the horizontal asymptote results in divergence of the series.
Therefore, ratios are implemented to calculate r or µ. Let the horizontal asymp-
tote be denoted as M0. Set M1, an alternate limit, as equal to 2P .

4) Values for P , dP
dt , and M1 are substituted into the series to solve for r (µ).

The series converges as in the symmetrical first case.
5) The use of M1 results in an inflated value for r (µ). To account for the

substitution of M1, the result of the series is divided by the value of M1
M0

.

Example of the Third Case :
Graphical Traditional Method: µ=0.1704
Maclaurin Series Method:
P = 0.38; dPdt = 0.05;M0 = 0.61;M1 = 0.76
µ = 0.1523
Error (disparity between the methods): 10.62 %

5 Limitations

Irregular data is the greatest limitation to any method of determining microbial
kinetics. Environmental factors such as pH inconsistency, culture contamination,
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Fig.7 Graphical traditional method: µ=0.1704

or other laboratory error introduce complications to the data [16]. Furthermore,
microbial cultures are inherently not ideal. The use of an ideal model provides
a basis of comparison by which inconsistencies may be determined. A numerical
method strictly relies upon the data. However, irregular data will produce an
irregular result. Neither method will produce an accurate or precise estimate.
The expansion of the Maclaurin series is currently under investigation to extend
the model beyond the point of inflection. Successful extension would eliminate
divergence as a limitation to the microbial growth model and its applications.

6 Conclusion

Microbial growth kinetics is the numerical analysis of a complex living system. A
data-based approach is significant as it determines microbial growth rate through
a procedure designed to fit the data exactly. The use of models is essential to
understanding the population structure through the relationship of population,
population growth rate, carrying capacity, and time. Population, and the popu-
lation growth rate, change as a function of time. The models relate this through
direct variation and a more complex function. The explored models are built
upon exponential and logistic growth, and related through the transcritical bi-
furcation. Each model is unique in its ability to predict and determine the growth
of a particular microbe. Culturing technique is also a factor in that it imposes
or prevents natural limiting factors. Batch cultures, and secondary metabolite
fed batch, for example, display a pattern that may fall into the logistic, the sym-
metrical series, or the fourth-degree model. Primary metabolite and continuous
cultures tend towards exponential-like growth patterns, as modeled by exponen-
tial growth or the closed form of the Modified Alternating Maclaurin Series. For
calculations using these models, the point of manipulation of culture conditions
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represents the point of environmental change, indicated graphically as the point
of inflection. In full expansion, the discussed models converge to the curve of the
Modified Alternating Maclaurin Series, up to the point of inflection. The partial
curve is precise for this domain and range, and presents a scenario of semi-logistic
analysis - viewing the growth curve as the intersection of separate curves. In all
cases, the models can be solved for the microbial specific growth rate, and yield
precise results consistent with traditional methods of analysis.
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