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Abstract

A concept of soft probability is presented. An analogue of Chebyshev’s inequality
for soft probability is proved. Soft large deviation probabilities for a nonnegative
random variable under a mean hypothesis is calculated.
Keywords soft probability, hypothesis replacement, soft Chebyshev inequality,
large deviations.

1 What is Soft Probability?

In modern textbooks of probability theory, the exposition usually begins with a
discussion of the subject matter of this science. All phenomena are divided into
three types. Phenomena of the first type are those characterized by deterministic
regularity; this means that a given set of circumstances always leads to the same
outcome.

Phenomena of the second and the third type are not deterministic regular.
The second type consists of statistically regular phenomena, and the third type,
of the remaining phenomena.

By statistical regularity the statistical stability of outcome frequencies is usu-
ally understood. As a rule, this notion is associated with the example of coin
tossing. Some authors outline more constructive ways of interpretation [1], but a
final formalization of statistical stability has never been proposed, and its verifi-
cation is always left to the reader’s judgment and intuition.

Thus, the most important question of the applicability of the theory to real
phenomena remains essentially unanswered.

Soft probability [2-7] is merely the logical completion of the construction of
statistical regularity, whose approximate description is usually contained in prob-
ability theory textbooks.

Our approach is based on examine the conclusions to which the logical devel-
opment of the notion of statistical regularity leads.

First, we mention at once that the verification of statistical regularity suggest-
ed here requires a certain set of trial outcomes, that is, a statistical database. If
there are no trial results, then there is no object of examination.

2 Statistical Database

First, we introduce the base outcome space Ω. Each trial is associated with an
element of the set Ω, namely, the outcome of this trial. A statistical database is
merely a finite sequence of outcomes: Base = {ω1, ..., ωn}, ωi ∈ Ω.
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By an event A we mean a subset of Ω : A ⊆ Ω. We say that an event occurs
under a certain trial if the outcome of this trial belongs to the given event. We
have to define the statistical regularity of the occurrence of an event A. In effect,
statistical regularity means the closeness of frequencies for a given set of samples.
Thus, in formalizing this concept, we must begin with specifying a set of samples
for a statistical database.

We identify a sample I with the positions in the sequence Base = {ω1, ..., ωn}
occupied by its elements; in other words, a sample is a subset I ⊆ Ind(Base) of
the set Ind(Base) = {1, ..., n}.

In specifying a set of samples, it is natural to first constrain their size; thus, we
introduce a parameter determining the size of a sample. As admissible samples
we consider any samples of size m which consists of consecutive elements of the
set Ind(Base) and are not too “old”. We denote the set of such samples by
S(Base,m, τ):

S(Base,m, τ) = {(i, i+ 1, ..., i+m− 1), i = τ, ..., N −m+ 1}.

Apparently, the set S(Base,m, τ) is a minimal set of samples which are nat-
ural to consider in defining the notion of statistical regularity. Of course, other
definitions of admissible samples are also possible, which lead to different defini-
tions of statistical regularity; it is important that the set of admissible samples
be precisely specified.

We define the frequency of occurrence of an event A in a sample I as

µ(Base, χ(A, ·), I) = 1

|I|
∑
i∈I

χ(A,ωi).

Here |I| denotes the cardinality of the set I and χ(A,ω) = {1,ω∈A0,ω /∈A.

3 Statistical Regularity

Now, it is natural to understand the statistical regularity of the occurrence of an
event A as the closeness of the frequencies of occurrence of A in any admissible
samples from the set S(Base,m, τ). Below we give a more formal definition of
this notion.

Definition 1. An event A is said to be statistically (m, τ, δ) − regular on a
database Base if

|µ(Base, χ(A, ·), I)− µ(Base, χ(A, ·), J)| ≤ δ.

for any samples I, J ∈ S(Base,m, τ).
We see that the definition of statistical regularity involves several parameters.

Apparently, it is for this reason that this notion has not been used, because the
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dependence of statistical regularity on parameters inevitably makes probability
dependent on parameters as well, while probability is traditionally thought of
as a single real number in the unit interval. However, the parameterization of
probability only means the detailing of the description of the situation under
consideration. In different situations, probabilities corresponding to different pa-
rameters are important. The description using the same number as probability
in all situations is coarser than that using parameterized probability.

Parameterized families are used very extensively in theory and practice. Thus,
different methods of measuring physical quantities yield different results, which
naturally leads to parameterized families. A striking example of such a family is
the description of mine deposits in geology.

In computational mathematics, it often happens that only approximate solu-
tions can be found numerically; such solutions form parameterized families too
[2,8].

For dealing with such objects, the notion of a soft set was introduced and the
theory of soft sets was developed, which has found numerous applications in var-
ious areas of mathematics [2-7, 9-24]. For this reason, the alternative to classical
probability considered in this paper is called soft probability.

Let us contemplate Definition 1. The statistical database consists of the out-
comes of events which have already occurred, while the main purpose of the
theory is to produce informative statements concerning future events. Thus, the
only interesting aspect of the notion of statistical regularity is its use as a hy-
pothesis on the future behavior of trial outcomes.

Accordingly, the application of soft probability is divided into two processes:
• Verifying hypotheses at each step.
• Given a set of accepted hypotheses, constructing estimates, predictions, etc.
Note that, in classical probability theory, the former process is virtually absent;

the statistical regularity hypothesis is accepted only once, before launching the
apparatus of probability theory, after which this hypothesis is neither controlled
nor verified anew. Moreover, in classical probability theory, the statistical regu-
larity hypothesis is accepted for all possible events together. It remains unclear
how to handle situations in which some of the events are statistically regular and
the other events are not.

The definition of statistical regularity is easy to generalize to a random func-
tion.

By a random function f we mean any real-valued function defined on the set
Ω, that is, any function f : Ω → E, where E is the set of real numbers. An
example of such a function is the characteristic function χ(A, ·) of a set.
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The mean value of a random function f on a sample I is defined as

µ(Base, f, I) =
1

|I|
∑
i∈I

f(ωi).

Definition 2. A random function f is said to be statistically (m, τ, δ) −
regular on a database Base if

|µ(Base, f, I)− µ(Base, f, J)| ≤ δ.

for any samples I, J ∈ S(Base,m, τ).
Thus, the statistical regularity of an event means simply that the characteristic

function of this event is statistically regular.
The condition that a random function is statistically regular can be written in

a different equivalent form as follows. We set

2a = max
I∈S(Base,m,τ)

µ(Base, f, I) + min
I∈S(Base,m,τ)

µ(Base, f, I),

and

2b = max
I∈S(Base,m,τ)

µ(Base, f, I)− min
I∈S(Base,m,τ)

µ(Base, f, I).

It is easy to see that the statistical regularity of f is equivalent to the inequality
2b ≤ δ.

For any I ∈ S(Base,m, τ), we have |µ(Base, f, I)−a| ≤ b. This readily implies
the equivalence of the statistical regularity of f to the fulfillment of the inequality
|µ(Base, f, I) − a| ≤ δ/2, or the inclusion µ(Base, f, I) ∈ [a − δ/2, a + δ/2], for
any I ∈ S(Base,m, τ). The inclusion is also equivalent to

[ min
I∈S(Base,m,τ)

µ(Base, f, I), max
I∈S(Base,m,τ)

µ(Base, f, I)] ⊆ [a− δ/2, a+ δ/2].

This suggests the following natural definition.
Definition 3. The interval

λ(f,Base,m, τ) = [ min
I∈S(Base,m,τ)

µ(Base, f, I), max
I∈S(Base,m,τ)

µ(Base, f, I)]

is called the (m, τ)− approximate mean value of the random function f on the
database Base.

We denote the left and right endpoints of this interval by an underscore and
an overscore, respectively:

λ(f,Base,m, τ) = [λ(f,Base,m, τ), λ(f,Base,m, τ)].
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4 Hypotheses on the Behavior of a Random Function

On the basis of the notion of the statistical regularity of a random function, we
can formulate hypotheses of two types on the future behavior of the values of a
random function. In fact, these are hypotheses on the future values of the statis-
tical database.

Definition 4. A databaseBase is said to be statistically (m, δ)− regular with
respect to a random function f if

|µ(Base, f, I)− µ(Base, f, J)| ≤ δ.

for any samples I, J ∈ S(Base,m, 1).
Definition 5. A databaseBase is said to be statistically significantly (m, δ, a)−

regular with respect to a random function f if

|µ(Base, f, I)− a| ≤ δ.

for any samples I ∈ S(Base,m, 1).
The difference between Definitions 4 and 5 is in that Definition 4 supposes

only the closeness of mean values on any admissible samples, while Definition 5
specifies the number to which these mean values must be close with a given accu-
racy. In other words, the mean values must belong to the interval [a− δ.a+ δ], or
the approximate mean values of the random function under consideration must
belong to [a− δ.a+ δ].

These definitions can also be regarded as hypotheses on certain properties of
the approximate means of a random function. Definition 4 specifies only the
length of an interval containing the approximate mean, and Definition 5 specifies
the boundaries of the entire range of this mean.

An analysis shows that these hypotheses are often insufficient for obtaining
instructive results. In addition to hypotheses on approximate mathematical ex-
pectation, hypotheses describing the deviation of the random function under con-
sideration from its mathematical expectation (that is, hypotheses similar to that
of the existence of variance) are very useful. Such hypotheses can be formulated
in various forms. We give only one version.

Together with a random function f , consider the random function equal to the
absolute value of the deviation of f from the interval [a− δ.a+ δ], that is, defined
by

g(ω) = max{|f(ω)− a| − δ, 0}.
Definition 6. We say that a database Base satisfies the (m, δ, a,△) −

variance hypothesis with respect to a random function f if Base is statisti-
cally significantly (m,△, 0) − regular with respect to the random function g,
i.e.

µ(Base, g, I) ≤ △.
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for any samples I ∈ S(Base,m, 1).
The approximate mathematical expectation and approximate variance hy-

potheses describe a variable oscillating about a certain interval. It is also natural
to consider other hypotheses, which describe the growth, decline, periodicity, and
other properties of random variables [6-7].

After classes of hypotheses are chosen, dealing with hypotheses is a dynamical
step process. At each step, new realization from the base space (trial outcomes)
appear. Thus, at each step, it is required to form a list of accepted hypotheses
and perform calculations on the basis of this list.

5 Properties of the Approximate Mean Value of a Random Function

Properties of an approximate mean are similar to those of mathematical expec-
tation. Inequalities involving intervals are assumed to hold componentwise, that
is, at each endpoint of the interval.

1). λ(c,Base,m, τ) = [c, c], c ∈ E.
2). if f(ω) ≥ g(ω) for any ω ∈ Ω, then λ(f,Base,m, τ) ≥ λ(g,Base,m, τ).
3). λ(cf,Base,m, τ) = cλ(f,Base,m, τ), c ∈ E, c ≥ 0.
4). λ(f + c,Base,m, τ) = λ(f,Base,m, τ) + c, c ∈ E.
5). λ(−f,Base,m, τ) = −λ(f,Base,m, τ) = [−λ(f,Base,m, τ),−λ(f,Base,m, τ)].
6). λ(f + g,Base,m, τ) ⊆ λ(f,Base,m, τ) + λ(g,Base,m, τ).
7). λ(f,Base,m, τ) ⊆ λ(f,Base,m, t), τ ≥ t.

6 An Approximate Variance of a Random Variable

In classical probability theory, the variance of a random variable is defined as
the mathematical expectation of the squared difference between this variable and
its expectation. The mathematical expectation of a random function is merely a
number.

In the case under consideration, the approximate mean is a parametric fam-
ily of intervals which characterizes the random variable on a certain database.
Hypotheses involving the notion of statistically significant regularity impose con-
straints on approximate means. The intervals describing the constraints are not
required to equal the corresponding approximate means. Thus, it is convenient
to define approximate variance as the measure of deviation of a random variable
from a certain interval rather than from the corresponding approximate mean.

Definition 7. The approximate (m, τ, a, δ) − variance of a random function
f on a database Base is the (m, τ)− approximate mean of the random function
max{|f(ω)− a| − δ, 0}, that is, the interval

D(f,Base,m, τ, a, δ) = λ(max{|f(·)− a| − δ, 0}, Base,m, τ).
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The simplest properties of approximate variance are as follows.
1). D(f,Base,m, τ, a, δ) ≥ 0.
2). D(cf,Base,m, τ, ca, cδ) = cD(f,Base,m, τ, a, δ), c ∈ E, c ≥ 0.
3). D(−f,Base,m, τ,−a, δ) = D(f,Base,m, τ, a, δ).
4). D(f+g,Base,m, τ, a+b, δ+γ) ≤ D(f,Base,m, τ, a, δ)+D(g,Base,m, τ, b, γ).
5). D(f+g,Base,m, τ, a+b, δ+γ) ≤ D(f,Base,m, τ, a, δ)+D(g,Base,m, τ, b, γ).
6). D(f,Base,m, τ, a, δ) ≥ D(f,Base,m, τ, a, γ), δ ≤ γ.
7). D(f,Base,m, τ, a, δ) ⊇ D(f,Base,m, γ, a, δ), τ ≤ γ.

7 Chebyshev’s Inequality for Soft Probability

Statement 1 (Chebyshev’s inequality). If a random function f is nonnega-
tive everywhere on Ω and ε > 0, then

λ(χ({ω′ ∈ Ω|f(ω′) ≥ ε}, ·), Base,m, τ) ≤ 1

ε
λ(f,Base,m, τ).

Proof. If a random function f is nonnegative everywhere on Ω, then, as is
easy to see, we have

f(ω) ≥ εχ({ω′ ∈ Ω|f(ω′) ≥ ε}, ω)

for any ε > 0 and any ω ∈ Ω. Property 2 of approximate mean implies

λ(f,Base,m, τ) ≥ ελ(χ({ω′ ∈ Ω|f(ω′) ≥ ε}, ω), Base,m, τ).

The approximate means of the characteristic function of a set equals the soft
probability of this set; therefore, the soft probability of the set {ω′ ∈ Ω|f(ω′) ≥ ε}
is estimated as

λ(χ({ω′ ∈ Ω|f(ω′) ≥ ε}, ·), Base,m, τ) ≤ 1

ε
λ(f,Base,m, τ)

(recall that the inequality is interval). This completes the proof of the statement.
Now, let f be an arbitrary random function. For the function |f |, we have

λ(χ({ω′ ∈ Ω| |f(ω′)| ≥ ε}, ·), Base,m, τ) ≤ 1

ε
λ(|f |, Base,m, τ).

Since the inequality |f(ω′)| ≥ ε is equivalent to |f s(ω′)| ≥ εs, where s > 0, it
follows that

λ(χ({ω′ ∈ Ω| |f(ω′)| ≥ ε}, ·), Base,m, τ) ≤ 1

εs
λ(|f |s, Base,m, τ).

therefore,

λ(χ({ω′ ∈ Ω| |f(ω′)| ≥ ε}, ·), Base,m, τ) ≤ inf
s>0

1

εs
λ(|f |s, Base,m, τ).
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Now, consider the nonnegative random function g(ω) = max{|f(ω)−a|−δ, 0},
where f is an arbitrary random function. Applying Chebyshev’s inequality to g,
we obtain

λ(χ({ω′ ∈ Ω|max{|f(ω′)−a|−δ, 0} ≥ ε}, ·), Base,m, τ) ≤ 1

ε
D(f,Base,m, τ, a, δ).

Elementary transformations yield

λ(χ({ω′ ∈ Ω||f(ω′)− a| ≥ δ + ε}, ·), Base,m, τ) ≤ 1

ε
D(f,Base,m, τ, a, δ).

This allows us to write the inequality in the equivalent form

λ(χ({ω′ ∈ Ω||f(ω′)− a| ≥ δ}, ·), Base,m, τ) ≤ inf
0<ε<δ

1

ε
D(f,Base,m, τ, a, δ − ε).

Thus, Chebyshev’s inequality gives an estimate of the soft probability of “large”
deviations in terms of approximate mean or approximate variance. If the database
is known, then this information is of little value, because it is easy to directly
calculate the exact values of any probabilistic characteristics, including the prob-
abilities of large deviations. Apparently, it is of more interest to apply this in-
equality to estimating the probability of a random function on a future database.
Naturally, this requires hypotheses on the approximate mean or the approxi-
mate variance of the function under consideration. However, in the presence of
hypotheses, of interest are sharp bounds for the probability of large deviations.

8 Soft Probability of Large Deviations for a Nonnegative Random Function
Under an Approximate Mean Hypothesis

Suppose that a database Base is statistically significantly (m, δ, a) − regular
with respect to a nonnegative random function f , i.e., given any sample I ∈
S(Base,m, 1), we have

|µ(Base, f, I)− a| ≤ δ

We assume that a ≥ 0.
We define a large deviation as the event A(f, ε) = {ω ∈ Ω|f(ω) ≥ ε}, where

ε > 0. We are interested in the range of values of the soft probability of this event
under the above hypothesis. Clearly, the solution essentially depends on the range
of the function f . Consider the case where f(Ω) = E+ = {x ∈ E|x ≥ 0}.

Let f(ωi) = xi ∈ E+. Then the constraints on the database can be written as
constraints on the vector x = {x1, ...xn} ∈ X(n,m, a, δ), where

X(n,m, a, δ) = {x ∈ En
+| |

j+m−1∑
i=j

xi − am| ≤ δm, j = 1, ..., n−m+ 1}.
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The boundaries of the range of the soft probability are

u∗(n,m, a, k, τ, δ, ε) = sup
x∈X(n,m,a,δ)

max
τ≤j≤n−k+1

1

k

j+k−1∑
i=j

χ({y|y ≥ ε}, xi)}.

and

u∗(n,m, a, k, τ, δ, ε) = inf
x∈X(n,m,a,δ)

min
τ≤j≤n−k+1

1

k

j+k−1∑
i=j

χ({y|y ≥ ε}, xi)}.

Note that, at n = m, the set X(n,m, a, δ) takes the form

X(m,m, a, δ) = {x ∈ Em
+ | |

m∑
i=1

xi − am| ≤ δm}.

In the case k ≤ m, the evaluation of u∗ and u∗ is based on the following
assertion.

Statement 2. If x ∈ Em
+ and (xj , xj+1, ..., xj+m−1) ∈ X(m,m, a, δ) , then

there exists a vector y ∈ X(n,m, a, δ) such that yi = xi for i = j, j+1, ..., j+m−1.
Proof. Let yi = xj+(i−j)modm for i = 1, ..., n. Then

∑l+m−1
i=l yi =

∑j+m−1
i=j xi

for any l = 1, ..., n−m+1. Therefore, y ∈ X(n,m, a, δ). This proves the required
assertion.

The u∗ and u∗ problems can be formulated as

u∗(n,m, a, k, τ, δ, ε) = max
τ≤j≤n−k+1

sup
x∈X(n,m,a,δ)

1

k

j+k−1∑
i=j

χ({y|y ≥ ε}, xi)}.

and

u∗(n,m, a, k, τ, δ, ε) = min
τ≤j≤n−k+1

inf
x∈X(n,m,a,δ)

1

k

j+k−1∑
i=j

χ({y|y ≥ ε}, xi)}.

At k ≤ m, in the problems

sup
x∈X(n,m,a,δ)

1

k

j+k−1∑
i=j

χ({y|y ≥ ε}, xi) and inf
x∈X(n,m,a,δ)

1

k

j+k−1∑
i=j

χ({y|y ≥ ε}, xi)

the function to be optimized depends only on the variables xj = (xj , xj+1, xj+m−1);
hence, we can perform optimization over the projection of the set X(n,m, a, δ)
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on the corresponding coordinates rather over the entire set. It follows from State-
ment 2 that this projection coincides with the set X(m,m, a, δ); thus, at k ≤ m,
the u∗ and u∗ problems take the forms

u∗(n,m, a, k, τ, δ, ε) = sup
x∈X(m,m,a,δ)

1

k

k∑
i=1

χ({y|y ≥ ε}, xi)}.

and

u∗(n,m, a, k, τ, δ, ε) = inf
x∈X(m,m,a,δ)

1

k

k∑
i=1

χ({y|y ≥ ε}, xi)}.

For x ∈ Em
+ , we set π(x,m, ε) = |{i ∈ {1, ...,m}|xi ≥ ε}|; this is the number of

components greater than or equal to ε. We have

u∗(n,m, a, k, τ, δ, ε) = sup
x∈X(m,m,a,δ)

min{π(x,m, ε), k}
k

=
1

k
min{ sup

x∈X(m,m,a,δ)
π(x,m, ε), k}.

and

u∗(n,m, a, k, τ, δ, ε) =
1

k
max{k + inf

x∈X(m,m,a,δ)
π(x,m, ε)−m, 0}.

Thus, it is required to find the maximum and the minimum value of the function
π(x,m, ε) on X(m,m, a, δ). Let us introduce the set

Π(m, ε, p) = {x ∈ Em
+ |π(x,m, ε) = p}.

It is easy to see that the image of the function
∑m

i=1 xi on the set Π(m, ε, p)
equals {

[εp,+∞), p > 0

[0,mε), p = 0,

Therefore, the function π(x,m, ε) takes the value p on the set X(m,m, a, δ) if
and only if

Π(m, ε, p) ∩X(m,m, a, δ) ̸= ∅.

that is, 1 ≤ p ≤ ma+mδ
ε or a− δ < ε at p = 0.

Let [x] denote the largest integer not exceeding x. Then the condition on those
positive values p which the function π(x,m, ε) can take on X(m,m, a, δ) can be
written in the form

1 ≤ p ≤ min{m, [
m(a+ δ)

ε
]}.
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The condition that π(x,m, ε) vanishes on X(m,m, a, δ) has the form a < δ + ε.
Thus, we have proved the following assertion.

Statement 3. Let k ≤ m.
1). If 0 ≤ a < δ + ε, then u∗(n,m, a, k, τ, δ, ε) = 0.

2). If a > δ + ε, then u∗(n,m, a, k, τ, δ, ε) = max{k+1−m,0}
k = {1/m,k=m

0,k<m .

3). If m(a+ δ) ≥ ε, then u∗(n,m, a, k, τ, δ, ε) =
min{[m(a+δ)

ε
],k}

k .
4). If m(a+ δ) < ε, then u∗(n,m, a, k, τ, δ, ε) = 0.
Note that the solution has the useful feature that, for each of the u∗ and u∗

problems, there exists the same vector, no matter at what parameter the solution
is attained.

Now, consider the case k > m. The function
∑j+k−1

i=j χ({y|y ≥ ε}, xi) depends
only on those components of the vector x whose numbers belong to {j, j+1, ..., j+
k − 1}. Thus, we introduce the set

X(k,m, a, δ) = {x ∈ Ek
+| |

j+m−1∑
i=j

xi − am| ≤ δm, j = 1, ..., k −m+ 1}.

For this set, an assertion similar to Statement 2 is valid.
Statement 4. If x ∈ En

+ and (xj , xj+1, ..., xj+k−1) ∈ X(k,m, a, δ), then there
exists a vector y ∈ X(n,m, a, δ) such that yi = xi for i = j, j + 1, ..., j + k − 1.

Proof. We set
• yi = xj+(i−j)mod m for i = 1, ..., j − 1,
• yi = xi for i = j, j + 1, ..., j + k − 1,
• yi = xj+k−m+(i−j−k+m)mod m for i = j + k, ..., n.

We have
•
∑l+m−1

i=l yi =
∑j+m−1

i=j xi for l = 1, ..., j − 1,

•
∑l+m−1

i=l yi =
∑l+m−1

i=l xi for l = j, j + 1, ..., j + k −m,

•
∑l+m−1

i=l yi =
∑j+k−1

i=j+k−m xi for l = j + k −m, ..., n−m+ 1.
Therefore, y ∈ X(n,m, a, δ). This completes the proof of the statement.

Now, the problems for u∗ and u∗ with k > m take the forms

u∗(n,m, a, k, τ, δ, ε) =
1

k
sup

x∈X(k,m,a,δ)
π(x, k, ε).

and

u∗(n,m, a, k, τ, δ, ε) =
1

k
inf

x∈X(k,m,a,δ)
π(x, k, ε).

Let us divide k by m with a remainder, that is, write k = mq + r,m > r ≥ 0.
Take an arbitrary vector x ∈ X(k,m, a, δ) and consider its decomposition into

the parts

x0 = (x1, ..., xm) ∈ Em and xj = (xr+(j−1)m+1, xr+(j−1)m+m) ∈ Em, j = 1, ..., q.
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It is assumed that r > 0; if r = 0, then the vector x0 is absent.
Obviously,

π(x, k, ε) = π(x0, r, ε) +

q∑
j=1

π(xj ,m, ε) ≤ min{π(x0,m, ε), r}+
q∑

j=1

π(xj ,m, ε).

Note that the condition x ∈ X(k,m, a, δ) implies that xj ∈ X(m,m, a, δ) for any
j = 0, ..., q. Hence, we have

sup
x∈X(k,m,a,δ)

π(x, k, ε) ≤ min{ max
y∈X(m,m,a,δ)

π(y,m, ε), r}+ q max
y∈X(m,m,a,δ)

π(y,m, ε).

Let us show that this inequality is, in fact, an equality. We take a vector y∗ ∈
X(m,m, a, δ) at which max

y∈X(m,m,a,δ)
π(y,m, ε) is attained and place all components

of this vector greater than or equal to ε at the first positions. Let x∗ ∈ Ek
+ be

the vector formed by as many copies of y∗ written one after another as needed
to achieve the required dimension. It is easy to see that x∗ ∈ X(k,m, a, δ) and

sup
x∈X(k,m,a,δ)

π(x, k, ε) ≥ π(x∗, k, ε) = min{ max
y∈X(m,m,a,δ)

π(y,m, ε), r}

+ q max
y∈X(m,m,a,δ)

π(y,m, ε).

Thus, we have proved the following assertion.
Statement 5. Suppose that n ≥ k > m and k = mq + r, m > r ≥ 0 .

1). Ifm(a+δ) ≥ ε, then u∗(n,m, a, k, τ, δ, ε) =
min{[m(a+δ)

ε
],r}+q min{[m(a+δ)

ε
],m}

k .
2). If m(a+ δ) ≤ ε, then u∗(n,m, a, k, τ, δ, ε) = 0.
It is easy to see that Statement 5 is also valid for n ≥ m ≥ k > 0.
Now, consider the u∗ problem. For the arbitrary vector x ∈ X(k,m, a, δ) under

consideration and its partition constructed above, we have

π(x, k, ε) = π(x0, r, ε)+

q∑
j=1

π(xj ,m, ε) ≥ max{k−m+π(x0,m, ε), 0}+
q∑

j=1

π(xj ,m, ε).

Since xj ∈ X(m,m, a, δ) for any j = 0, ..., q, it follows that

inf
x∈X(k,m,a,δ)

π(x, k, ε) ≥ max{r−m+ inf
y∈X(m,m,a,δ)

π(y,m, ε), 0}+q inf
y∈X(m,m,a,δ)

π(y,m, ε).

As above, this inequality is, in fact, an equality. To show this, we take a vector
y∗ ∈ X(m,m, a, δ) at which min

y∈X(m,m,a,δ)
π(y,m, ε) is attained and place all com-

ponents of this vector which are greater than or equal to ε at the last positions.
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Consider the vector x∗ ∈ Em
+ consisting of copies of y∗ written one after another.

It is easy to see that x∗ ∈ X(k,m, a, δ) and

inf
x∈X(k,m,a,δ)

π(x, k, ε) ≤ π(x∗, k, ε)

= max{r −m+ min
y∈X(m,m,a,δ)

π(y,m, ε), 0}+ q min
y∈X(m,m,a,δ)

π(y,m, ε).

Thus, we have proved the following assertion.
Statement 6. Suppose that n ≥ k > m and k = mq + r,m > r ≥ 0 .
1). If 0 ≤ a < δ + ε, then u∗(n,m, a, k, τ, δ, ε) = 0.
2). If a ≥ δ + ε, then u∗(n,m, a, k, τ, δ, ε) = q

k .

9 Conclusion

The exact boundaries of the range of the soft probability of large deviations under
a single mean hypothesis, which were found in this paper, show (although, for a
very simple example) that it is quite possible to deal with soft probabilities, in
spite of the presence of parameters and the interval form of soft probability. The
next goal is to solve more complicated problems on evaluating various probabili-
ties and other characteristics in the presence of several hypotheses, preferably of
different types.

Of special interest is the application of the ideas and results presented in this
paper to a real statistical problem, which would make it possible to verify the
effectiveness of the approach for real data. All readers interested in such a prac-
tical experiment are kindly requested to send their suggestions to the author at
dmitri molodtsov@mail.ru.
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