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Abstract

This paper provides procedures for finding unbiased simultaneous prediction lim-
its on the observations or functions of observations of all of k future samples using
the results of a previous sample from the same underlying distribution belonging
to invariant family. The results have direct application in reliability theory, where
the time until the first failure in a group of several items in service provides a
measure of assurance regarding the operation of the items. The simultaneous
prediction limits are required as specifications on future life for components, as
warranty limits for the future performance of a specified number of systems with
standby units, and in various other applications. Prediction limit is an important
statistical tool in the area of quality control. The lower simultaneous prediction
limits are often used as warranty criteria by manufacturers. The initial sample
and k future samples are available, and the manufacturer wants to have a high as-
surance that all of the k future orders will be accepted. It is assumed throughout
that k + 1 samples are obtained by taking random samples from the same popu-
lation. In other words, the manufacturing process remains constant. The results
in this paper are generalizations of the usual prediction limits on observations or
functions of observations of only one future sample. In the paper, attention is
restricted to invariant families of distributions. The technique used here empha-
sizes pivotal quantities relevant for obtaining ancillary statistics and is applicable
whenever the statistical problem is invariant under a group of transformations
that acts transitively on the parameter space. Applications of the proposed pro-
cedures are given for the two-parameter exponential and Weibull distributions.
The exact prediction limits are found and illustrated with a numerical example.
Keywords Future samples, order statistics, simultaneous prediction limits

1 Introduction

Statistical intervals used by engineers and others include confidence intervals on
a population parameter, such as the mean, and tolerance intervals. Confidence
intervals give information about parameter of the population or a function of
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population parameters such as a percentile; tolerance intervals give information
about a region which contains a specified proportion of a population.

Often one desires to construct from the results of a previous sample an interval
which will have a high probability of containing the values of all of k future ob-
servations. For example, such an interval would be required in establishing limits
on the values of some performance variable for a small shipment of equipment
when the satisfactory performance of all units is to be guaranteed, or in setting
acceptance limits on a specific lot of material, when acceptance requires the val-
ues of all items in a future sample to fall within the limits. An interval which
contains the values of a specified number of future observations with a specified
probability is known as a prediction interval. Such an interval need be distin-
guished both from a confidence interval on an unknown distribution parameter,
and from a tolerance interval to contain the values of a specified proportion of
the population. Research works on prediction intervals related to a single future
statistic are abundant (see Hahn and Meeker [1], Patel [2], and references there-
in).

In many situations of interest, it is desirable to construct lower simultaneous
prediction limits that are exceeded with probability γ by observations or func-
tions of observations of all of k future samples, each consisting of m units. The
prediction limits depend upon a previously available complete or type II censored
sample from the same distribution. For instance, two situations where such limits
are required are:

1. A customer has placed an order for a product which has an underlying time-
to-failure distribution. The terms of his purchase call for k monthly shipments.
From each shipment the customer will select a random sample of m units and
accept the shipment only if the smallest time to failure for this sample exceeds
a specified lower limit. The manufacturer wishes to use the results of a previous
sample of n units to calculate this limit so that the probability is γ that all k
shipments will be accepted. It is assumed that the n past units and the km future
units are random samples from the same population.

2. A system consists of n identical components whose times to failure follow an
underlying distribution. Initially one component is operating and the remaining
n-1 components are in a standby mode; a new component goes into operation
as soon as the preceding component has failed. The system is said to fail when
all n components have failed. Thus, the system time to failure is the total of
the failure times for the n components. A simultaneous lower prediction limit to
be exceeded with probability γ by the system time to failure of all of k future
systems is desired. This limit is to be calculated from the times to failure of
n previously tested components. Similar problems also arise in various product
maintenance and servicing problems.
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Prediction limits can be of several forms. Hahn [3] dealt with simultaneous
prediction limits on the standard deviations of all of the k future samples from a
normal population. Hahn [4] considered the problem of obtaining simultaneous
prediction limits on the means of all of k future samples from an exponential
distribution. In addition, Hahn and Nelson [5] discussed such limits and their
applications. Mann, Schafer, and Singpurwalla [6] gave an interval that contains,
with probability γ, all m observations of a single future sample from the same
population. Fertig and Mann [7] constructed prediction intervals to contain at
least m − k + 1 out of m future observations from a normal distribution with
probability 1− β. They considered life-test data, and the performance variate of
interest is the failure time of an item. Their lower prediction limit constitutes a
“warranty period”.

In this paper we give an expression for obtaining unbiased simultaneous pre-
diction limits on order statistics of all of k future samples. In order to obtain
the unbiased simultaneous prediction limits, attention is restricted to invariant
families of distributions. In particular, the case is considered where a previously
available complete or type II censored sample is from a continuous distribution
with cumulative distribution function (cdf) F ((x−µ)/σ) and probability density
function (pdf) 1/σf((x − µ)/σ), where F (.) is known but both the location (µ)
and scale (σ) parameters are unknown. For such family of distributions the de-
cision problem remains invariant under a group of transformations (a subgroup
of the full affine group) which takes µ (the location parameter) and σ (the s-
cale) into cµ+ b and cσ, respectively, where b lies in the range of µ, c > 0. This
group acts transitively on the parameter space and, consequently, the risk of any
equivariant estimator is a constant. Among the class of such estimators there
is therefore a “best” one. The effect of imposing the principle of invariance, in
this case, is to reduce the class of all possible estimators to one. In the present
paper we investigate this question for the problem of constructing the unbiased
simultaneous prediction limits on order statistics in future samples.

The technique used here emphasizes pivotal quantities relevant for obtaining
ancillary statistics. It is a special case of the method of invariant embedding of
sample statistics into a performance index [8-11] applicable whenever the statisti-
cal problem is invariant under a group of transformations which acts transitively
on the parameter space (i.e., in problems where there is a unique best invariant
procedure). The exact unbiased simultaneous prediction limits on order statistics
of all of k future samples are obtained via the technique of invariant embedding
and illustrated with numerical example.
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2 Mathematical Preliminaries

The main theorem, which shows how to construct lower (upper) simultaneous
prediction limit for the order statistics in all of k future samples when prediction
limit for a single future sample is available, is given below.
Theorem 1 (Lower (upper) simultaneous prediction limit under complete infor-
mation). Let (Y1j , ..., Ymj) be the jth random sample of mj “future” observations
from the cdf Fθ(.), where θ is the parameter (in general, vector), j ∈ 1, ..., k, and
let Y(rj ,mj) denote the rjth order statistic in the jth sample of size mj . Assume
that all of k samples from the same cdf are independent. Then a lower simulta-
neous (1− α) prediction limit h on the rjth order statistics Y(rj ,mj), j = 1, , k, of
all of k future samples may be obtained from

Pθ{Y(r1,m1) ≥ h, ..., Y(rj ,mj) ≥ h, ..., Y(rk,mk) ≥ h}

=

r1−1∑
i1=0

...

rj−1∑
ij=0

...

rk−1∑
ik=0

(
m1

i1

)
...

(
mj

ij

)
...

(
mk

ik

)
×

Pθ{Y(iΣ+1,mΣ) ≥ h} − Pθ{Y(iΣ,mΣ) ≥ h}(
mΣ

iΣ

) = 1− α

(1)

where

iΣ =

k∑
j=1

ij ,mΣ =

k∑
j=1

mj (2)

(Observe that an upper simultaneous α prediction limit h may be obtained from
a lower simultaneous prediction limit by replacing 1− α by α.)
Proof.
we have:

Pθ{Y(r1,m1) ≥ h, ..., Y(rj ,mj) ≥ h, ..., Y(rk,mk) ≥ h} =
k∏

j=1

Pθ{Y(rj ,mj) ≥ h}

=

k∏
j=1

rj−1∑
ij=0

(
mj

ij

)
[Fθ(h)]

ij [1− Fθ(h)]
mj−ij

=

r1−1∑
i1=0

...

rj−1∑
ij=0

...

rk−1∑
ik=0

(
m1

i1

)
...

(
mj

ij

)
...

(
mk

ik

)
[Fθ(h)]

iΣ [1− Fθ(h)]
mΣ−iΣ

(3)
Since
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[Fθ(h)]
iΣ [1− Fθ(h)]

mΣ−iΣ

=

(
mΣ

iΣ

)−1
[

iΣ∑
i=0

(
mΣ

i

)
[Fθ(h)]

i[1− Fθ(h)]
m∑−i−

iΣ−1∑
i=0

(
mΣ

i

)
[Fθ(h)]

i[1− Fθ(h)]
mΣ−i

]

=
Pθ{Y(iΣ+1,mΣ) ≥ h} − Pθ{Y(iΣ,mΣ) ≥ h}(

mΣ

iΣ

)
(4)

the joint probability can be written as

Pθ{Y(r1,m1) ≥ h, ..., Y(rj ,mj) ≥ h, ..., Y(rk,mk) ≥ h}

=

r1−1∑
i1=0

...

rj−1∑
ij=0

...

rk−1∑
ik=0

(
m1

i1

)
...

(
mj

ij

)
...

(
mk

ik

)
×

Pθ{Y(iΣ+1,mΣ) ≥ h} − Pθ{Y(iΣ,mΣ) ≥ h}(
mΣ

iΣ

)
(5)

This ends the proof.
Corollary 1.1 If rj = 1, ∀j = 1(1)k, then

Pθ{Y(1,m1) ≥ h, ..., Y(1,mj) ≥ h, ..., Y(1,mk) ≥ h}
= Pθ{Y(1,mΣ) ≥ h} = 1− α

(6)

Theorem 2 (Lower (upper) unbiased simultaneous prediction limit under para-
metric uncertainty). Let (X1 ≤ ... ≤ Xr) be the r smallest observations in a
random sample of size n from the cdf Fθ(.), where the θ is the parameter (in
general, vector), and let (Y1j , ..., Ymj ) be the jth random sample of mj “future”
observations from the same cdf, j ∈ {1, ..., k}. Assume that (k + 1) samples are
independent and the parameter θ is unknown. Let H = H(X1, ..., Xr) be any
statistic based on the preliminary sample and let Y(rj ,mj) denote the rjth order
statistic in the jth sample of size mj . Then an unbiased lower simultaneous
(1− α) prediction limit H on the rjth order statistics Y(rj ,mj), j = 1, , k, of all of
k future samples may be obtained from
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Eθ

{
Pθ{Y(r1,m1) ≥ H, ..., Y(rj ,mj) ≥ H, ..., Y(rk,mk) ≥ H}

}
=

r1−1∑
i1=0

...

rj−1∑
ij=0

...

rk−1∑
ik=0

(
m1

i1

)
...

(
mj

ij

)
...

(
mk

ik

)
·

Eθ

{
Pθ{Y(iΣ+1,mΣ) ≥ H}

}
− Eθ

{
Pθ{Y(iΣ,mΣ) ≥ H}

}(
mΣ

iΣ

)
(7)

Proof. For the proof we refer to Theorem 1.
Corollary 2.1. If rj = 1, ∀j = 1(1)k, then

Eθ

{
Pθ{Y(1,m1) ≥ H, ..., Y(1,mj) ≥ H, ..., Y(1,mk) ≥ H}

}
= Eθ

{
Pθ{Y(1,mΣ) ≥ H}

}
= 1− α

(8)

Remark. In this paper, in order to find the unbiased lower simultaneous (1−α)
prediction limitH on the rjth order statistics Y(rj ,mj), j = 1, ..., k, of all of k future
samples, the technique of invariant embedding [8-11] is used.

2.1 Weibull Distribution

In this paper, the two-parameter Weibull distribution with the pdf

fθ(x) =
δ

β
(
x

β
)δ−1exp

[
−(

x

β
)δ
]
, x > 0, β > 0, δ > 0 (9)

indexed by scale and shape parameters β and δ is used as the underlying
distribution of a random variable X in a sample of the lifetime data, where
θ = (β, δ). We consider both parameters β, δ to be unknown. Let (X1, ..., Xn) be
a random sample from the two-parameter Weibull distribution (9), and let β̂, δ̂
be maximum likelihood estimates of β, δ computed on the basis of (X1, ..., Xn).
In terms of the Weibull variates, we have that

V1 = (
β̂

β
)δ, V2 =

δ

δ̂
, V3 = (

β̂

β
)δ̂ (10)

are pivotal quantities. Further more, let

Zi = (Xi/β̂)
δ̂, i = 1, ..., n (11)

It is readily verified that any n-2 of the Zi’s, say Zi, ..., Zn−2 form a set of n-2
functionally independent ancillary statistics. The appropriate conditional ap-
proach, first suggested by Fisher [12], is to consider the distributions of V1, V2, V3
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conditional on the observed value of Z(n) = (Zi, ..., Zn). (For purposes of sym-
metry of notation we include all of (Zi, ..., Zn) in expressions stated here; it can
be shown that Zn, Zn−1, can be determined as functions of Zi, ..., Zn−2 only.)

Theorem 3. (Joint pdf of the pivotal quantities V1, V2 from the two-parameter
Weibull distribution) Let (X1 ≤ ... ≤ Xr) be the first r ordered observations from
a sample of size n from the two-parameter Weibull distribution (9). Then the
joint pdf of the pivotal quantities

V1 = (
β̂

β
)δ, V2 =

δ

δ̂
(12)

conditional on fixed

Z(r) = (Zi, ..., Zr) (13)

where

Zi = (
Xi

β̂
)δ̂, i = 1, ..., r (14)

are ancillary statistics, any r-2 of which form a functionally independent set,β̂ and
δ̂ are the maximum likelihood estimates for β and δ based on the first r ordered
observations (X1 ≤ ... ≤ Xr) from a sample of size n from the two-parameter
Weibull distribution (9), which can be found from solution of

β̂ =

([
r∑

i=1

xδ̂i + (n− r)xδ̂r

]
/r

)1/δ̂

(15)

and

δ̂ =

( r∑
i=1

xδ̂
i lnxi + (n− r)xδ̂

rlnxr

)(
r∑

i=1

xδ̂
i + (n− r)xδ̂

r

)−1

− 1

r

r∑
i=1

lnxi

−1

(16)

is given by

f(v1, v2|z(r)) = ϑ•(z(r))vr−2
2

r∏
i=1

zv2i vr−1
1 exp

(
−v1

[
r∑

i=1

zv2i + (n− r)zv2r

])
= f(v2|z(r))f(v1|v2, z(r)), v1 ∈ (0,∞), v2 ∈ (0,∞)

(17)

where

ϑ•(z(r)) =

[∫ ∞

0
Γ(r)vr−2

2

r∏
i=1

zv2i

(
r∑

i=1

zv2i + (n− r)zv2r

)−r

dv2

]−1

(18)
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is the normalizing constant,

f(v2|z(r)) = ϑ(z(r))vr−2
2

r∏
i=1

zv2i

(
r∑

i=1

zv2i + (n− r)zv2r

)−r

, v2 ∈ (0,∞) (19)

ϑ(z(r)) =

[∫ ∞

0
vr−2
2

r∏
i=1

zv2i

(
r∑

i=1

zv2i + (n− r)zv2r

)−r

dv2

]−1

(20)

f(v1|v2, z(r)) =
[
∑r

i=1 z
v2
i + (n− r)zv2r ]r

Γ(r)
vr−1
1 exp

(
−v1

[
r∑

i=1

zv2i + (n− r)zv2r

])

=
1

Γ(r)

(
v1

[
r∑

i=1

zv2i + (n− r)zv2r

])r−1

exp

(
−v1

[
r∑

i=1

zv2i + (n− r)zv2r

])
×[

r∑
i=1

zv2i + (n− r)zv2r

]
, v1 ∈ (0,∞)

(21)
Proof. The joint density of X1 ≤ ... ≤ Xr is given by

fθ(x1, ..., xr) =
n!

(n− r)!

r∏
i=1

δ

β
(
xi
β
)δ−1exp(−(

xi
β
)δ)exp(−(n− r)(

xr
β
)δ) (22)

Using the invariant embedding technique [8-11], we transform (22) to

fθ(x1, ..., xr)dβ̂dδ̂

=
n!

(n− r)!

r∏
i=1

x−1
i δr

r∏
i=1

(
xi

β
)δexp

(
−

r∑
i=1

(
xi

β
)δ − (n− r)(

xr

β
)δ

)
dβ̂dδ̂

=
n!

(n− r)!
β̂δ̂r

r∏
i=1

x−1
i (

δ

δ̂
)r−2

r∏
i=1

(
xi

β̂
)δ̂(

δ
δ̂
)(
β̂

β
)δ(r−1)×

exp

(
−(

β̂

β
)δ

[
r∑

i=1

(
xi

β̂
)δ̂(

δ
δ̂
) + (n− r)(

xr

β̂
)δ̂(

δ
δ̂
)

])(
δ

β
(
β̂

β
)δ−1dβ̂

)
(− δ

δ̂2
dδ̂)

=
n!

(n− r)!
β̂δ̂r

r∏
i=1

x−1
i vr−2

2

r∏
i=1

zv2i vr−1
1 exp

(
−v1

[
r∑

i=1

zv2i + (n− r)zv2
r

])
dv1dv2

(23)

Normalizing (23), we obtain (17). This ends the proof.
Theorem 4. (Lower (upper) unbiased prediction limit H for the lth order statis-
tic Yl in a new (future) sample of m observations from the two-parameter Weibull
distribution on the basis of the preliminary data sample) Let X1 ≤ ... ≤ Xr be
the first r ordered observations from the preliminary sample of size n from the
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two-parameter Weibull distribution (9). Then a lower unbiased (1−α) prediction
limit H on the lth order statistic Yl from a set of m future ordered observations
Y1 ≤ ... ≤ Ym also from the distribution (9) is given by

H = arg[Eθ{Pθ{Y1 ≥ H}|z(r)} = 1− α] = z
1/δ̂
H β̂ (24)

where

Eθ{Pθ{Yl ≥ H}|z(r)} =

∞∫
0

vr−2
2

r∏
i=1

zv2
i

l−1∑
k=0

(
m
k

)
k∑

j=0

(
k
j

)
(−1)

j

(
(m− k + j)zv2H +

r∑
i=1

zv2
i + (n− r)zv2r

)−r

dv2

∞∫
0

vr−2
2

r∏
i=1

zv2i

(
r∑

i=1

zv2i + (n− r)zv2
r

)−r

dv2

(25)

zH =

(
H

β̂

)δ̂

(26)

Zi = (Xi/β̂)
δ̂, i = 1, ..., r; β̂ and δ̂ are the maximum likelihood estimates for β

and β based on the first r ordered observations (X1 ≤ ... ≤ Xr) from a sample
of size n from the two-parameter Weibull distribution (9).
(Observe that an upper unbiased α prediction limit H on the lth order statistic
Yl from a set of m future ordered observations Y1 ≤ ... ≤ Ym may be obtained
from a lower unbiased (1− α) prediction limit by replacing 1− α by α.)
Proof. If there is a random sample of m ordered observations Y1 ≤ ... ≤ Ym from
the two-parameter Weibull distribution (9) with the pdf fθ(y) and cdf Fθ(y), then
for the lth order statistic Yl we have

Pθ{Yl ≥ H} =

l−1∑
k=0

(
m
k

)
[Fθ(H)]k[1− Fθ(H)]m−k

=

l−1∑
k=0

(
m
k

)[
1− exp

(
−
(
H

β

)δ
)]k[

exp

(
−
(
H

β

)δ
)]m−k

(27)

Writing (27) as
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Pθ{Yl ≥ H} =
l−1∑
k=0

(
m
k

)[
1− exp

(
−
(
H

β

)δ
)]k

exp

(
−(m− k)

(
H

β

)δ
)

=
l−1∑
k=0

(
m
k

)1− exp

−

(
H
⌢

β

)⌢
δ

(
δ
⌢
δ

)(⌢

β

β

)δ


k

exp

−(m− k)

(
H
⌢

β

)⌢
δ

(
δ
⌢
δ

)(⌢

β

β

)δ


=

l−1∑
k=0

(
m
k

)
[1− exp(−zv2

H v1)]
k exp(−(m− k)zv2

H v1)

=
l−1∑
k=0

(
m
k

) k∑
j=0

(
k
j

)
(−1)j exp[−v1(m− k + j)zv2H ] = P{Zl > zH |v1, v2}

(28)

where

Zl =

(
Yl
⌢

β

)⌢
δ

(29)

we have from (17) and (28) that

Eθ{Pθ{Yl ≥ H}|z(r)} = E{P{Zl ≥ zH |v1, v2}|z(r)}

=

∞∫
0

∞∫
0

P{Zl ≥ zH |v1, v2}f(v1, v2|z(r))dv1dv2
(30)

Now v1 can be integrated out of (30) in a straightforward way to give (25). This
completes the proof.
Corollary 4.1. If l = 1, then

H = arg



∞∫
0

vr−2
2

r∏
i=1

zv2
i

m

(H
⌢
β

)⌢
δ
v2

+
r∑

i=1

zv2
i + (n− r)zv2r

−r

dv2

∞∫
0

vr−2
2

r∏
i=1

zv2
i

(
r∑

i=1

zv2
i + (n− r)zv2

r

)−r

dv2

= 1− α


(31)

Theorem 5 ((Lower (upper) unbiased prediction limit H for the lth order statis-
tic Yl in a new (future) sample of m observations from the left-truncated Weibull
distribution on the basis of the preliminary data sample) Let X1 ≤ ... ≤ Xr be
the first r ordered observations from the preliminary sample of size n from the
left-truncated Weibull distribution with the pdf

fθ(x) =
δ
σx

δ−1 exp[−(xδ − µ)/σ], (xδ ≥ µ, σ, δ > 0) (32)
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where θ = (µ, σ, δ), δ is termed the shape parameter,δ is the scale parameter,
and µ is the truncation parameter. It is assumed that the parameter δ is known.
Then a lower unbiased (1−α) prediction limit H on the lth order statistic Yl from
a set of m future ordered observations Y1 ≤ ... ≤ Ym also from the distribution
(32) is given by

H =
(
Xδ

1 + wHS
)1/δ

(33)

where

wH =



arg
(
1− m!(m+n−l)!

(m−l)!(m+n)! (1− nwH)
−(r−1)

= 1− α
)
, if α < m!(n+m−l)!

(m−l)!(n+m)! ,

arg

nl

(
m
l

)
l−1∑
i=0

 l − 1
i

(−1)i[1+wH(m−l+i+1)]−(r−1)

(n+m−l+i+1)(m−l+i+1) = 1− α

 ,

if α ≥ m!(n+m−l)!
(m−l)!(n+m)! ,

(34)

S =

r∑
i=1

(Xδ
i −Xδ

1) + (n− r)(Xδ
r −Xδ

1) (35)

(Observe that an upper unbiased α prediction limit H on the lth order statistic
Yl may be obtained from a lower unbiased (1 − α) prediction limit by replacing
1− α by α.)
Proof. It can be justified by using the factorization theorem that (Xδ

1 , S) is
a sufficient statistic for (µ, δ). We wish, on the basis of the sufficient statistic
(Xδ

1 , S) for (µ, δ), to construct the predictive density function of the lth order
statistic Yl from a set of m future ordered observations Y1 ≤ ... ≤ Ym. By using
the technique of invariant embedding [8-11] of (Xδ

1 , S), if X1 ≤ Yl, or (Y δ
l , S),

if X1 ≥ Yl, into a pivotal quantity (Y δ
l − µ)/σ or (Xδ

1 − µ)/σ, respectively, we
obtain an ancillary statistic

Wl =
(
Y δ
l −Xδ

1

)/
S (36)

It can be shown that the pdf of Wl is given by

f(wl) =


n(r − 1)l

(
m
l

) l−1∑
i=0

(
l − 1
i

)
(−1)

i
[1 + wl(m− l + i+ 1)]−r

n+m− l + i+ 1
, if wl ≥ 0,

n(r − 1) m!(n+m−l)!
(m−l)!(n+m)! (1− nwl)

−r
, if wl < 0.

(37)
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It follows from (37) that

P (Wl > wH) =



nl

(
m
l

) l−1∑
i=0

(
l − 1
i

)
(−1)

i
[1 + wH(m− l + i+ 1)]

−(r−1)

(n+m− l + i+ 1)(m− l + i+ 1)
,

if wH ≥ 0,

1− m!(m+ n− l)!

(m− l)!(m+ n)!
(1− nwH)

−(r−1)
, if wH < 0.

(38)

where
wH =

(
Hδ −Xδ

1

)/
S (39)

This ends the proof.
Corollary 5.1. If l = 1, then a lower (1−α) prediction limit H on the minimum
Y1 of a set of m future ordered observations Y1 ≤ ... ≤ Ym is given by

H =



(
Xδ

1 + S
m

[(
n

(1−α)(n+m)

) 1
r−1 − 1

])1/δ

, if α ≥ m
n+m ,

(
Xδ

1 − S
n

[(
m

α(n+m)

) 1
r−1 − 1

])1/δ

, if α < m
n+m .

(40)

2.2 Two-parameter Exponential Distribution

Theorem 6 ((Lower (upper) unbiased prediction limit H for the lth order statistic
Yl in a new (future) sample of m observations from the two-parameter exponential
distribution on the basis of the preliminary data sample) Let X1 ≤ ... ≤ Xr be
the first r ordered observations from the preliminary sample of size n from the
two-parameter exponential distribution with the pdf

fθ(x) =
1
σ exp[−(x− µ)/σ],(xδ ≥ µ, σ > 0) (41)

where θ = (µ, σ), σ is the scale parameter, and µ is the shift parameter. It is
assumed that these parameters are unknown. Then a lower unbiased (1 − α)
prediction limit H on the lth order statistic Yl from a set of m future ordered
observations Y1 ≤ ... ≤ Ym also from the distribution (41) is given by

H = X1 + wHS (42)

where

wH =



arg
(
1− m!(m+n−l)!

(m−l)!(m+n)! (1− nwH)
−(r−1)

= 1− α
)
, if α < m!(n+m−l)!

(m−l)!(n+m)! ,

arg

nl

(
m
l

)
l−1∑
i=0

 l − 1
i

(−1)i[1+wH(m−l+i+1)]−(r−1)

(n+m−l+i+1)(m−l+i+1) = 1− α

 ,

if α ≥ m!(n+m−l)!
(m−l)!(n+m)!

(43)
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S =

r∑
i=1

(Xi −X1) + (n− r)(Xr −X1) (44)

(Observe that an upper unbiased α prediction limit H on the lth order statistic
Yl may be obtained from a lower unbiased (1 − α) prediction limit by replacing
1− α by α.)
Proof. For the proof we refer to Theorem 5.
Corollary 6.1. If l = 1, then a lower (1−α) prediction limit H on the minimum
Y1 of a set of m future ordered observations Y1 ≤ ... ≤ Ym is given by

H =



(
X1 +

S
m

[(
n

(1−α)(n+m)

) 1
r−1 − 1

])
, if α ≥ m

n+m ,

(
X1 − S

n

[(
m

α(n+m)

) 1
r−1 − 1

])
, if α < m

n+m .

(45)

Remark 2. Let us assume that the parent distributions are the two-parameter
exponential

Fθ(x) = 1− exp

(
−x− θ2

θ1

)
, x ≥ θ2, θ1 > 0 (46)

where θ = (θ1, θ2) and the Pareto distribution

Fθ(x) = 1− (θ2/x)
1/θ1 , x ≥ θ2 > 0, θ1 > 0 (47)

Let X be a random variable with the Pareto distribution (47), and define Y =
lnX. Then Y becomes a random variable with the exponential distribution (46),
where θ2 is replaced by lnθ2. Therefore it is enough to consider only the ex-
ponential distribution, because the results for the Pareto distribution are easily
obtained from those for the exponential distribution.

3 Numerical Example

An industrial firm has the policy to replace a certain device, used at several
locations in its plant, at the end of 24-month intervals. It doesn’t want too many
of these items to fail before being replaced. Shipments of a lot of devices are made
to each of three firms. Each firm selects a random sample of 5 items and accepts
his shipment if no failures occur before a specified lifetime has accumulated.
The manufacturer wishes to take a random sample and to calculate the lower
prediction limit so that all shipments will be accepted with a probability of 0.95.
The resulting lifetimes (rounded off to the nearest month) of an initial sample of
size 15 from a population of such devices are given in Table 1. Goodness-of-fit
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Table 1 The resulting lifetimes

Statistical Results

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
8 9 10 12 14 17 20 25 29 30 35 40 47 54 62

Lifetime (in number of month intervals)

testing. It is assumed that

Xi ∼ fθ(x) =
δ
σx

δ−1 exp[−(xδ − µ)/σ], (x ≥ µ, σ, δ > 0), i = 1(1)15 (48)

where the parameters µ and δ are unknown; (δ = 0.87). Thus, for this example,
r = n = 15, k = 3,m = 5, 1−α = 0.95, Xδ

1 = 6.1,and S = 170.8. It can be shown
that the

Uj = 1−


j+1∑
i=2

(n− i+ 1)(Xδ
i −Xδ

i−1)

j+2∑
i=2

(n− i+ 1)(Xδ
i −Xδ

i−1)


j

, j = 1(1)n− 2 (49)

are i.i.d. U(0, 1) rv’s (Nechval et al. [13]). We assess the statistical significance of
departures from the left-truncated Weibull model by performing the Kolmogorov-
Smirnov goodness-of-fit test. We use the K statistic (Muller et al. [14]). The
rejection region for the α level of significance is K ≥ Kn;α. The percentage points
for Kn;α were given by Muller et al. [14]. For this example,

k = 0.220 < Kn=13,α=0.05 = 0.361 (50)

Thus, there is not evidence to rule out the left-truncated Weibull model. It
follows from (8) and (40), for

α = 0.05 <
km

n+ km
= 0.5 (51)

that

H =

(
xδ
1 − s

n

[(
km

α(n+km)

) 1
n−1 − 1

]) 1
δ

=

(
6.1− 170.8

15

[(
15

0.05(15+15)

) 1
14 − 1

]) 1
0.87

= 5

(52)

Thus, the manufacturer has 95% assurance that no failures will occur in each
shipment before H = 5 month intervals.
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4 Conclusion and Future Work

In this paper we propose the technique of constructing unbiased simultaneous
prediction limits on observations or functions of observations in all of k future
samples under parametric uncertainty of the underlying distribution. These unbi-
ased simultaneous prediction limits are based on a previously available complete
or type II censored sample from the same distribution. We present an equation
for this type of unbiased simultaneous prediction limits which holds for any dis-
tribution and any statistic from the previous sample when a prediction limit for
a single future sample is available. The exact prediction limits are found and
illustrated with a numerical example. The methodology described here can be
extended in several different directions to handle various problems that arise in
practice. We have illustrated the proposed methodology for the two-parameter
exponential and Weibull distributions. Application to other distributions could
follow directly.
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