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Abstract
Predictive inferences (predictive distributions, prediction and tolerance limits)
for future outcomes on the basis of the past and present knowledge represent a
fundamental problem of statistics, arising in many contexts and producing varied
solutions. In this paper, new-sample prediction based on a previous sample (i.e.,
when for predicting the future outcomes in a new sample there are available the
observed data only from a previous sample), within-sample prediction based on
the early data from a current experiment (i.e., when for predicting the future
outcomes in a sample there are available the early data only from that sample),
and new-within-sample prediction based on both the early data from that sample
and the data from a previous sample (i.e., when for predicting the future outcomes
in a new sample there are available both the early data from that sample and the
data from a previous sample) are considered. It is assumed that only the functional
form of the underlying distributions is specified, but some or all of its parameters
are unspecified. In such cases ancillary statistics and pivotal quantities, whose
distribution does not depend on the unknown parameters, are used. In order
to construct predictive inferences for future outcomes, the invariant embedding
technique representing the exact pivotal-based method is proposed. Furthermore,
this technique can be used for optimization of inventory management problems.
An illustrative example is given.
Keywords Future outcomes, Inventory management, Predictive inferences

1 Introduction

Prediction of future outcomes based on the past and current data is the most
prevalent form of statistical inference. Predictive inferences for future outcomes
are widely used in risk management, finance, insurance, economics, hydrology, ma-
terial sciences, telecommunications, and many other industries.Practical problems
often require the computation of predictive distributions, prediction and tolerance
limits for future values of random quantities. Consider the following examples :
1) A consumer purchasing a refrigerator would like to have a lower limit for the
failure time of the unit to be purchased (with less interest in distribution of the
population of units purchased by other consumers) ; 2) Financial managers in
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manufacturing companies need upper prediction limits on future warranty costs.
A large number of problems in inventory management, production planning

and scheduling, location, transportation, finance, and engineering design require
that decisions be made in the presence of uncertainty. Most of the inventory
management literature assumes that demand distributions are specified explic-
itly. However, in many practical situations, the true demand distributions are
not known, and the only information available may be a time-series of historic
demand data. When the demand distribution is unknown, one may either use a
parametric approach (where it is assumed that the demand distribution belongs
to a parametric family of distributions) or a non-parametric approach (where
no assumption regarding the parametric form of the unknown demand distribu-
tion is made). Under the parametric approach, one may choose to estimate the
unknown parameters or choose a prior distribution for the unknown parameters
and apply the Bayesian approach to incorporating the demand data available.
Scarf [1] and Karlin [2] consider a Bayesian framework for the unknown demand
distribution. Specifically, assuming that the demand distribution belongs to the
family of exponential distributions, the demand process is characterized by the
prior distribution on the unknown parameter. Further extension of this approach
is presented in [3]. Parameter estimation is considered in [4]. Liyanage and Shan-
thikumar [5] propose the concept of operational statistics and apply it to a single
period newsvendor inventory control problem.In this paper we consider the case,
where it is known that the demand distribution function belongs to a parametric
family of distribution functions. However, unlike in the Bayesian approach, we do
not assume any prior knowledge on the parameter values. Conceptually, it is use-
ful to distinguish between “new-sample” prediction, “within-sample” prediction,
and “new-within-sample” prediction. For new-sample prediction, data from a past
sample are used to make predictions of future outcomes from the same process
or population. For within-sample prediction, the problem is to predict future out-
comes in a sample or process based on early data from that sample or process.
For new-within-sample prediction, the problem is to predict future outcomes in
a sample or process based on early data from that sample or process as well as
on a past sample data from the same process or population. Various solutions
have been proposed for the prediction problem, that is, the problem of making
inferences on a random sample {Yj ; j = 1, ...,m} given independent observations
{Xi; i = 1, ..., n} drawn from the same distribution. The Y ′

j s and the X ′
is are

commonly featured as “future outcomes” and “past outcomes” respectively. Infer-
ences usually bear on some reduction Z of the Y ′

j s-possibly a minimal sufficient
statistic and consist of either prediction intervals or likelihood or predictive distri-
bution for Z, depending on different authors. Kaminsky and Nelson [6] discussed
point and interval prediction of order statistics. Best linear unbiased predictors
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based on location-scale family of distributions are reviewed. Prediction intervals
based on such predictors as well as those based on pivotals are studied. A brief
discussion of Bayesian prediction is also given. Predictive distributions are found
in the Bayesian framework (see Aitchison and Sculthorpe [7]). Lawless [8] applied
the conditional method, which was first suggested by Fisher [9] and promoted
further by a number of others (Nechval et al. [10] ; Murthy et al. [11]), to different
problems relating to the Weibull and extreme value distributions. In practice the
proposed methods have limited applications and it is the purpose of this paper
to obtain predictive inferences concerning Z via the simple invariant embedding
technique [12-16]. The obtained results are given below.

2 Constructing Predictive Inferences for Future Outcomes

Let us assume that the random variable X follows the exponential distribution
with the probability density function

fσ(x) = σ−1 exp(−x/σ), σ > 0, (1)

and the cumulative distribution function

Fσ(x) = 1− exp(−x/σ), (2)

where σ is the scale parameter (σ >0).

2.1 New-sample Prediction

Theorem 1. Let X1 ≤ ... ≤ Xk be the first k ordered observations from the
previous sample of size n from the exponential distribution (1) and Yr be the rth
order statistic in a set of m future ordered observations Y1 ≤ ... ≤ Ym also from the
distribution (1).Then the probability distribution functionof the ancillary statistic
Yr/Sk is given by

Pr

{
Yr
Sk

≤ η

}
=

m∑
j=r

(
m
j

) j∑
i=0

(
j
i

)
(−1)i

1

[1 + (i+m− j)η]k
, (3)

where Sk =
∑k

i=1Xi + (n− k)Xk.
Proof. The joint density of X1 ≤ ... ≤ Xk is given by

fσ(x1, ...,xk) =
n!

(n− k)!

k∏
i=1

1

σ
exp

(
−xi

σ

)
exp

(
−(n− k)

xk
σ

)
(4)

It is known that

Sk =
k∑

i=1

Xi + (n− k)Xk (5)
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is the sufficient statistic for σ. Then

Vk = Sk/σ (6)

is the pivotal quantity, the probability density function of which is given by

f(vk) =
1

Γ(k)
vk−1
k exp(−vk), vk ≥ 0 (7)

Using the invariant embedding technique [12-16], we reduce

Pr {Yr ≤ yr} =

m∑
j=r

(
m
j

)
[Fσ(yr)]

j [1− Fσ(yr)]
m−j

=

m∑
j=r

(
m
j

)[
1− exp

(
−yr

σ

)]j[
exp

(
−yr

σ

)]m−j
(8)

to

Pr

{
Yr
Sk

≤ η|vk
}

=

m∑
j=r

(
m
j

) j∑
i=0

(
j
i

)
(−1)i exp (−(i+m− j)ηvk) (9)

where
η = yr/sk (10)

It follows from (9) that

Pr

{
Yr
Sk

≤ η

}
= E


m∑
j=r

(
m
j

) j∑
i=0

(
j
i

)
(−1)i exp (−(i+m− j)ηVk)

 (11)

=

∫ ∞

0

m∑
j=r

(
m
j

) j∑
i=0

(
j
i

)
(−1)i exp (−(i+m− j)ηvk) f(vk)dvk

=
m∑
j=r

(
m
j

) j∑
i=0

(
j
i

)
(−1)i

1

[1 + (i+m− j)η]k

(12)

This ends the proof.
Corollary 1.1. A lower one-sided new-sample α prediction limit h on the rth order
statistic Yr in a set of m future ordered observations Y1 ≤ ... ≤ Ym is given by

h = ηSk, (13)
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where η satisfies the equation

m∑
j=r

(
m
j

) j∑
i=0

(
j
i

)
(−1)i

1

[1 + (i+m− j)η]k
= α. (14)

(Observe that an upperone-sided 1− α prediction limit h may be obtained from
a lower one-sided α prediction limit by replacing α by 1− α.)

2.2 Within-sample Prediction

Theorem 2. Let Y1 ≤ ... ≤ Yl be the first lordered observations (order statistics) in
a sample of size m from a continuous distribution with some probability density
function fθ(x) and distribution function Fθ(x), where θ is a parameter (in general,
vector). Then the joint probability density function of Y1 ≤ ... ≤ Yl and the rth
order statistics Yr(1 ≤ l < r ≤ m) is given by

gθ(y1, ..., yl, yr) = gθ(y1, ..., yl)gθ(yr|yl), (15)

where

gθ(y1, ..., yl) =
m!

(m− l)!

l∏
i=1

fθ(yi)[1− Fθ(yl)]
m−l, (16)

gθ(yr|yl)

=
(m− l)!

(r − l − 1)!(m− r)!

[
Fθ(yr)− Fθ(yl)

1− Fθ(yl)

]r−l−1[
1− Fθ(yr)− Fθ(yl)

1− Fθ(yl)

]m−r

·

fθ(yr)

1− Fθ(yl)

=
(m− l)!

(r − l − 1)!(m− r)!

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

[
1− Fθ(yr)

1− Fθ(yl)

]m−r+j fθ(yr)

1− Fθ(yl)

(17)

represents the conditional probability density function of Yr given Yl = yl.
Proof. The joint density of Y1 ≤ ... ≤ Yl and Yr is given by

gθ(y1, ...,yl, yr) =
m!

(r − l − 1)!(m− r)!

l∏
i=1

fθ(yi)[Fθ(yr)− Fθ(yl)]
r−l−1·

fθ(yr)[1− Fθ(yr)]
m−r = gθ(y1, ..., yl)gθ(yr|yl)

(18)

It follows from (18) that

gθ(yr|y1, ..., yl) = gθ(y1, ...,yl, yr)/gθ(y1, ..., yl) = gθ(yr|yl), (19)
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i.e., the conditional distribution of Yr, given Yi = yi for all i = 1,...,l, is the same
as the conditional distribution of Yr, given only Yl = yl, which is given by (17).
This ends the proof.
Corollary 2.1. The conditional probability distribution function of Yr given Yl = yl
is

Pθ {Yr ≤ yr|Yl = yl} = 1− (m− l)!

(r − l − 1)!(m− r)!
·

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[
1− Fθ(yr)

1− Fθ(yl)

]m−r+1+j (20)

Corollary 2.2. Let Y1 ≤ ... ≤ Yl be the first lorder statistics in a sample of size
mfrom the exponential distribution (1). Then the conditional probability distri-
bution function of Yr given Yl = yl is

Pθ {Yr ≤ yr|Yl = yl} = 1− (m− l)!

(r − l − 1)!(m− r)!
·

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[
exp

(
−yr − yl

σ

)]m−r+1+j (21)

Theorem 3. Let Y1 ≤ ... ≤ Yl be the first lordered observations (order statistics)
in a sample of size m from the exponential distribution (1), where the parameter
α is unknown.Then the probability distribution function of the ancillary statistic
Yr/Yl is given by

Pr

{
Yr
Yl

≤ yr
yl

}
= 1− m!

(r − l − 1)!(m− r)!

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j
·

(22)(
l−1∏
i=0

[(
yr
yl

− 1

)
(m− r + 1 + j) +m− l + 1 + i

])−1

Proof. We reduce (20) to

Pr{Yr ≤ yr |Yl = yl} = 1− (m− l)!

(r − l − 1)!(m− r)!

r−l−1∑
j=0

(
r − l − 1

j

)
·

(−1)j

m− r + 1 + j

[
exp

(
−yl
σ

(
yr
yl

− 1

))]m−r+1+j

,

(23)

where Yr/Yl is the ancillary statistic whose distribution does not depend on the
parameter σ, Yl/σ is the pivotal quantity. Using the probability density function
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of Yl/σ, we eliminate the unknown parameter σ from the problem as

Pr

{
Yr
Yl

≤ yr
yl

}
=

∫ ∞

0
Pr{Yr ≤ yr |Yl = yl}g(yl/σ)dyl/σ

= 1− m!

(r − l − 1)!(m− r)!

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j
·

(
l−1∏
i=0

[(
yr
yl

− 1

)
(m− r + 1 + j) +m− l + 1 + i

])−1

(24)

where

g(yl/σ) =
m!

(l − 1)!(m− l)!

[
1− exp

(
−yl
σ

)]l−1
exp

(
−yl
σ
(m− l)

)
exp

(
−yl
σ

)
=

m!

(l − 1)!(m− l)!

l−1∑
i=0

(
l − 1
i

)
(−1)i exp

(
−yl
σ
(m− l + 1 + i)

)
, (yl/σ) ∈ (0,∞)

(25)

represents the probability density function of the pivotal quantity Yl/σ. This ends
the proof.

Corollary 3.1. A lower one-sided within-sample α prediction limit h on the rth
order statistic Yr in a set of m future ordered observations Y1 ≤ ... ≤ Ym is given
by

h = ηYl, (26)

where η satisfies the equation

1− m!

(r − l − 1)!(m− r)!

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j(
l−1∏
i=0

[(η − 1)(m− r + 1 + j) +m− l + 1 + i]

)−1

= α.

(27)

Theorem 4. Let Y1 ≤ ... ≤ Yl be the first lordered observations (order statistics)
in a sample of size m from the exponential distribution (1), where the parameter
α is unknown.Then the probability distribution function of the ancillary statistic
(Yr − Yl)/Sl is given by

Pr

{
Yr − Yl

Sl
≤ yr − yl

sl

}
= 1− 1

B(r − l, (m− r + 1)
r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[
1 + (m− r + 1 + j)

yr − yl
sl

]−l (28)
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where

Sl =
l∑

i=1

Xi + (m− l)Yl (29)

is the sufficient statistic for σ.
Proof. Using the technique of invariant embedding [12-16], we reduce (20) to

Pr {Yr ≤ yr|Yl = yl} = 1− (m− l)!

(r − l − 1)!(m− r)!
r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[
exp

(
−sl
σ

yr − yl
sl

)]m−r+1+j (30)

where (Yr−Yl)/Sl is the ancillary statistic whose distribution does not depend on
the parameter σ ; Sl/σ is the pivotal quantity. Since the probability density func-
tion of Sl/σ is known,we eliminate the unknown parameter σ from the problem
as

Pr

{
Yr − Yl

Sl
≤ yr − yl

sl

}
=

∫ ∞

0
Pr{Yr ≤ yr |Yl = yl}g(sl/σ)dsk/σ

= 1− 1

B(r − l,m− r + 1)

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[
1 + (m− r + 1 + j)

yr − yl
sl

]−l

(31)

where
f(sl/σ) = (Γ(l))−1(sl/σ)

l−1 exp(−sl/σ), (sl/σ) ≥ 0. (32)

This ends the proof.
Corollary 4.1. A lower one-sided within-sample α prediction limit h on the rth
order statistic Yr in a set of m future ordered observations Y1 ≤ ... ≤ Ym is given
by

h = Yl + ηSl (33)

where η satisfies the equation

1− 1

B(r − l,m− r + 1)

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[1 + (m− r + 1 + j)η]−l = α.

(34)
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2.3 New-within-sample Prediction

Theorem 5. Let X1 ≤ ... ≤ Xkbe the first kordered observations from a previous
sample of size n from the exponential distribution (1) and Y1 ≤ ... ≤ Yk be the first
lordered early observations from a new sample of size m also from the distribution
(1), where the parameter α is unknown. Then the probability distribution function
of the ancillary statistic (Yr − Yl)/(Sk + Sl) is given by

Pr

{
Yr − Yl
Sk + Sl

≤ yr − yl
sk + sl

}
= 1− 1

B(r − l, (m− r + 1))

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j
×
[
1 + (m− r + 1 + j)

yr − yl
sk + sl

]−(k+l)
(35)

Proof. For the proof we refer to Theorems 1 and 4.
Corollary 5.1. A lower one-sided within-sample α prediction limit h on the rth
order statistic Yr in a set of m future ordered observations Y1 ≤ ... ≤ Yk is given
by

h = Yl + η(Sk + Sl), (36)

where η satisfies the equation

1− 1

B(r − l,m− r + 1)

r−l−1∑
j=0

(
r − l − 1

j

)
(−1)j

m− r + 1 + j

[1 + (m− r + 1 + j)η]−(k+l) = α.

(37)

3 Inventory Management Froblem and Predictive Inference

In this section, we consider a single-period newsvendor model. Single-period stock-
ing decisions often occur in practice ; these require the decision maker to choose
the stocking level of an item for which demand exists for only a single period.
Several factors affect this decision : the distribution of demand, the cost and price
of the item, the salvage value of the item, and the loss of customer goodwill due
to stockouts. The newsvendor model addresses this problem and develops a for-
mula for what is usually called the ‘critical-fractile’. The optimum order quantity
is calculated using the critical-fractile of the distribution of the demand for the
period. Underlying the mathematical simplicity of the critical-fractile formula is
a powerful and intuitively appealing insight for the determination of the order
quantity. The order quantity depends only on the optimum balance between two
types of costs. The first is the cost per unit associated with the unavailability of
stock to meet the manifest demand (i.e., underage cost). The second is the unit
cost associated with excess inventory at the end of the period for which there
is no demand (i.e., overage cost). Following Hadley and Whitin [17], we review
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the single-period newsvendor model and provide a broader interpretation to the
structure of its solution. The notation, we use for the newsvendor model, is given
below.

Y Random variable for single-period demand
fθ(y) Probability density function of single-period demand
Fθ(y) Probability distribution function of single-period demand
θ Parameter (in general, vector)
c1 Unit selling price
c Unit procurement cost, which is independent of the procured amount
g Unit salvage value for unsold items remaining at the end of the period
c2 Unit stockout penalty cost (over and above any lost profit)
u Variable representing the order quantity
u∗ Optimal order quantity
Q(u) Expected profit as a function of the order quantity
co Unit overage cost
cu Unit underage cost

Different versions of the problem may equivalently consider expected opportunity
cost minimization or expected profit maximization. We examine the latter and
write the expected profit as

Q(u) = c1

∫ u

0
yfθ(y)dy + c1u

∫ ∞

u
fθ(y)dy − cu+

g

∫ u

0
(u− y)fθ(y)dy − c2

∫ ∞

u
(y − u)fθ(y)dy

(38)

Assuming that c1 + c2 > g (which is generally true in most situations), we can
show that the expected profit function Q(u) is concave. We, therefore, set the
first derivative equal to zero to find a maximizing solution. The value of u that
maximizes (38) is the one that satisfies

Fθ(u
∗) = (c1 − c+ c2)/(c1 − g + c2). (39)

Clearly the lost contribution margin (c1-c) plus the stockout penalty (c2) repre-
sents the ‘underage cost’. Similarly the item cost (c) minus the salvage value (g)
represents the ‘overage cost’. If we refer to the underage cost as cu and the overage
cost as co, we may rewrite (39) as

Fθ(u
∗) = cu/(cu + co). (40)

We should choose the order quantity u∗ such that the cumulative distribution
function (cdf ) of u∗ equals the ratio of the underage cost to the sum of the
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underage and overage costs. A relatively high underage cost results in a higher
order quantity, whereas a relatively high overage cost leads to a lower order quan-
tity, as one would expect. If the single-period demand Y follows the exponential
distribution (1) then

Q(u) = σ
[
(c1 − g)− (c− g)

u

σ
− (c1 − g + c2) exp

(
−u

σ

)]
(41)

u∗ = σ ln

(
1 +

c1 − c+ c2
c− g

)
(42)

and
Q(u∗) = σ

[
c1 − c− (c− g) ln

(
1 +

c1 − c+ c2
c− g

)]
(42)

Parametric uncertainty. Consider the case when the parameter σ is unknown. Let
X1 ≤ ... ≤ Xn be the past observations (order statistics) of single-period demands
from the exponential distribution (1).Then

S =

n∑
i=1

Xi, (44)

is a sufficient statistic for σ ; Sis distributed with

gσ(s) = [Γ(n)σn]−1sn−1 exp(−s/σ)(s > 0) (45)

To find the best invariant decision rule µBI , we use the invariant embedding
technique [12-16] to transform (41) to the form, which is depended only on the
pivotal quantity V = S/σ and the ancillary factor η = u/S. In statistics, a pivotal
quantity or pivot is a function of observations and unobservable parameters whose
probability distribution does not depend on unknown parameters. Note that a
pivotal quantity need not be a statisticąłthe function and its value can depend on
parameters of the model, but its distribution must not. If it is a statistic, then it
is known as an ancillary statistic.
Transformation of Q(u) is given by

Q(η|v) = σ [(c1 − g)− (c− g)ηv − (c1 − g + c2) exp (−ηv)] (46)

We find the expected profit for the statistical decision u = ηS as

E{Q(η)} =

∫ ∞

0
Q(η|v)g(v)dv =σ

[
(c1 − g)− (c− g)ηn− (c1 − g + c2)(η + 1)−n]

(47)
where

g(v) = [Γ(n)]−1vn−1 exp(−v)(v > 0). (48)
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The value of η that maximizes (47) is given by

η∗ = [1 + (c1 − c+ c2)/(c− g)]1/(n+1) − 1. (49)

Thus,
uBI = η∗S =

[
[1 + (c1 − c+ c2)/(c− g)]1/(n+1) − 1

]
S. (50)

Comparison of decision rules. For comparison, consider the maximum likelihood
decision rule that may be obtained from (42) as

uML = σ̂ ln [1 + (c1 − c+ c2)/(c− g)] = ηMLS, (51)

where σ̂ = S/n is the maximum likelihood estimator of σ,

ηML = ln [1 + (c1 − c+ c2)/(c− g)]1/n. (52)

Since µBI and µML belong to the same class

C = {u : u = ηS}, (53)

it follows from the above that µML is inadmissible in relation to µBI . If, say, c=
2, c1=490, c2=2, g=1 (in terms of money), and n=1, we have that

rel.eff.E{Q(η)}{uML, uBI, σ}=E{Q(ηML)}
/
E{Q(η∗)

=
(c1 − g)− (c− g)ηMLn− (c1 − g + c2)

1
(ηML+1)n

(c1 − g)− (c− g)η∗n− (c1 − g + c2)
1

(η∗+1)n
= 0.93.

(54)

Thus, in this case, the use of µBI leads to a growth in the expected profit of about
7% as compared with µML. The absolute expected profit will be proportional to
σ and may be considerable.
Predictive inference.It will be noted that the predictive probability density func-
tion of the single-period demand Y, which is compatible with (38), is given by

f(y|s) = n+ 1

s

(
1 +

y

s

)−(n+2)
(y > 0). (55)

Using (55), the predictive profit is determined as

Q(p)(u|s) = c1

∫ u

0
yf(y|s)dy + c1u

∫ ∞

u
f(y|s)dy − cu+

g

∫ u

0
(u− y)f(y|s)dy − c2

∫ ∞

u
(y − u)f(y|s)dy

=
s

n

[
(c1 − g)− (c− g)

u

s
n− (c1 − g + c2)

(u
s
+ 1
)−n

]
,

(56)
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which can be reduced to

Q(p)(η|s) = s

n

[
(c1 − g)− (c− g)ηn− (c1 − g + c2)

1

(η + 1)n

]
. (57)

It follows from (57) that

Eσ{Q(p)(η|s)} =

∫ ∞

0
Q(p)(η|s)gσ(s)ds

= σ
[
(c1 − g)− (c− g)ηn− (c1 − g + c2)(η + 1)−n] = E{Q(η)}

(58)

Thus, uBI can be found immediately from (56) as

uBI = argmax
u

Q(p)(u|s). (59)

4 Conclusion

The technique proposed in this paper represents a simple and computationally
attractive statistical method based on the constructive use of the invariance prin-
ciple in mathematical statistics. The main advantage of this technique consists in
that it allows one to eliminate unknown parameters from the problem and to use
the previous and current data of observations for obtaining predictive inferences
as completely as possible. We have illustrated the technique for the exponential
distribution. Applications to other log-location-scale distributions could follow
directly.
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