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Abstract
We introduce a general method for computation of exact conditional efficiency
robust enumeration p-values for detection of genotype-phenotype associations at
a single bi-allelic genetic locus. Our method can be based on any arbitrary rank-
ing test statistics, such as efficiency robust test statistics or asymptotic p-values.
The resulting p-values are exact conditional enumeration p-values and satisfy the
basic statistical validity property Pr(P ≤ α|H0) ≤ α for all parameters under
the null hypothesis and all significance levels α. Practically, the method allows
performing statistically valid significance testing in genomic analyses with un-
known modes of inheritance at individual bi-allelic genetic loci - the situation
typical in genome-wide association studies. We provide an open-source R code
implementing the method.
Keywords: mode of genetic inheritance; efficiency robust statistics; exact condi-
tional inference; enumeration; genome-wide association study.

1 Introduction

Genome-wide association studies (GWAS) consider hundreds of thousands of sin-
gle nu-cleotide polymorphisms (SNPs) covering the entire human genome. Each
SNP is nor-mally represented by a bi-allelic locus and assessed for association
with a speci?c genetic trait, usually in the context of a case-control study. Com-
plex diseases such as asthma, diabetes and multiple sclerosis, among many others,
are generally targeted by GWAS in order to identify common genetic variations
as potential disease risk factors. The number of genetic markers in a particular
GWAS can vary from several hundred thousands to several millions, depending
on the platform used for genotyping and the type of genomes to be studied. For
example, more SNPs are required for GWAS that utilize African pop-ulations
than for GWAS involving European populations since the former are older, and
thus being exposed to random gene recombinations for more genorations. See
Hirschhorn and Daly[1] and Manolio[2] for the interesting well illustrated intro-
ductions to GWAS.

At a given genetic locus, there is a pair of markers, called alleles, inherited
from each of two parents. Given a trait is passed through this locus, there are
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several modes of inheritance can be in effect. The dominant mode of inheritance
requires the presence of a single “disease” allele from one of parents for a trait
to be inherited. The recessive mode of inheritance requires “disease” alleles from
both parents to be passed to the offspring for a trait to express. In case of the
additive mode of inheritance, a trait is expressed only partly if a single disease
allele is inherited, but express in full if both “disease” alleles are in place. There
are a few more modes of inheritance can be specified depending on the degree to
which a trait is expressed in an offspring, see Visscher et al.[3] for the discussion
of heritability concepts.

When the mode of inheritance at a genetic locus is known, higher power of
a test for genotype-phenotype association can be achieved through using the
Cochran-Armitage trend test (CATT) under the explicit assumption of the spe-
cific genetic model, see Lettre et al.[4] and Gonzlez et al.[5]. In practice, however,
the mode of inheritance is usually unknown. Under this typical scenario, the so-
called efficiency robust tests (see Podgor et al.[6]) can be used, the tests which
remain sensitive to detection of genotype-phenotype associations even though the
genetic model is either unknown or misspecified.

There are several efficiency robust testing strategies. For example, the MAX
test, first suggested by Freidlin et al.[7], has been recommended by the several
authors, see Zheng and Gastwirth [8] and Gonzlez et al.[5]. This testing approach
is implemented as aa sequential application of several statistical tests optimal for
alternative genetic models with retaining the most significant result. The tradi-
tional version of the MAX test, normally referred to as MAX3, is based on the
three CATTs with scores motivated by dominant, recessive and additive genetic
models. Alternatively, Persons chi-square test (χ2) can be included within the
same MAX testing strategy, leading to MAX4, see Li et al.[9]. Zheng et al.[10]
demonstrated that χ2 test can be considered as a type of a trend test and also
noted that this test is sensitive to detection of overdominant (underdominant)
modes of inheritance. MIN2 is one more variant of the MAX test implemented
as a combination of the additive CATT and χ2 , see Joo et al.[11]. A slightly
different efficiency robust testing strategy is known as MERT and is a weighted
version of CATT optimal for recessive and dominant models, see Gastwirth[12]
and Freidlin et al.[7]. There are several more efficiency robust testing approaches
can be specified and some authors even suggest applying a combination of differ-
ent versions of efficiency robust tests within a single testing procedure, see Joo
et al.[11].

In finite sample settings, many of the currently known and used efficiency
robust tests are not guaranteed to lead to statistically valid inference. This is
because the under-lying computational procedures are based either on random
sampling or on asymptotic distributions of efficiency robust statistics (Gonzlez
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et al.[5], Joo et al.[13], So anda Sham [14]). For the methods that use random
permutations (see Sladek et al.[15]), the statistical inference will be valid, but
a very high number of random permutations is needed to achieve the required
precision for traditionally low GWAS type significance levels (often in the order
of 10−8 ). Recently, Loley et al.[16] attempted to unify the efficiency robust test-
ing approaches by proposing a framework also leading to inference of unknown
statistical validity.

In the current paper, we introduce a computational procedure that takes as an
input the ordering of a sample space imposed by any of test statistics or p-values,
including the ones introduced above. The procedure outputs exact conditional
enumeration p-values that satisfy the basic validity property Pr(P ≤ α|H0) ≤ α,
for all parameters under the null hypothesis and all significance levels α.

2 Notation and the Method

Let the information on a single SNP be represented by the 23 contingency table
given by Table 1, where xi and yi are the counts of observed genotypes for n1
cases and n2 controls, respectively, with n = n1+n2 . We denote this empirically
observed table by s ∗ (x1, x2|m1,m2, n1, n2), because all the other entries of the
table can be calculated from these numbers. Note that for given n1 , n2 , m1 and
m2 , there is a finite number of possible contingency tables, called a reference set
(Verbeek[17]) and denoted here by (m1,m2, n1, n2). Next let T be an arbitrary
ranking statistic with the value t corresponding to the empirically observed table
s ∗ (x1, x2|m1,m2, n1, n2). Given a general hypothesis of ‘H0 : no association
between genotypes and the case-control status of the subjects’ tested against
‘HA : there is association between genotypes and the case-control status of the
subjects’, and larger values of T being more hostile to the null H0 , the set of
tables ranked lower or equal than the observed table s ∗ (x1, x2|m1,m2, n1, n2) is
given by the critical set:

R(x1, x2|m1,m2, n1, n2) := {s(i, j|m1,m2, n1, n2) : T ≥ t} (1)

By definition, a p-value is the probability of obtaining the outcome as extreme or

Table 1 Genotype counts at a bi-allelic locus.

AA AB BB Total

Case x1 x2 x3 n1

Control y1 y2 y3 n2

Total m1 m2 m3 n

worse than the empirically observed outcome s ∗ (·) under the null, which is just
the probability of the critical set R(·). Under the null and based on the assumed
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underlying hypergeometric sampling scheme (see Lehmann[18] for descriptions of
alternative sampling schemes), the probability of obtaining each individual table
s(i, j|m1,m2, n1, n2) within the reference set can be computed as follows:

f(i, j|m1,m2, n1, n2) =

(
m1

i

)(
m2

j

)(
n−m1 −m2

n− i− j

)
(

n
n1

) (2)

See Lloyd[19] for the generalization of the central multivariate hypergeometric
probability function given by (2). The p-value ps∗;T corresponding to the em-
pirically observed table s ∗ (x1, x2|m1,m2, n1, n2) is the probability of the critical
set R(·) given by (1):

ps∗, T (x1, x2|m1,m2, n1, n2) =
∑
s∈R

f(i, j|m1,m2, n1, n2) (3)

Note that ps∗, T is a Fisher-type conditional p-value by construction, inheriting
positive(e.g. statistical validity and empirical relevance) as well as negative (e.g.
conservatism and computational challenges) aspects of Fisher’s p-values.

3 Numerical Illustration

Denote statistics obtained from CATTs optimal for dominant, recessive and ad-
ditive models, respectively, by TD, TR and TA (Sasieni[20]):

TD =
n(nx1 − n1m1)

2

n1m1(n− n1)(n−m1)

TR =
n(nx3 − n1m3)

2

n1(n− n1)(nm3 −m2
3)

TA =
n(n(x2 + 2x3)− n1(m2 + 2m3))

2

n1(n− n1)(n(m2 + 4m3)− (m2 + 2m3)2)

All three statistics asymptotically follow the chi-square distribution with one de-
gree of freedom. The MAX3 test statistic is given by TMAX3 = max(TD, TR, TA)
with the observed value tMAX3 = max(tD, tR, tA). For the empirically observed
table s∗(0, 2|3, 4, 4, 5),the p-value ps∗, TMAX3 can be computed as shown in Table
2. Specifically, there are 11 tables in the reference set S(3, 4, 4, 5) and only three
tables in the critical set R(0, 2|3, 4, 4, 5) since only the tables with the values of
TMAX3 statistics equally or more extreme then observed are included in the crit-
ical set, i.e. TMAX3 ≥ tMAX3. The resulted exact conditional efficiency robust
p-value ps∗, T (0, 2|3, 4, 4, 5) = 0 : 0952 and is the sum of f(·|m1,m2, n1, n2) given
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by (2) of the three tables in R(0, 2|3, 4, 4, 5).
Table 2 The illustrative example is based on (m1,m2, n1, n2) = (3, 4, 4, 5) with
an observed value (x1, x2) = (0, 2). The critical region R is given by the lower
part of the table under the horizontal line.

Table 2 Genotype counts at a bi-allelic locus.

x1 x2 TD TR TA TMAX3 f(x1, x2|m1,m2)

1 2 0.2250 0.0321 0.1636 0.2250 0.2857
2 1 0.9000 0.0321 0.2557 0.9000 0.1905
1 3 0.2250 2.0571 0.2557 2.0571 0.0952
2 2 0.9000 2.0571 2.0045 2.0571 0.1429
1 1 0.2250 3.2143 1.7284 3.2143 0.0952
2 0 0.9000 3.2143 0.1636 3.2143 0.0238
0 3 3.6000 0.0321 1.7284 3.6000 0.0635
0 4 3.6000 2.0571 0.1636 3.6000 0.0079

0 2 3.6000 3.2143 4.9500 4.9500 0.0476
3 0 5.6250 0.0321 2.0045 5.6250 0.0159
3 1 5.6250 2.0571 5.4102 5.6250 0.0317

ps∗, T = 0.0952

4 Conclusion

The method we suggested above is by no means new. The initial idea can be
traced back to Fisher [22] and PS;T given by (3) is based on the combinatorial
results known for many decades, see Freeman and Halton [23]. Our contribution
to the original Fisher’s methodology is the idea of ordering the sample space,
given by the reference set S, based on any arbitrary chosen ranking statistics,
the efficiency robust test statistics in our case. We have borrowed this approach
from the unconditional exact testing literature, see Barnard [24] and Lloyd and
Moldovan [25] for the origination of the unconditional inference philosophy and
one of the initial attempts to combine the conditional and unconditional types of
exact inference, respectively.

To conclude, it should be pointed out that only the basic form of the adjustment
procedure has been given above. In practice, more special cases can arise, such
as the presence of covariates (e.g. additional SNPs, environmental factors or
baseline factors) or involvement of additional shifted parameters (e.g. in power
studies). While this is clearly the limitation of the presented procedure, the basic
general exact conditional method introduced above gives a solid basis for further
investigations to these and possibly several more theoretical and applied research
directions. We provide an open-source R code to encourage and facilitate such
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investigations. The R code is available upon request from the authors.
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