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Abstract

The engine test bed has been used widely in automotive industry to test the pro-
tetypey developed Engine in order to understand the engine operation process
and find the optimum parameters for the engine operation. As a result, thousand
and thousands data will be obtained from Engine Test Bed.for this purpose. It
is a time consuming task to get the data and it is hard to analyse those data
directly from the huge number of the data. The best way to reduce the tested
data from the test bed is to create a mathematics model from the limited engine
tested data.
The paper will list three different models used for the Engine Test Data mod-
elling, Polynomial model, Combined Exponational model and Neural Network
model. The principle and equations of each model has been introduced in the
paper. The experiment results of each model have been listed as well. The results
from last two developed models show that the models provide the achievement
which can meet the customers requirement.
Keywords Engine test data, Engine performance, Engine data modelling, Neural
network

1 Introduction

The engine test bed has been used widely in automotive industry to test the pro-
tetypey developed Engine in order to understand the engine operation process
and find the optimum parameters for the engine operation. As a result, thousand
and thousands data will be obtained from Engine Test Bed.for this purpose. It
is a time consuming task to get the data and it is hard to analyse those data
directly from the huge number of the data.

The best way to reduce the tested data from the test bed is to create a math-
ematics model from the limited engine tested data. The model will be used to
analyse the Engine operation and to obtain the optimum operation data. Figure
1 shows the structure of the Engine Test Bed (ETB). The newly developed or
existed engines should be tested on it. Fig.1 shows the format of the tested data
from ETB which are used to create the new model. The controled input variables
and the responding out put are shows in Fig.2.

It includes: Ignition time, Ex valve timing, Inlet valve timing , BMEP and
Speed as the input variable and the BSFC as the output.

There are three models developed for the Engine Data Modelling. It is Poly-
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Fig.1 Structure of Engine Test Bed

nomial model, Combined Exponational model and Neural Network model.

Fig.2 The form of the tested data from the ETB

2 Employing the Polynomial Model for Engine Test Data Modelling

2.1 The Polynomial Approximation Model

(1)shows the aplication of the polynomial approximation model in engine test
data modelling. It called “Quadratical Model”(QM) which is denoted by Voigt,
Lechner and Hochschwarzer[1-3].
The QM is:

y = xTQx+ aTx+ b (1)

here: y is an objective vector,
x is an input variable vector,
Q is co-efficient matrix,
a& b are constant vectors,
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The co-efficient of matrix Q and the vectors a and b are calculated by least-
squares-method to minimize the deviation of measured values from the model
values.

2.2 Analysis of the Application of the Polynomial Model

This model has the advantage of simplicity, but is imperfect for real application.
Fig.3 shows the example which indicates the model’s imperfect.

(a) draw by the Original engine
tested data

(b) draw by the data calculated
by QM

Fig.3 3D surface draws by the different data

Fig.3a shows the relationship between the BSFC and two input variables by
the experiment data directly. Fig.3 b shows the same relationship using the mod-
el QM. It is obviously that Fig.3(a) is totally different to Fig.3(b). In Fig.3a it
shows that the output will be varied as a irrgular wave when two inputs are var-
ied. The Fig.3b only provide a smooth raised convex area. In one word, the QM
model can not trace the features in Fig.3a. It is clearly that QM is not a suit-
able model to be used for engine parameters modelling and optimasation. The
data from QM provides the large errors and losts nearly most of data features.
Another disadvantage of using quadratical equations is that the model only can
be used to the case which has one convex (or concave) data set.

3 Employing the Combined Exponational Model for Engine Test Data Mod-
elling

3.1 The Combined Exponational Model

(2) shows the aplication of the combined exponational model in engine test data
modelling[4].

f(x1, x2, . . . xn) = a+
n∑

i=1

bixi +

p∑
j=1

(hjE(x1)E(x2) . . . E(xn)) (2)

here: E(x) = exp(−8(x−m)2/w2);
h : the heigth of the peak, it could be “+” or “-”;
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m : the position of the peak along the axis;
w : the width of the peak;
n = 5, (the model dealings the variables;
f(x1, x2, ...xn) : break specific fuel consumption (BSFC);
x1 : ignition time variable;
x2 : inlet valve opening degree variable;
x3 : exhaust valve opening degree variable;
x4 : speed;
x5 : toque (BMEP);
p : the number of peaks in nD space; it assumes p = 10;
a : a constant;
bi : a slope coefficient respect to input xi;

Fig.3a indicts that the output BSFC could be formed by constant element,
linear element and multi- convex or concave peaks. The convex or concave peaks
on the 3D surface can be expressed by the function of exponatioal.
As a result, the (2) can be explained as follow:

BSFC = Constant + Linear function + Exponational function;

3.2 Set Up the Coefficients of the Combinated Exponational Model

If the equation 2 has been set by 20 peaks (j=20) and 5 input variables (i=5),
the total number of the coefficients of the equation, bi, hj , mi,j and wi,j , should
be as following Table 1.
There is no suitable mathematics methods to set up the exactly values to 225

Table 1 The number of the parameters of the combined exponational model with
5 inputs, 20 peaks

Coefficient bi hj mij wij Total
The numbers 5 20 100 100 225

coefficients through the existed tested data. As a result, Genetics Algorithm are
used to define the appropriated values for each coefficient by the existed tested
data. A VB based program is developed for this purpose. The software will be
used to obtain the appropriate values of the coefficients in (2) by using the follow
operations in GA:

– random selection of the chromosome within certain range,
– reproduction
– crossover
– evaluation
– mutation

In order to running the GA, the follow assumptions and definitions are re-
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quired:
Gene: the genes are used to form the chromosome in GA application. As a
result, the number of the Gene should be equal to the total numbers of the coef-
ficients in the (2). For above example in table 1, the numbers of gene should be
225.
Population: the population is the numbers of the chromosome. It can be set
from 1 to 100 in the software. The rule of setting up is that the more coefficients
is , the larger population should be. In the case of table 1, the population is
settled equal to 100.
Number of keep best members of the population: this is very important
selection. If it is too small, too many poor chromosomes will be remained in the
operator. On the other hand , it is easily tripped into the local best point. For
the case in table 1, a range 10-20 is suggested.
Crossover method: crossover method can be selected from alternative meth-
ods, single point cross over, two points crossover, etc.
Type of mutation: Random mutation hill climb and directional hill climb
methods are available in the software. The first one is normally used for the
fitness function is highly discontinuous. The 2nd one is for the continuous fitness
function. Our fitness function for GA is continuous so that the directional hill
climb method is adopted.
Mutation probability of population: This percentage is employed to avoid
trapped in local best. For engine test data modelling, the percentage is 10%.
Mutation probability of genes: If the percentage is too high, many “wild”
mutations which have very poor fitness will be involved. If it is too low, some
necessary genes will not be involved in crossover operator to improve the solution.
It is normally 8-10%.
Fitness function in evaluation operation: Fitness function is very important
for chromosome parent selection in GA operation
Equation 3 is the fitness function used in the GA evaluation.

min f(x1, x2, ...., xn) =
∑a+

n∑
i=1

bixi +

p∑
j=1

hjE(x1) · E(x2) · · · E(xn)− y0

2

(3)
Defined the ranges of variation of each variable: The ranges of variation
of each variable in the engine test bed is settled as table 2, which will constraint
the variables of x1, x2,...,xn; in (2) during the GA operation.

3.3 Output Results From the Combined Exponationa Model

As mentioned before, the parameters of the (2) are obtained from the existed test
data from ETB by GA system. As soon as the parametes is defined, the equation
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Table 2 Experimental data ranges

Variables Range
X1 Input: speed 1237 to 4253
X2 Input: BMEP 0.9 to 6.8
X3 Input: VanosIn 80 to 132
X4 Input: VanosEX 70 to 135
X5 Input: Igtiming 4.5 to 51
Y Output: BFSC Average: 346

2 can be used to calculate the engine output BSFC. Fig. 4 shows the 3D surface
drawings by the ordinary test data and the data calculated from (4) It is obviously
that the major convex or concave peaks in (c) are repeated in (d). It means that
the new model can generat the major features of the black box system (Engine
Perfomance) and it is much more better than using the Quadratical Model in
Engine Test Data modelling.

(a) draw by the Original tested
data

(b) draw by the calculated data
from new model

Fig.4 comparing the Original tested data and the calculated data using the new
model

4 Employing the Neural Network Model for Engine Test Data Modelling[5-
6]

4.1 Develop the Radial Basis Function (RBF) Networks for Engine Calibration Mod-
elling Task[5]

In 2003, Dr. Lin has published a paper. In the paper the neural networks used
on the Engine Test data modelling was mentioned. On the application, Radial
Basis Function (RBF) Networks is used for Engine Calibration modelling task.
RBF networks are universal approximates, that is, given a network with enough
hidden layer neurones, they can approximate any continuous function with any
arbitrary accuracy [7-8].
An RBF is one whose output is symmetric around an associated centre µj . It is
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generally described as:

ϕj(r) = ϕj(r)(∥x− µj∥); x ∈ Rn; r ≥ 0 (4)

where ϕj(r) is a continue function on(0,∞)and ∥ · ∥ denotes the Euclidean norm.
Linear combination of RBFs represents a wide classes of functions:

yj(x) =

M∑
j=1

ωijϕj(∥x− µj∥) + ωi0 (5)

The bias wi0 compensates for the difference between the average value over the

Fig.5 RBF network structure

data set of the basis function activation and the corresponding average value of
the targets. The RBF network is depicted as shown in Fig.5. The bias wi0 can
be incorporated into the summation by introducing an extra basis function ϕ0

and setting its activation to unity. Thus the (2) can be written as

yj(x) =
M∑
j=1

ωijϕj(∥x− µj∥) (6)

Follows are the typical functions of the RBF:
• The Gaussian function:

ϕ(r) = exp(−r2/2) (7)

• The thin plate spline function:

ϕ(r) = r2 × log r (8)
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• The multiquadric function:

ϕ(r) = (r2 + 1)1/2 (9)

• The inverse multiquadric function:

ϕ(r) =
1

(r2 + 1)1/2
(10)

• The pseudo cubic spline function

ϕ(r) = r3 (11)

• The logarithmic function:

ϕ(r) = log(r2 + 1) (12)

where r is a non-negative number and is the scaled distance from the input vector
x to the RBF centre , which is defined as :

rj =

√√√√ n∑
l=1

(xl − µlj)2

σ2
j

(13)

In (13), n is the dimension of input vector and σj is scale factor or width of RBF.
In Engine Calibration modelling task, all of six RBFs described above are applied.

4.2 Develop Neural Network Modelling Tool for Engine Calibration Modelling Task[6]

The Fig.6 shows the structure of the Neural Network Modeling Tool used on the
Engine Test Bed. When the tested data is ready, they will be sending into the
NN Models Tool Box. In the NN tool box, there are three different types and
totally ten NN structures. In it, the total tested data will be divided into three
group. The first group data will take 50 % out of the total tested data. The
second and third groups will take 25% out of the total data respectively. The
first group data will be used to train the neural network and second group data
will used to validate the NN model. Final group data will be used to test the NN
model.

After NN Tool Box, the best fitted NN structural model is selected and sends
to optimization section to defined the optimization data for Engine Management
Unit.

In the optimization section, there are two options for optimization purposes
according to the different requirement. SOGA is the model for single objective
optimization and MOGA is one for multi objectives optimization.
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Fig.6 The structure of the optimisation system of the engine performance

As shown in Figure 6 the NN model tool is employed to select a best suitable
NN model out of ten NN models for the subsequence operation of optimization.

Fig.7 shows the common structure of the neural network in NN model Tool
and it is under the following assumptions:
• it is a three layers NN model.
• the numbers of the hidden layer note is defined by 2n + 1: here n is the
number of inputs.
The NN Model Tool includes three different type of neural networks, Multi-layer
perceptron (MLP); radial basis functions (RBF) and bar function (BAR).
a. MLP. The output of the MLP is denoted by

yk(x) =
m∑
j=0

f(
n∑

i=0

xiωji)ωkj

=

m∑
j=1

f(

n∑
i=1

xiωji + ωj0)ωkj + ωk0, k = 1, . . . , l

where ωji and ωkj are the input-hidden weight and hidden-output weight, respec-
tively. f is the activation function which has two types:
(a) logistic function

f(α) =
1

1 + e−α
(15)
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Fig.7 Neural network structure

(b) hyperbolic tangent function or tanh

f(α) =
eα − e−α

eα + e−α
(16)

b. RBF. The output of the RBF is calculated using the following form in (5) and
(6):

yk(x) =
m∑
j=1

ϕ(∥x− µj∥)ωkj + ωi0

=

m∑
j=0

ϕ(∥x− µj∥)ωkj , k = 1, . . . , l

where ωkj is the hidden-output weight and µj is the centre of j-th hidden unit.
ϕ is the kernel function. To defining a distance from the input vector x to the
RBF centre µj scaled by the scale factor or width σj , equation 13 is used.
Within the RBF networks, six kernel functions are widely used and defined by
equations from (7) to (12).
c. BAR. The BAR network has the same structure as the RBF network, but the
kernel function is different. Two kernel function for the BAR network:
(a) Gaussian bar function

ϕ(x) =

n∑
i=1

exp
[
− (xi − µji)

2

2σ2
ji

]
(17)

(b) sigmoidal bar function

ϕ(x) =
n∑

i=1

1/
{
1 + exp

[
− (xi − µji)

2

2σ2
ji

]}
(18)
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Table 3 lists the summery of the neural network structure used in the NN Model
Tool.

Table 3 Nomenclature of neural network structures

4.3 Experimental Results

4.3.1 Experiment Results From the RBF NN Model

A set of engine test data with three inputs variables and one output variable
was employed to evaluate the performance of the proposed approach. The in-
put variables are “break mean efficient pressure”(BEMP), “inlet valve opening
degree”(VanosIn), and “exhaust valve opening degree” (VanosEx). The output
is “break specific fuel consumption”(BSFC). The whole set of data are from 293
test points. The 196 data points out of 293 are used for training the GA-RBF
network and another 97 data points are used for test the GA-RBF network.
In the experiment, it run under the following conditions and definitions:

• the number of RBFs is fixed at 20
• For comparison purposes, the six different RBF networks are executed 10

times
• the normalised mean squares error (NMSE) is used as a performance measure

for the different RBFs:

NMSE =

(
1
K

∑K
i=1(yi − ti)

2
)1/2

(
1
K

∑K
i=1(ti − t̄)2

)1/2
(19)

where yi and ti are respectively the model output and the target value, and t̄ is
the mean value of the target values on the training data set or test data set. This
expression has the value 0 for a perfect match between model and target, and
the value 1 if the model just outputs the target mean t̄.

Fig.8 shows the evolutionary process of different RBF.
Fig.8(a) is the average evolutionary process of 10 runs over the training data

for six RBFs and Fig.8(b) is the best process of 10 runs. The results review that
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the Gaussian function provides the better results compare with other RBFs in
terms of convergence speed and modelling accuracy. It is also shown that the
local basis function has a faster convergence speed than non-local basis function.

The Table 4 summaries the final average NMSE of 10 runs for different RBFs.
The result indicates that the Gaussian function has the smallest NMSE while the
pesudo cubic spline has the largest NMSE.

Table 4 Final average NMSE over 10 runs for training data

Average NMSE
Gaussian 0.1217

Thin Plate Spline 0.1397
Multiquadric 0.1304

Inverse multiquadric 0.1368
Pseudo Cubic Spline 0.1508

Logarithmic 0.1274

Table 5 compares the final best NMSE of 10 runs for both training data and
test data. It indicates clearly that the Gaussian function performs better than
other RBFs in both training data and test data.

The figures from Fig.5 to Fig.10 plot the modelling performance of both

Table 5 Final best NMSE over training data and test data

Training data Test data

Gaussian 0.1134 0.1119

Thin Plate Spline 0.1231 0.1297

Multiquadratic 0.1268 0.1245

Inverse Multiquadratic 0.1304 0.1281

Pseudo Cubic Spline 0.1286 0.1419

Logarithmic 0.1235 0.1240

training data and test data using the best final parameters of RBF networks by
RCGA run. These figures have shown that the RBF networks training by RCGA
are successfully applied in modelling of engine test data.

Fig.9 shows the results.of RBF network model for real engine test data anal-
ysis and modelling. The model provides a close fit to the ordinary tested data
successfully.

4.3.2 Experiment Results From the NN-Tool

In this section, an experiment example for engine data modelling was carried out.
The input data and output data are listed in Fig.10 and Fig.11.
Three NNs, MLP, RBF and BAR, with different activation functions, abbrevi-
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Fig.8 Evolutionary process of RBF networks over 10 runs

Fig.9 Final results

Fig.10 Input data set: SPEED (rpm), GN(%), IG(degree), VVT(degree) and
EGR(%)
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Fig.11 Output data set: BSFC (g/kWh)

ated in Table 3, were used throughout the example. The data was taken from
engine test bed of the Lander Rover Group, plc.
In order to assess the goodness of modelling, the normalized mean squared error
(NMSE) over each output variable is used:

NMSE =

(
1
N

∑N
i=1(yi − ti)

2
)1/2

(
1
N

∑N
i=1(ti − t̄)2

)1/2
(20)

where N is the number of total data points. yi and ti are respectively the model
output and the target value, and t̄ is the average value of the targets on the data
set, defined as:

t̄ =
1

N

N∑
i=1

ti (21)

NMSE has the value 0 for a perfect match between model and target, and

Table 6 Mean, standard (std. dev), minimum and maximum MSE over 10 runs
for each model
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Fig.12 Modelling performance of BSFC by sigmoidal BAR model

the value 1 if the model just outputs the target meant̄ .Table 6 shows the result
of the example. It is clearly that the model structure which has the minimum
MSE was the BAR model with sigmoidal bar function. The modelling result by
Bar-Sbar is plotted in Fig.12.

5 Conclusion

In this paper, the models used by the Engine Test data modelling system is in-
troduced. The details of RBF network and the Neural Network Tool have been
introduced and the experiment results show that the last two models are running
successfully to catch the relationship between the input data and output data
within the Engine tested Data.
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