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Abstract

Project portfolio selection is a crucial decision in many organizations, which must
make informed decisions on investment, where the appropriate distribution of in-
vestment is complex, due to varying levels of risk, resource requirements, and
interaction among the proposed projects. In this paper, we present a mathemat-
ical model of investment for a set of projects under uncertainty of future returns.
The model addresses the problem of an investor with access to a limited pool of
capital, who makes decisions on investments. The problem is to decide how much
to invest in each project so as to maximize the total expected return by the end of
the horizon in relation to a given utility function. We discuss optimal investment
decisions for the cases where the return from investment is a random variable.
The single-period and multi period cases of investment decisions are considered.
The paper presents closed form solutions for commonly adopted utility functions.
Keywords Projects, future return, uncertainty, investment decisions, optimiza-
tion

1 Introduction

Project portfolio investment is the periodic activity involved in investing a port-
folio of projects, that meets an organizations stated objectives without exceeding
available resources or violating other constraints. Some of the issues that have
to be addressed in this process are the organization’s objectives and priorities,
financial benefits, intangible benefits, availability of resources, and risk level of
the project portfolio [1].

Difficulties associated with project portfolio investment result from several
factors: (i) there are multiple and often-conflicting objectives, (ii) some of the
objectives may be qualitative, (iii) uncertainty and risk can affect projects, (iv)
the project portfolio may need to be balanced in terms of important factors, such
as risk and time to completion, (v) some projects may be interdependent, and
(vi) the number of feasible portfolios is often enormous.

In addition to these difficulties, due to resource limitations there are usually
constraints such as finance, work force, and facilities or equipment, to be consid-
ered. As some researchers have noted [2], the major reason why some projects are
selected but not completed is that resource limitations are not always formally
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included in the project selection process. In cases where resource limitations are
at fault for a failed project, a selection model that incorporated resource limita-
tions could have aided the decision maker in avoiding such mistakes [1]. Portfolio
selection becomes more complex when resource availability and consumption are
not uniform over time.

There are many different techniques that can be used to estimate, evaluate,
and choose project portfolios [3-4]. Some of these techniques are not widely used
because they address only some of the above issues, they are too complex and
require too much input data, they may be too difficult for decision makers to
understand and use, or they may not be used in the form of an organized process
[5]. Among all of the techniques that are available, optimization techniques are
the most fundamental quantitative tool for project portfolio selection and address
most of the important issues [6]. However, they have largely failed to gain user
acceptance [7], and few modeling approaches, from a variety of optimization ap-
proaches that have been developed, are being utilized as aids to decision making
in this area [8]. According to Hess “management science has failed altogether to
implement project selection models; we have proposed more and more sophisti-
cation with less and less practical impact” [9]. One of the major reasons for the
failure of traditional optimization techniques is that they prescribe solutions to
portfolio selection problems without allowing for the judgment, experience and
insight of the decision-maker [7].

A literature review we conducted in this field clearly showed that, although
there are many different methods for project evaluation and portfolio selection
that have their own advantages, no single technique addresses all of the issues
that should be considered in project portfolio selection [10]. Among published
methodologies for project portfolio selection, there has been little progress to-
wards achieving an integrated framework that: (a) simultaneously considers all
the different criteria in determining the most suitable project portfolio, (b) takes
advantage of the best characteristics of existing methods by decomposing the
process into a flexible and logical series of activities and applying the most ap-
propriate technique(s) at each stage.

Well-known pragmatic difficulties that make project selection challenging in-
clude the following: (1) Success uncertainty (unknown rewards): Whether (or
how well) a project will succeed, both technically and in the market, may be un-
certain. (2) Changing opportunities (randomly arriving opportunities): The op-
portunity of funding a project may be uncertain. New projects are continually be-
ing proposed throughout the year, stimulated by changes in technology and mar-
ket opportunities that might help the company to achieve its goal. (3) Need for
quick funding decisions (on-line decision): The organizations proposing projects
lack a comprehensive view of all projects activities company-wide. It is essential
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for top management to give the organization prompt accept/revise/reject deci-
sions, since such feedback helps to coordinate their activities. (4) Combinatorial
complexity: The costs and benefits from different projects may interact.

2 Problem Statement

The problem we will examine can be formulated as follows. Let w0 denote the
initial wealth (measured in monetary units) of the investor and assume that there
are m projects (opportunities) for investments which belong to a set of m risk
categories, with corresponding random rates of return r1, r2, ..., rm, among which
the investor can allocate his wealth. The investor can also invest in a project of
a riskless category offering a sure rate of return s. If we denote by u1, ..., um the
corresponding amounts to invest in the projects belonging to the set of m risk
categories and by (w0 − u1 −Λ− um) the amount of investment in the project of
the riskless category, the final wealth is given by

w1 = s(w0 − u1 − · · · − um) +
m∑
j=1

rjuj , (1)

or equivalently

w1 = sw0 +

m∑
j=1

(rj − s)uj . (2)

The objective is to maximize over u1, ..., um,

E{g(ω1)} (3)

where g is a known utility function for the investor, w1 is a random variable.
We assume that the given expected value is well defined and finite for all w0,
ui, and that g is concave and twice continuously differentiable. We will not
impose constraints on u1, ..., um. This is necessary in order to obtain the results
in convenient form. A few additional assumptions will be made later.

If a given amount w0 of the initial wealth is available for investment within
N time periods, we are interested in determining decision rules on how much to
invest in each project so as to maximize the total expected return by the end of
the horizon in relation to a given utility function.

3 Investment Decisions for the Single Case

Let us consider the preceding problem for every value of initial wealth and denote
by µ∗

j = µ∗
j (ω0), j = 1, ...,m, the optimal amounts to invest in projects belonging

to the set of m risk categories when the initial wealth is w0. We say that the
investment portfolio {µ1

j (ω0), ..., µ
m
j (ω0)} is partially separated if

u∗j (w0) = cjh(w0), j = 1,...,m (4)
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where cj , j = 1, ...,m, are fixed constants and h(w0) is a function of w0 (which is
the same for all j).

When partial separation holds, the ratios of amounts invested in projects be-
longing to the set of m risk categories are fixed and independent of the initial
wealth; that is,

u∗j (w0)

u∗k(w0)
=

cj
ck

, forj, k ∈ {1, ...,m}, ck ̸= 0 (5)

Actually, in the cases we will examine, when partial separation holds, the invest-
ment portfolio {µ1

j (ω0), ..., µ
m
j (ω0)} will be shown to consist of affine (linear plus

constant) functions of w0 that have the form

u∗j (w0) = cj [a+ bsw0], j = 1,...,m (6)

where a and b are constants characterizing the utility function g. In the special
case where a=0 in (6), we say that the optimal investment portfolio is completely
separated in the sense that the ratios of the amounts invested in projects belong-
ing to both the set of m risk categories and the riskless category are fixed and
independent of initial wealth. Here the following theorem holds.

Theorem 1. If the utility function satisfies

− g′(w1)

g′′(w1)
= a+ bw1, forallw1 (7)

where g′ and g′′ denote the first and second derivatives of g, respectively, and
a and b are some scalars, then the optimal investment portfolio is given by (6).
Furthermore, if G(w0) is the optimal value of the problem, i.e.,

G(w0) = max
u1,...,um

E{g(w1)} (8)

then we have

−G′(w0)

G′′(w0)
=

a

s
+ bw0, forallw0 (9)

Proof. Let us assume that an optimal investment portfolio exists and is of the
form

u∗j (w0) = cj(w0)[a+ bsw0], j = 1,...,m (10)

where cj(w0), j = 1, ...,m, are some differentiable functions. We will prove that
dcj(w0)/dw0 = 0 for all w0 and hence the functions cj must be constant. We
have for every w0, by the optimality of µ∗

j (ω0) for j = 1, ...,m,

dE{g(w1)}
duj

= E

{
g′

[
sw0 +

m∑
k=1

(rk − s)ck(w0)(a+ bsw0)

]
(rj − s)

}
= 0
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j = 1(1)m (11)

Differentiating the m equations in (11) with respect to w0 yields

E


 (r1 − s)2 · · · (r1 − s)(rm − s)

· · · · · · · · · · · ·
(rm − s)(r1 − s) · · · (rm − s)2

 g′′(w1)(a+ bsw0)

×

 dc1(w0)/dw0
...

dcm(w0)/dw0



= −


E

{
g′′(w1)(r1 − s)s

[
1 +

m∑
k=1

(rk − s)ck(w0)b

]}
...

E

{
g′′(w1)(rm − s)s

[
1 +

m∑
k=1

(rk − s)ck(w0)b

]}



= −



E

{
g′′(w1)(r1 − s)s

[
1 +

m∑
j=1

(rj − s)cj(w0)b

]}
...

E

{
g′′(w1)(rm − s)s

[
1 +

m∑
j=1

(rj − s)cj(w0)b

]}


. (12)

Using relation (7), we have

g′′(w1) = − g′(w1)

a+ b

[
sw0 +

m∑
j=1

(rj − s)cj(w0)(a+ bsw0)

]

= − g′(w1)

(a+ bsw0)

[
1 +

m∑
j=1

(rj − s)cj(w0)b

] . (13)

Substituting in (12) and using (11), we have that the right side of (12) is the zero
vector. The matrix on the left in (12), except for degenerate cases, can be shown
to be nonsingular. Assuming that it is indeed nonsingular, we obtain

dcj(w0)

dw0
= 0, j = 1,...,m (14)
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and cj(w0) = cj , where cj are some constants, thus proving (6).
We now turn our attention to proving relation (9). We have

G(w0) = E{g(w1)} = E

g

s

1 + m∑
j=1

(rj − s)cjb

w0 +
m∑
j=1

(rj − s)cja


(15)

and hence

G′(w0) = E

g′(w1)s

1 + m∑
j=1

(rj − s)cjb

 (16)

G′′(w0) = E

g′′(w1)s
2

1 + m∑
j=1

(rj − s)cjb

2 (17)

The last relation after some calculation and using (13) yields

G′′(w0) = −
E

{
g′(w1)s

[
1 +

m∑
j=1

(rj − s)cjb

]}
s

a+ bsw0
(18)

By combining (16) and (18), we obtain the desired result:

−G′(w0)

G′′(w0)
=

a

s
+ bw0 (19)

This ends the proof.
It can be shown that the following utility functions satisfy (19):

exponential:

−e−w/a, forb = 0 (20)

Logarithmic

ln(ω + a), forb = 1 (21)

power

[1/(b− 1)](a+ bω)1−(1/b), otherwise (22)

Naturally in our problem only concave utility functions from this class are ad-
missible. Furthermore, if a utility function that is not defined over the whole
real line is used, the problem should be formulated in a way that ensures that all
possible values of the resulting final wealth are within the domain of definition
of the utility function.
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4 Investment Decisions for the Multiperiod Case

It is now easy to extend the one-period result of the preceding analysis to the
multiperiod case. We will assume that the current wealth can be used to invest
amounts in projects at the beginning of each of N consecutive time periods. If
we denote:

wυ the wealth of the investor at the beginning of the υth period,
uj(υ) the amount to invest in project belonging to the jth risk category at the

beginning of the υth period,
rj(υ) the rate of return of project which belongs to the jth risk category at

the beginning of the υth period,
sυ the rate of return of project which belongs to the riskless category at the

beginning of the υth period
then we have (in accordance with the single-period model) the system equation

wν+1 = sνwν +
m∑
j=1

(rj(ν) − sν)uj(ν),v = 0, 1, ..., N − 1 (23)

We assume that the vectors rυ = (r1(υ), ..., rm(υ)), υ = 0, ..., N − 1, are inde-
pendent with given probability distributions that result in finite expected values
throughout the following analysis.

The objective is to maximize E{g(wN )}, the expected utility of the terminal
wealth wN , where we assume that g satisfies for all w

− g′(w)

g′′(w)
= a+ bw (24)

Applying the dynamic programming algorithm to this problem [11-12] , we have

GN (ωN ) = g(ωN ) (25)

Gν(wν) = max
u1(ν),...,um(ν)

E

Gν+1

sνwν +

m∑
j=1

(rj(ν) − sν)uj(ν)

 , ν = 0, 1, ..., N−1

(26)
From the solution of the one-period problem we have that the optimal policy at
the beginning of period N − 1 is of the form

u∗N−1(wN−1) = cN−1[a+ bsN−1wN−1], (27)

where cN−1 is an appropriate m-dimensional vector, µ∗
N−1 = [µ∗

1(N−1), ..., µ
∗
m(N−1)]

′.
Furthermore, we have

−G′
N−1(w)

G′′
N−1(w)

=
a

sN−1
+ bw. (28)
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Hence, applying the result of this section in (26) for the next to the last period,
we obtain the optimal policy

u∗N−2(wN−2) = cN−2

(
a

sN−1
+ bsN−2wN−2

)
(29)

where cN−2 is again an appropriate m-dimensional vector.
Proceedings similarly, we have for the υth period

u∗ν(wν) = cν

(
a

sN−1 · · · sν+1
+ bsνwν

)
(30)

where cυ, υ = 0, 1, ..., N − 1, are m-dimensional vectors that depend on the prob-
ability distributions of the rates of return rj(υ) of projects belonging to the risk
categories and are determined by optimization of the expected value of the opti-
mal cost-to-go functions Gυ. These functions satisfy

−G′
ν(w)

G′′
ν(w)

=
a

sN−1 · · · sν
+ bw, ν = 0, 1, ..., N − 1 (31)

Thus one can see that the investor, when faced with the opportunity to reuse
sequentially his wealth, uses a policy similar to that of the single-period case.

5 Multiperiod Project Portfolio Investment with Markowitz Mean-Variance
Optimization

To our knowledge, no analytical or efficient numerical method for finding the
optimal multiperiod portfolio policy for the constrained mean-variance formula-
tion of Markowitz has been reported in the literature. This section presents an
optimal solution to the constrained mean-variance formulation of the multiperi-
od project portfolio investment problem. We consider a portfolio with (m + 1)
risky projects, with random rates of returns. Let w0 be an initial wealth of an
investor at time 0. The investor can allocate his wealth among the (m + 1)
projects. The wealth can be reallocated among the (m + 1) projects at the be-
ginning of each of the following (T − 1) consecutive time periods. The rates
of return of the risky projects at time period τ within the planning horizon
are denoted by a vector rτ = [rτ(0), rτ(1), ..., rτ(m)], where rτ(j) is the random
return for project j at time period τ . It is assumed in this paper that vec-
tors rτ , = 0, 1, ..., T − 1, are statistically independent and return rτ has a mean
E{rτ} = [E{rτ(0)}, E{rτ(1)}, ..., E{rτ(m)}]′ and a covariance

Cov{rτ} =

 στ(00) · · · στ(0m)
...

. . .
...

στ(0m) · · · στ(mm)

 (32)
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which can be found from the data of observations.
Let wτ be the wealth of the investor at the beginning of the τth period, and

let uτ(j), j ∈ {1, ...,m}, be the amount invested in the jth risky project at the
beginning of the τth time period. The amount investigated in the 0th risky
project at the beginning of the τth time period is equal to

uτ(0) = wτ −
m∑
j=1

uτ(j). (33)

An investor is seeking a best multiperiod investment strategy, (uτ(0), uτ(1), ..., uτ(m))
for τ = 0, 1, 2, ..., T − 1, such that either (i) the expected value of the termi-
nal wealth wT , E{wT }, is maximized if the variance of the terminal wealth,
V ar{wT }, is not greater than a preassigned risk level v∗, or (ii) the variance
of the terminal wealth, V ar{wT }, is minimized if the expected terminal wealth,
V ar{wT }, is not smaller than a preassigned level e∗. Mathematically, a mean-
variance formulation for multiperiod project portfolio investment can be posed
as one of the following two forms:

(i) Maximize
V ar{wT } (34)

subject to
V ar{wT } ≤ ν∗ (35)

m∑
j=1

uτ(j) ≤ E{wτ} (36)

µτ(j) ≥ 0, j = 1, ...,m, τ = 0, 1, 2, .., T − 1 (37)

with

wτ+1 =

m∑
j=1

rτ(j)uτ(j) +

wτ −
m∑
j=1

uτ(j)

 rτ(0) = rτ(0)wτ +∆′
τuτ (38)

and
(ii) Minimize

V ar{wT } (39)

subject to
E{ωT } ≥ e∗ (40)

m∑
j=1

uτ(j) ≤ E{wτ} (41)

µτ(i) ≥ 0, j = 1, ...,m, τ = 0, 1, 2, .., T − 1 (42)
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with

wτ+1 =

m∑
j=1

rτ(j)uτ(j) +

wτ −
m∑
j=1

uτ(j)

 rτ(0) = rτ(0)wτ +∆′
τuτ , (43)

where

∆τ = [∆τ(1),∆τ(2), ...,∆τ(m)]
′ = [rτ(1) − rτ(0), rτ(2) − rτ(0), ...,rτ(m) − rτ(0)]

′ (44)

Formulation (i) or (ii) enables an investor to specify a risk level he can afford
when he is seeking to maximize his expected terminal wealth or specify an ex-
pected terminal wealth he would like to achieve when he is seeking to minimize
the corresponding risk.

A strategy of multiperiod project portfolio investment is an investment se-
quence,

UT = [u0, u1, u2, ..., uN−1] (45)

where

uτ = [uτ1 , uτ2 , ..., uτm ]
′, ∀τ = 0(1)T − 1 (46)

More specifically, UT is a feedback strategy and uτ maps the wealth at the be-
ginning of the τth period, wτ , into a project portfolio decision in the τth pe-
riod, i.e., uτ = uτ (wτ ). A multiperiod project portfolio investment strategy,
U∗
T , is said to be efficient if there exists no other portfolio one, UT , such that

E{wT ;UT } ≥ E{wT ;U
∗
T } and V ar{wT ;UT } ≤ V ar{wT ;U

∗
T } with at least one

equality strictly. By varying the value of v∗ in (i) or the value of e∗ in (ii), the set
of efficient multiperiod project portfolio investment strategies can be generated.

An equivalent formulation to either (i) or (ii) in generating efficient multiperi-
od portfolio strategies is

(iii) Maximize

E{wT } − ϑV ar{wT } (47)

subject to
m∑
j=1

uτ(j) ≤ E{wτ} (48)

uτj ≥ 0, j = 1, ...,m, τ = 0, 1, 2, .., T − 1 (49)

with

wτ+1 =

m∑
j=1

rτ(j)uτ(j) +

wτ −
m∑
j=1

uτ(j)

 rτ(0) = rτ(0)wτ +∆′
τuτ (50)



32 Konstantin N. Nechval: Optimizing Investment Decisions for a Set of Projects...

Table 1 The observations of returns for three risky projects.

Year(t)
Project

0 1 2

1 1.3000 1.2250 1.1490

2 1.1030 1.2900 1.2600

3 1.2160 1.2160 1.4190

4 0.9540 0.7280 0.9220

5 0.9290 1.1440 1.1690

6 1.0560 1.1070 0.9650

7 1.0380 1.3210 1.1330

8 1.0890 1.3050 1.7320

9 1.0900 1.1950 1.0210

10 1.0830 1.3900 1.1310

11 1.0350 0.9280 1.0060

12 1.1760 1.7150 1.9080

where ϑ ∈ [0,∞).
It will be noted that if U∗

T } solves (iii), then U∗
T } solves (i) with v∗ = V arwT ;U∗

T ,
and solves (ii) with e∗ = EwT ;U∗

T . Note that ϑ is equal to ∂E{wT }/∂V ar{wT }
at the optimal solution of (iii). Problem formulation (iii) is preferable to be
adopted in investment situations where an investor is able to specify his desirable
trade-off between the expected terminal wealth and the associated risk.

6 Numerical Example

Consider the case of a stationary multiperiod process with T = 2. An investor
has one unit of wealth at the very beginning of the planning horizon, i.e., w0 = 1.
The investor is trying to find the best allocation of his wealth among three risky
projects, 0, 1, and 2 in order to maximize E{w2} while keeping his risk not
exceeding 0.07; that is, v∗ = 0.07. The observations of returns for risky projects,
0, 1, and 2 are given in Table 1.

At first consider the case of a stationary multiperiod process with T = 1. The
problem is to maximize

E{ω1} (51)

subject to
V ar{ω1} ≤ ν∗ = 0.07 (52)

2∑
j=1

u0(j) ≤ E{w0} = w0 = 1 (53)
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u0(j) ≥ 0, j = 1, 2, ... (54)

with

w1 =
2∑

j=1

r0(j)u0(j) +

w0 −
2∑

j=1

u0(j)

 r0(0) = r0(0)w0 +∆′
0u0. (55)

Using (55) and Table 1, it can be shown that

E{w1} = E{r0(0)}w0 + E{∆′
0}u0, (56)

where

E{R0(0)} = 1.0891, E{∆′
0} = [0.1246, 0.1455] (57)

V ar{ω1} = [ω0, u
′
0]Cov{[r0(0),△′

0]
′}[ω0, u

′
0]
′ (58)

with

Cov{[r0(0),∆′
0]
′} =

 0.0099 0.0015 0.0021
0.0015 0.0407 0.0374
0.0021 0.0374 0.0723

 (59)

Using Solver software (MS Excel), we obtain from maximization of (51) a percent
investment (on w0 = 1) in three risky projects, 0, 1, and 2, at period τ = 0 as
follows: µ∗

0(0) = 0%, µ∗
0(1) = 26.92%, and µ∗

0(2) = 73.08%. The corresponding

expected terminal wealth and the risk level are given by E{w1} = 1.229 and
V ar{w1} = 0.07, respectively.

Now consider the case of a stationary multiperiod process with T = 2. The
problem is to maximize

E{w2} (60)

subject to

V ar{ω2} ≤ ν∗ = 0.07 (61)

2∑
j=1

u0(j) ≤ E{w0} = w0 = 1 (62)

2∑
j=1

u1(j) ≤ E{w1} (63)

uτ(j) ≥ 0, j = 1, 2, τ = 0, 1 (64)

with

wτ+1 =

m∑
j=1

rτ(j)uτ(j) +

wτ −
m∑
j=1

uτ(j)

 rτ(0) = rτ(0)wτ +∆′
τuτ (65)
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Using (65) and Table 1, it can be shown that

E{w2} = E{r1(0)r0(0)}w0 + E{r1(0)∆′
0}u0 + E{∆′

1}u1 (66)

where

E{r1(0)r0(0)} = 1.1960 (67)

E{r1(0)∆′
0} = [0.1371, 0.1605] (68)

E{∆′
1} = [0.1246, 0.1455] (69)

V ar{w2} = [w0, u
′
0, u

′
1]× Cov{[r1(0)r0(0), r1(0)∆′

0,∆
′
1]
′}[w0, u

′
0, u

′
1] (70)

where

Cov{[r1(0)r0(0), r1(0)∆′
0,∆

′
1]
′} =


0.0491 0.0028 0.0053 0.0022 0.0037
0.0028 0.0496 0.0490 0.0447 0.0427
0.0053 0.0490 0.0942 0.0426 0.0823
0.0022 0.0447 0.0426 0.0407 0.0374
0.0037 0.0427 0.0823 0.0374 0.0723


(71)

Using Solver software (MS Excel), we obtain from maximization of (60) a percent
investment (on w0 = 1) in three risky projects, 0, 1, and 2, at period τ = 0 as
follows: µ∗

0(0) = 100%, µ∗
0(1) = 0%, and µ∗

0(2) = 0%; and a percent investment

(on E{w1} = 1.0891) in three risky projects, 0, 1, and 2, at period τ = 1 as
follows: µ∗

1(0) = 39.80%, µ∗
1(1) = 47.24% and µ∗

1(2) = 12.96%. The corresponding

expected terminal wealth and the risk level are given by E{w2} = 1.2807 and
V ar{w2} = 0.07, respectively.

7 Conclusion

The problem considered in this paper is to decide how much of our available
resources to invest in each project so as to maximize the total expected return
by the end of the horizon in relation to a given utility function.

We formulate the problem in terms of dynamic programming, which allows one
to obtain optimal investment decisions for a set of projects under uncertainty of
future returns in a simple form.

The derived optimal multiperiod project portfolio investment strategy provides
investors with the best strategy to follow in a dynamic investment environment.
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