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Abstract

This work consists of three parts and presents the recent results of development
of the theory of parametric control of macroeconomic systems and some its ap-
plications for solving a number of concrete problems.
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Introduction

Development of adequate methods on the basis of mathematical models for
macroeconomic analysis and of evaluating optimal values of parameters (eco-
nomic policy tools) for macroeconomic systems control on the level of national
economies, regional economic unions and world economic system is urgent prob-
lem, sharply necessity in solving which was emphasized by the latest global crisis.

Nowadays, mathematical models of corresponding macroeconomic systems with-
out comprehensive testing for possibility of their application are widely used for
macroeconomic analysis (including scenario analysis) and evaluating optimal pa-
rameter values of economic policy for controlof macroeconomic systems evolution
[1-15].

This paper is devoted to the development of the theory of macroeconomic anal-
ysis and evaluating optimal parameter values of economic policy for control of
macroeconomic systems on the basis of the corresponding mathematical models,
tested for possibility of their application, and it consists of three parts.

The first part describes the components of the parametric control theory and
its algorithmic foundations. The second part describes mathematical foundations
of the parametric control theory, and the third part-the developed theory applica-
tions for solving a number of applied problems on the basis of some mathematical
models of macroeconomic systems.

Part 1. Components of the parametric control theory and its algorithmic
foundations

1.1 Components of the Parametric Control Theory of Macroeconomic Systems

Given the following facts:
- solution of either continuous or discrete dynamical system [which can include

both controllable parameter vectors-state policy tools (µ), and uncontrollable
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parameter vectors (a)] depends on initial condition vectors and parameters (co-
efficients) of this system;

- solution of static system (for instance, static model of small open economy)
depends on parameters (coefficients) of this system;

- for judging by the study results of dynamical system about an object, de-
scribed by it, an existence of structural stability (or robustness) of this system is
required [16];

- for judging by the study results of (static or dynamic) model about an object,
described by it, an existence of stability of mapping, defined by this model, is
required [17];

- and also a condition of macroeconomic model (presented by one of dynamic
or static system) stability is required at small perturbations of the initial statis-
tical data for parametric identification of the model (input parameters) and the
following components of the parametric control theory are proposed [18-19].

1. The methods for forming the set (library) of macroeconomic mathematical
models. These methods are oriented towards the description of various specific
socio-economic situations.

2. The methods for estimating the conditions for robustness (structural sta-
bility) of the dynamical mathematical models, the methods for estimating the
stability indicators and the methods for estimating stability of mappings, set by
models of national economic system from the library (without parametric con-
trol).

3. The methods for adjusting the structural instable dynamical mathematical
model to obtain its structural stability (methods for attenuation of structural in-
stability). Choosing (or synthesizing) the algorithms for attenuation of structural
instability for the mathematical model of macroeconomic system.

4. The methods for choosing and synthesizing the laws of parametric control
of macroeconomic system based on its dynamical mathematical models. The
methods for setting and solving the parametric control problems in terms of
corresponding mathematical programming problems on the basis of static math-
ematical models of macroeconomic systems.

5. The methods for estimating the robustness (structural stability) of dy-
namical mathematical model. The methods for estimating the stability and the
methods for estimating the stability of mappings, set by models of macroeconom-
ic systems (with parametric control).

6. The methods for adjusting the constraints on parametric control of macroe-
conomic system in the case of structural instability of its mathematical model
with parametric control. Specification of constraints on the parametric control
of macroeconomic system.

7. The methods for studying the effects of uncontrollable parameters and
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functions (uncontrollable factors) on the results ofsolving of variational calculus
problems of synthesis and choice (among given finite algorithms set) of paramet-
ric control laws. Study of bifurcation points of extremals of variational calculus
problems of choosing optimal laws of parametric control. The methods for s-
tudying the effects of uncontrollable factors variance on the solution results of
mathematical programming problems based on static mathematical models.

8. Approach for choosing recommendations on evaluating political rules in the
frame of implementing the laws of parametric control of macroeconomic system
on the base of the analysis of dependences of optimal criteria values of corre-
sponding parametric control problems on uncontrollable factor values.

This paper presents the general results of component-specific development of
the parametric control theory (its mathematical and algorithmic foundations).

- Within the framework of the methods for forming the set (library) of macroe-
conomic mathematical models, it is proposed an algorithm for parametric identifi-
cation of large-scale macroeconomic models, which uses jointly two identification
criteria.

- Within the framework of the methods for examining mathematical models
stability, it is proposed numerical algorithms for stability indicators estimation
and numerical algorithms for estimation stability of mappings, set by model (in
terms of the theory of differentiated mappings singularities);

- Within the framework of the methods for examining the weak structural
stability, it is described the proposed numerical algorithm based on the Robin-
son theorem about sufficient conditions of weak structural stability of dynamical
mathematical models.

- Within the framework of the methods for choosing and synthesizing paramet-
ric control of national economy, based on continuous and discrete non-autonomous
dynamical systems, as well as discrete dynamical systems with additive noise,
there are formulated and proved the corresponding theorems about conditions
for the existence of solutions of variational calculus problems on synthesis and
choice (among given finite algorithms set) of optimal parametric control laws.

- Within the framework of the methods for studying the effects of uncontrol-
lable factors variance on the solution results of variational calculus problems on
synthesis and choice of optimal parametric control laws, there are formulated and
proved the theorems about conditions for the continuous dependence of optimal
criteria values of variational calculus problems on uncontrollable parameters (un-
controllable function values).

- Within the framework of studying the bifurcations of extremals of the vari-
ational calculus problem of choosing the optimal parametric control laws, there
are formulated and proved the theorems about sufficient conditions for the exis-
tence of appropriately defined bifurcational point of extremals of the variational
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calculus problem;
- there is proposed an approach for choosing the recommendations on eval-

uating political rules within the framework of implementation of appropriate
economic tools for adjusting national economy on the base of analyzing depen-
dences of optimal criteria values of corresponding parametric control problems
on uncontrollable factors values.

1.2 Algorithm for the Parametric Identification of Large-scale Macroeconomic Models

The following algorithm for the parametric identification of large-scale macroeco-
nomic models is proposed within the framework of elaborating the 1st component
of the parametric control theory [19].

The parametric identification problem for discrete dynamical macroeconomic
model is finding the estimates of unknown values of its parameters (to which
belong unknown values of exogenous functions of model and unknown initial val-
ues of its dynamical equations), at those one can obtain the minimum of the
objective, characterizing the deviations of output variables values of the mod-
el from corresponding observed values (of known statistical data for the period
t = t1, t1 + 1, ..., t2). This problem comes to finding the minimum of the mul-
ti variable function (parameters) in some closed domain D of Euclidean space
with constraints, overlaying both on endogenous variables values of the model
(E constraints)and on initial parameter values (F constraints). In the case of
large number of dimensions N of this domain, the standard methods for finding
function extrema are often ineffective because of presence of several local min-
ima of the objective. Below we present the algorithm, allowing for features of
the parametric identification problems for macroeconomic models and allowing
passing over the mentioned problem of “local extrema”.

Constraints E are formed by economic meaning of endogenous variables of
model (for example, by their non-negativity). Domain of type D =

∏Ni
i−1[a

i, bi],
where [ai, bi] is segments of possible values of the parameter pi; i = 1, ..., N was
considered as a range, defined by F constraints for evaluating possible values
of exogenous parameters.Herewith, parameter estimates, for which had observed
values, were searched either within [ai, bi] segments with centers at corresponding
observed values (in the case of one such value) or within some segments, covering
observed values (in the case of several such values). Other [ai, bi] segments for
search of the parameters were chosen using indirect estimates of their possible
values.Nedler-Mead algorithm of directed search was used in calculating experi-
ments for finding the minimal values for continuous function K: D → R of several
variables [20]. Use of this algorithm for initial point p1 ∈ D can be interpreted in
terms of (converged to local minimum p0 = argminK of criterion K) sequencep1,
p2, ..., where K(pj + 1) ≤ K(pj), pj ∈ D, j = 1, 2,... We will assume that point
can be found accurately enough, when we describe the following algorithm.
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For solving the parametric identification problem of model in question on the
base of obvious assumption about divergence (in general case) of minimum points
of two different functions, two criteria of the following type were proposed:

KA(P ) =

√√√√ 1

nµ(t2 − t1 + 1)

t2∑
t=t1

nA∑
i=1

αi

(
yi(t)− yi∗(t)

yi∗(t)

)2

KB(P ) =

√√√√ 1

nβ(t2 − t1 + 1)

t2∑
t=t1

nβ∑
i=1

αi

(
yi(t)− yi∗(t)

yi∗(t)

)2

Here {t1, ..., t2} is identification period;yi(t), yi
∗
(t)-correspondingly comput-

ed and observed values of model output variables, KA(P )-subsidiary criterion,
KB(P )-basic criterion; nb > na; αi > 0 and βi > 0 are some weight coefficients,
values of which are defined during solution of parametric identification problem
for dynamical system;

∑nA
i=1 αi = nα,

∑nB
i=1 βi = nβ.

The minimization problems based on the model of corresponding criterion
(KA and KB) in the domain D, we will call the Problem A and the Problem
B.Theaggregate algorithm for solving the parametric identification problem of
model was chosen in terms of the following steps:

1. For some vector of initial values of parameter p1 ∈ D, solve problems A and
B simultaneously. Then, find the minimum points pA0 and pB0 of criteria KA

and KB, respectively.
2. If KB(pB0) < ε for some sufficiently small number ε, then the model para-

metric identification problem is solved.
3. Otherwise, choose the point pB0 as the initial point p1, solve problem A

and, choosing the point pA0 as the initial point p1, solve problem B. Go to step
2.

After sufficiently large number of iterations of stages 2 and 3, initial values
of the parameters might leave neighborhoods of the non-global minima in one
criterion with help of the other and thereby solve the parametric identification
problem.

The following methods for evaluating the stability indicators and the struc-
tural stability of mathematical models are proposed within the framework of
elaborating the 2 component of the parametric control theory.

1.3 Methods for Evaluating the Stability of Mathematical Models of Macroeconomic Sys-
tems

1.3.1 Methods for Evaluating the Weak Structural Stability of Dynamical Models

The methods of analysis of the robustness (structural stability) of mathematical
model of national economic system are based on:

- Fundamental results on dynamical systems theory in the plane;
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- Methods of verification of mathematical models belonging to certain classes
of structurally stable systems (classes of Morse-Smale systems, Ω-robust systems,
-systems, systems with weak structural stability).

At present, the theory of parametric control of market economic development
has available a number of theorems about structural stability of specific mathe-
matical models (the model of the neoclassical theory of optimal growth; model
of national economic system taking into consideration the influence of the share
of public expenses and of the interest rate of governmental loans on economic
growth; model of national economic systems taking into consideration the in-
fluence of international trade and currency exchanges on economic growth; and
others) formulated and proved on the basis of the aforementioned fundamental
results.

Along with analysis of the structural stability of specific mathematical models
(both with and without parametric control), based on results of the theory of
dynamical systems, one can consider approaches to the analysis of structural sta-
bility of mathematical models of national economic system by means of computer
simulations.

We shall consider below the construction of a computational algorithm for es-
timating the structural stability of mathematical models of national economic
system on the basis of Robinson theorem (Theorem A) on weak structural sta-
bility [21].

Theorem.Let N ′ be some manifold, and N a compact subset in N ′ such that
the closure of the interior of N is N. Let some vector field be given in a neigh-
borhood of the set N in N ′. This field defines the C1-flux f in this neighborhood.
Let R(f,N) denote the chain-recurrent set of the flux f on N.

Let R(f,N) be contained in the interior of N. Let it have a hyperbolic structure.
Moreover, let the flux f upon R(f,N) also satisfy the transversability conditions
of stable and unstable manifolds. Then the flux f on N is weakly structurally sta-
ble. In particular if R(f,N)- an empty set, then the flux f is weakly structurally
stable on N. A similar result is also correct for the discrete-time dynamical system
(cascade) specified by the homeomorphism (with image) f : N → N ′.

Therefore, one can estimate the weak structural stability of the flux (or cas-
cade) f via numerical algorithms based on this Theorem by means of numerical
estimation of the chain-recurrent set R(f,N) for some compact region N of the
phase space of the considered dynamical system.

Let us further propose an algorithm of localization of the chain-recurrent set
for a compact subset of the phase space of the dynamical system described by
a system of ordinary differential (or difference) equations and algebraic system.
The proposed algorithm is based on the algorithm of construction of the symbol-
ic image [22]. A directed graph (symbolic image), being a discretization of the
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shift mapping along the trajectories defined by this dynamical system, is used for
computer simulation of the chain-recurrent subset.

Suppose an estimate of the chain-recurrent set R(f,N) of some dynamical
system in the compact set N of its phase space has been found. For a specif-
ic mathematical model of the economic system, one can consider, for instance,
some parallelepiped of its phase space including all possible trajectories of the
economic system evolution for the considered time interval as the compact set N.

The localization algorithm for the chain-recurrent set consists of the following:
1. Define the mapping f defined on N and given by the shift along the trajec-

tories of the dynamical system for the fixed time interval.
2. Construct the partition C of the compact set N into cells Ni. Assign the

directed graph G with graph nodes corresponding to the cells and branches be-
tween the cells Ni and Nj corresponding to the conditions of the intersection of
the image of one cell f(Ni) with another cell Nj .

3. Find all recurrent nodes (nodes belonging to cycles) of the graph G. If the
set of such nodes is empty, then R(f,N) is empty, and the process of its local-
ization ceases. One can draw a conclusion about the weak structural stability of
the dynamical system.

4. The cells corresponding to the recurrent nodes of the graph G are parti-
tioned into cells of lower size, from which a new directed graph G is constructed
(see item 2 of the algorithm).

5. Go to item 3.
Items 3, 4, 5 must be repeated until the diameters of the partition cells become

less than some given number ε.
The last set of cells is the estimate of the chain-recurrent set R(f,N).
The method of estimating the chain-recurrent set for a compact subset of the

phase space of a dynamical system developed here allows one, in the case in which
the obtained chain-recurrent set R(f,N) is empty, to draw a conclusion about
the weak structural stability of the dynamical system.

In the case that the considered discrete-time dynamical system is a priori the
semi-cascade f, one should verify the invertibility of the mapping f defined on N
(since in this case, the semi-cascade defined by f is the cascade) before applying
Robinson’s theorem A for estimating its weak structural stability.

Let us give a numerical algorithm for estimating the invertibility of the differen-
tiable mapping f : N → N ′, where some closed neighborhood of the discrete-time
trajectory {f ′(x0), t = 0, ..., T} in the phase space of the dynamical system is used
as N. Suppose that N contains a continuous curve L,which sequentially connects
the points {f ′(x0), t = 0, ..., T}. One can choose as such curve a piecewise linear
curve with nodes at the points of the above mentioned discrete-time trajectory
of the semi-cascade.
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An invertibility test for the mapping f : N → N ′ can be implemented in the
following two stages:

1. An invertibility test for the restriction of the mapping f : N → N ′ to
the curve L, namely, f : L → f(L). This test reduces to the ascertainmen-
t of the fact that the curve f(L) does not have points of self-crossing, that is,
(x1 ̸= x2) ⇒ (f(x1) ̸= (f(x2)). For instance, one can determine the absence
of self-crossing points by means of testing monotonicity of the limitation of the
mapping f onto L along any coordinate of the phase space of the semi-cascade f.

Let us choose sufficiently large set of points like xi = (x1i , x
2
i , ..., x

n
i ) ∈ L,

yi = f(xi), yi = (y1i , y
2
i , ..., y

n
i ) and coordinate number of these points (j). If for

all xji , i = 1, ..., n at xji1 < xji2 theine quality yji1 < yji2 is met (or at xji1 < xji2 the

inequality yji1 > yji2 is met), then f : L → f(L) mapping is estimatedas invertible.
2. An invertibility test for the mapping f in neighborhoods of the points of

curve L (local invertibility). Based on the inverse function theorem, such a test
can be carried out as follows: For a sufficiently large number of chosen points
x ∈ L one can estimate the Jacobians of the mapping f using the difference
derivations: J(x) = det( ∂fi∂xj

(x)), x, j = 1, ..., n. Here i, j are the coordinates of

the vectors, and n is the dimension of the phase space of the dynamical system.
If all the obtained estimates of Jacobians are nonzero and have the same sign,
one can conclude that J(x) = 0 for all x ∈ L and, hence, that the mapping f is
invertible in some neighborhood of each point x ∈ L.

An aggregate algorithm for estimating the weak structural stability of the
discrete-time dynamical system (semi-cascade defined by the mapping f) with
phase space N ′ ∈ R′′ defined by the continuously differentiable mapping f can be
formulated as follows:

1. Find the discrete-time trajectory {f ′(x0), t = 0, ..., T} and curve L in a
closed neighborhood N which is required to estimate the weak structural stabili-
ty of the dynamical system.

2. Test the invertibility of the mapping f in a neighborhood of the curve L
using the algorithm described above.

3. Estimate (localize) the chain-recurrent set R(f,N). By virtue of the evident
inclusion R(f,N1) ⊆ R(f,N2) for N1 ⊂ N2 ⊂ N ′, one can use any parallelepiped
belonging to and containing L as the compact set N.

4. If R(f,N) = Φ, draw a conclusion about the weak structural stability of
the considered dynamical system in N.

This aggregate algorithm can be also applied for estimating the weak struc-
tural stability of a continuous-time dynamical system (the flux f), if the trajectory
L = {f ′(x0), 0 ≤ t ≤ T} of the dynamical system is considered as the curve L.
In this case, item 2 of the aggregate algorithm is omitted. The mapping f t for
some fixed t(t > 0) can be accepted as the mapping f in item 3.
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1.3.2 Methods for Evaluating the Weak Structural Stability of Dynamical Models

By definition of Orlov [18], the mathematical model of an economic system in
general view is some mapping

f : A → B

transferring values of initial (exogenous) data p ∈ A to solutions (values of en-
dogenous variables) y ∈ B.

After constructing a mathematical model of some real-life phenomena or pro-
cess and defining some actual values of the point p by known measured data
or solving the parametric identification problem, the question about adequacy
of the analyzed model arises. The condition of model stability relative to ad-
missible perturbations of the initial data [16] is a one of the conditions of the
model adequacy. In case of such stability, small perturbations of the model’s
initial data results in small changes of its solution. In the mentioned monograph,
the definitions of the basic stability indicators are introduced (these definitions
are presented below). Monograph, however, does not propose any algorithm for
computing the considered indicators of the mathematical model stability.

Below we present the developed algorithms for evaluating the mathematical
model stability indicators which characterize stability of solutions of the math-
ematical model relative to initial data perturbations. At that, all of the model
parameters and variables must be made dimensionless beforehand.

Let X = (X1, X2, ..., Xk) be some vector of values of the model exogenous
parameters for the time interval t ∈ {0, ..., T}. Let X0 = (X1

0 , X
2
0 , ..., X

k
0 ) de-

note the respective vector of base values for the same time interval. The vector
that incorporates the values of parameters and initial values of the variables of
differential (or difference) equations is considered as the vector X. The vector
of measured statistical data used for finding the model equation coefficients is
considered as vector X for the econometric models.

Let p = (p1, p2, ..., pk) be a vector of the normalized input data of the mathe-

matical model where pi = xi

xi
0
, i = 0, ..., k. The vector p0 = (1, 1, ..., 1).

Let be a space of the normalized input data vectors which includes all admis-
sible sets p, A ⊂ Rk is a metric space with the Euclidean metric defined by the
space Rk, p0 ∈ A.

Let Y = Y (p) = (Y 1, Y 2, ..., Y k) be a selected vector of the values of endoge-
nous variables for some chosen interval (or moment) of time obtained for the
selected values of p. The vector that incorporates the values of some selected set
of the model endogenous variables for the aforesaid interval (or moment) of time
is considered as vector Y for the dynamical models. The vector of coefficients
of the model equations or vector of values of some selected set of the model en-
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dogenous variables for the aforesaid interval (or moment) of time is considered
as vector Y for the econometric models.

In particular, with p = p0, introduce the notation Y0 = Y0(p) = (Y 1
0 , Y

2
0 , ..., Y

k
0 ).

The normalized vector of values of the endogenous variables for the moment of
time T1 is denoted by y = y(p) = (Y

1

Y 1
0
, Y

2

Y 2
0
, ..., Y

n

Y n
0
); y0 = y(p0) = (1, 1, ..., 1).

Let B ⊂ Rn be a region which contains all possible output values y for p ∈ A
with the Euclidean metric of space Rn, y0 ∈ B. The considered model defines the
mapping f of set A into set B.

For the selected point p ∈ A and number α > 0, let Uα(p) denote the intersec-
tion of a neighborhood of the point p with radius α with set A:

Uα(p) = {p1 ∈ A : ρ(p1, p) ≤ α}

Here and below, ρ(., .) denotes the Euclidean distance between two points of the
Euclidean space.

For some subset B1 ⊂ B, let d(B1) denote the diameter of set V1, that is

d(B1) = sup(ρ(y1, y2) : y1, y2 ∈ B1)

Definition1.1. The number β(p, α) = d(f(Uα(p))) is defined as the stability
indicator of the econometric model at the point for ¿0.

Algorithm1.1 for evaluating the model stability indicator β(p, α) by the
Monte Carlo method is as follows:

2. Define the vector of normalized input data p = (p1, p2, ..., pk), number α > 0,
and set Uα(p).

3. Generate a set of sufficiently large number M of pseudo-random points
(p1, p2, ..., pM ) uniformly distributed in β(p, α).

For this purpose, consecutively generate the coordinates pij(i = 1, ..., k; j =

1, ...,M) of the point pj in numerical segments [pi − α, pi + α] covering Uα(p)
using a generator of uniformly distributed pseudo-random numbers. If the in-

equality
k∑

i=1
(pij − pi)2 ≤ α2 holds (i.e. xj ∈ Uα(p)), this point is added to the

created set.
4. For each point pj of the set, define point yj = f(pj), j = 1, ...,M , by simu-

lation.
5. Evaluate β = max(ρ(yi, yj) : i, j = 1, ...,M).
6. Stop.
With α = 0.01, the obtained number β/2 characterizes the (maximum) per-

centage change of values of the model output variables under the perturbed input
data by 1%.

Definition1.2. The number β(x) = inf
0≤α≤α0

β(p, α) is called the absolute sta-

bility indicator of the econometric model at point x ∈ A. Here, α0 is the maximal
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admissible relative deviation of values of the model input data.
Algorithm 1.2 for evaluating the absolute stability indicator β(p) of the e-

conometric model is as follows:
For the selected value α0 and numbers j = 0, 1, 2, consecutively find (by

Algorithm 1.1) numbers βj = β(p, α0/2
j), and then evaluate the number

β(p) = inf
j=0,1,2,...

βj

If β(p) turns out to be less than some a priori given small number (i.e. β(p) is
considered to be approximately zero), then the mapping f defined by the analyzed
model is evaluated at point p continuously depending on the input values.

Definition1.3. The number

γ = sup
p∈A

β(p)

is called the maximal absolute stability indicator of the model for region A.
Algorithm1.3 for evaluating the maximal absolute stability indicator of the

model by the Monte Carlo method is as follows:
1. Generate the set of sufficiently large number M of pseudo-random points

(p1, p2, ..., pM ) uniformly distributed in .
2. For each point pj in the set and chosen ,α0 > 0 find the numbers β(pj) by

Algorithm 1.2.
3. Determine the number γ = max

j=1,...,M
β(pj).

4. Stop.
If the number turns out to be less than some a priori given small number

ε(i.e. is considered to be approximately zero), then the mapping f defined by
the analyzed model is evaluated in set A continuously depending on the input
values.

The developed algorithms were applied for evaluating econometric model of
a small open economy and computable general equilibrium model of economic
branches.

1.3.3 Methods for Evaluating the Stability of Mappings, Defined by Models, in Terms of
the Theory of Differentiated Mappings Singularities

This section describes the methods for evaluating in sense of definition the stabil-
ity of smooth mappings F : D → E, defined by statical or dynamical model [17].
As domains (D) of the mappings in question are used corresponding domains
of possible values of uncontrollable, controllable parameters, coefficients of the
model econometric equations in question, and also domain of possible values of
observed (statistical) data, used for functions building, which set models econo-
metric equations of the model. Range of values (E) of the mapping F contains
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set of possible values of endogenous variables of the model.
Existence of such stability property indicates preservation of qualitative prop-

erties of mapping, using which the model is described, at small variances of this
mapping. When real economic phenomena are described adequately using the
mathematical model, stability (or instability) of the mapping, presented by the
model, may indicate stability (or instability) of corresponding dependencies of
possible values of economic indicators on external (controllable or uncontrollable)
factors at small variances of these dependencies. Instability of mapping, set by
the model, may also indicate inadequacy of the model in question [17].

An algorithm for estimating critical point set of the mappings in question is
presented within the framework of this study of the given mappings stability.
This algorithm, in particular, allow sestimating the maximality of Jacobian ma-
trix rank of mapping at all points of its domain, i.e. to check whether either
the investigated map is immersion or submersion. For the immersion case, an
algorithm for estimating injectivity of the mapping is proposed.

There are formulated and proved the statements, which allow to estimate the
stability (and in some case ratios of the image dimension to the counter image
dimension-instability) of the mapping in question, when conditions of immersion
and injectivity or condition of submersion are satisfied for the mapping in ques-
tion.

There are presented the statements about stability conditions for the mapping
in question in the case if this mapping is submersion with fold [23]. There is
presented the algorithm, which allows to estimate the mapping as submersion
with fold and estimate the stability of the mapping in question in this case.

1.3.3.1 Algorithm for Estimating the Critical Point Set of the Mappings, Set by the Model

Hereinafter, we will imply the mapping, defined by the mathematical model when
we use the mapping

F : D → E (1)

Let’s denote the mapping arguments vector (1) through p = (p1, ..., pn) ∈ D,
and corresponding p point image - the model solutions vector denote through
y = y(p) = y(p1, ..., pυ) ∈ E, (D ⊂ Rn and E ⊂ Rυ are some regions). In this
case, Jacobian matrix with size vn for the mapping (1) at the point p will be
written in the following form:

J(p) =

(
∂yi

∂pj
(p)

)
i=1,...,υ;j=1,2,...,n

(2)

We will also denote the Jacobian matrix estimate (2) at some point p ∈ D,
obtained by numerical differentiation from (1), through J(p).
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Within the framework of the solution of F mapping stability studying problem,
we will present an algorithm, which allows to estimate the J(p) matrix rank
maximality for p ∈ D, that is the algorithm for condition estimate

rank((J(p))) = min(υ, n), p ∈ D (3)

When this condition is satisfied, the mapping F will noth ave any critical point
in the domain D [17].

For (3) condition estimate to find any nonsingular minor (of the matrix J(p) of
order min(υ, n)) for each p ∈ D is enough, taking into account that total amount
of maximal-order minors in J is l = Cn

υ = υ!
n!(υ−n)! if n < υ and l = Cυ

n = n!
υ!(n−υ)! ,

if n ≥ υ. We will denote the determinant value estimate of such minor of order
min(υ, n)) in J(p) for p ∈ D through |Mi(p)|, i = 1, ..., l.

Algorithm1.4. The aggregate algorithm for estimating condition(1.3)for es-
timation of mapping critical point set.

1) Domain D divides to sufficiently large amount of (elementary) parallelepiped-
s Dk of the same size, and define the net P from N points, those are vertices of
chosen parallelepipeds: p = {pj : j = 1, ..., N}.

2) Compute the values of all J(pj) matrix elements for j = 1, ..., N .
3) For i = 1, ..., l, j = 1, ..., N , compute the determinants |Mi(pj)|.
4) For each i = 1, ..., l the set D(i) is defined in the following way. D(i) isa

sumof all (closed) parallelepipeds Dk, which have property that not all values of
|Mi(pj)| at Dk vertices have the same sign.

5) Find the set D̃ =
∩l

i=1D(i).
6) If the set D̃ is empty, then condition (3) is evaluated as satisfied. Stop.
7) Otherwise,the steps 1) - 6) of present algorithm are performed substituting

domain D by D̃ and diminishing sizes of parallelepipeds, participating in parti-
tioning of D̃.

Sufficiently large amount iteration of the steps of the presented above algo-
rithm allow either to estimate satisfaction of the condition (3) or to obtain the
estimate (using set D̃)the set of critical points of F mapping.

1.3.3.2 Algorithm for Estimating the Nonlocal Injectivity of Mapping,Set by Model

In this section it assumes that n < υ (D domain dimension of mapping (1) is
less than Erange of values dimension). This section presents an algorithm for
estimating conditions of nonlocal injectivity (absence of non-close points in D,
having equal images at mapping F) of mapping (1), set by model in domain D.
Satisfaction of mentioned nonlocal injectivity condition and condition (3), ensur-
ing local injectivity in neighborhood of each point means an existence of inverseto
Fmapping, determined in set F (D).

Fix sufficiently small number ε > 0. For each point pj ∈ P through d(pj)
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denote set of all points pk ∈ P which have |pj − pk| > ε. Here | · | is magnitude
of vector.

Algorithm1.5 for estimating the condition of the nonlocal injectivity is pre-
sented in terms of the following steps.

1) Compute the numbers

mj = min
pk∈d(pj)

|F (pk)− F (pj)|

for each point pj ∈ P .
2) Compute m == minpj∈Pmj and determine the points pj , pk ∈ P such that

|F (pk)− F (pj)| = m.
3) Repeat steps 1) and 2) of this algorithm substituting the net P by net P1

being the vertices of less size parallelepipeds and containing all points of the net
P, being distant from one of pj , pk points by the distance not exceeding 2ε.

There are two possible cases given sufficiently large amount of iterations of
steps of the presented above algorithm.

a) The sequence of obtained values are diminishing about proportional to the
P1 net step. In this case,F mapping is estimated as non-injective (in other words,
F (D) set is estimated as self-crossing).

b) Condition m > ε is met for all nets in question with sufficiently small step.
In this case, F mapping is estimated as injective (in other words, F (D) set is
estimated as non-self-crossing).

1.3.3.3 Estimating the Stability of Mappings Set by the Model

This section presents propositions about sufficient conditions for F mapping sta-
bility in open domain D0 = D \ γ(D), where γ(D) is boundary of set D, within
the framework of determining stable mapping [17]. It also presents an aggregate
algorithm for estimating mapping F : D → E, as stable submersion with fold.

According to stability theorem of Mazer [17], mapping F is stable in manifold
D0, if it is infinitesimally stable in D0. Condition of infinitesimal stability of
mapping h(p) in k(y) is formulated in terms of solubility in relative to mappings
and of the following homologous equation [17].

µ(p) = −J(p)h(p) + k(F (p)) (4)

Here µ(p) is an arbitrary infinitesimal deformation of F mapping, which is pre-
sented in terms of smooth correspondence to each point p ∈ D0 of tangent vector
to manifold E atpoint F (p); h(p) is the smooth vector field in D0; k(y) is the
smooth vector field in E.

Consider two possible cases.
1. Let n < υ Let condition (3) be satisfied, that is F mapping is the immersion
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in D. According to the theorem about inverse function (when F mapping injec-
tivity condition is satisfied, which checks by the algorithm described in item 2) in
set F (D0) the smooth mapping F−1 : F (D0) → D0, inverse to F is defined. If in
Equation (4) input h(p) = 0, and k(y) = µ(F−1(y)), then this equation become
an identity µ(p) = 0+µ(F−1(F (p))). This means that the mentioned mappings,
h(p) and k(y), are solutions of homologous equation (4), that is this equation is
soluble. Consequently, the first statement of the following proposition is true.

Proposition 1.3.1. Let given n < υ for all points of chosen set D,condition
(3)for injective mapping(1.1)is satisfied.Then mapping(1) is stable in domain
D0 = D \ γ(D). If condition(3) is not satisfied for any point p ∈ D0, then
mapping(1) is not stable in its domain.

The second statement of the proposition 1.3.1 results from the sentences 2.4
and 3.12 [23].Formulate them.

Statement 2.4. Let X is compact and dimY ≥ 2dimX+1. Mapping f : X → Y
is stable, if and only if f isone-to-one immersion.

Statement3.12. Let X is compact manifold and dimY = 2dimX. Mapping
f : X → Y is stable, if and only if it is an immersion with normal crossings.

From these sentences results that when condition dimY ≥ 2dimX is satisfied,
the immersion property is a requirement for stability, that is when (3)is not sat-
isfied, mapping f cannot be stable.

Note that although in formulations of mentioned sentences X manifold com-
pactness condition is used, proofs of immersion properties for stable mappings
given dimY ≥ 2dimX + 1(or dimY = 2dimX) are based on the theorems 5.6
and 5.7 [23], which do not require X manifold compactness. Proposition 1.3.1 is
fully proved.

2. Let n ≥ µ Let condition (3) be satisfied, that is F mapping is a submersion
in D0. Test, in this case, the solubility of homologous equation (4).

Consider first the case, when some v-order minor determinant Mi(p) of Jaco-
bian matrix has constant sign for p ∈ D0, that is, |Mi(p)| ≥ ε ≥ 0 in D0. Let,
for determinacy, such anon singular minor Mi(p) consists of first six columns of
matrix J(p). For arbitrary deformation µ(p), written in terms of v-dimensional
column vector in equation (4) determine h(p) in the following way. First v coor-
dinates of n-dimensional column vector h(p) set using column −(Mi(p))

−1µ(p),
and all other coordinates of vector h(p) assume to be zero. If put k(y) = 0, then
equation (4) becomes the identity:

µ(p) = −J(p)h(p) + 0 = Mi(p)(Mi(p))
−1µ(p) (5)

Consider the general case of satisfaction of condition (3). Let for each point
p ∈ D (and some its neighborhood) be found its nonsingular minorMi(p). Choose
from such neighborhoods Uj finite domain cover: D ⊂ U s

j=1Uj . Make subject to
this cover the partition of unity into domains D in terms of s smooth functions



16 A. Ashimov: The Theory of Parametric Control of Macroeconomic Systems and ...

φj(p) ≥ 0 [23], where φj(p) = 0 at p ∈ Rn\Uj(j = 1, ..., s) and
∑s

j=1 φj(p) = 1
for p ∈ D. Consider arbitrary deformation µ(p) in equation (4). Then, for each
neighborhood Uj and its corresponding nonsingular minor Mi(p), make (accord-
ing to the method proposed in the previous paragraph) the vector field hj(p) in
Uj , which is the solution of equation (4) in Uj at k(y) = 0. Determine the vector
field h(p) in D0 using the formula:

h(p) =

s∑
j=1

φj(p)hj(p)

Thus, from (4) (where h(p) should be substitute hj(p)) results that the vector
fields h(p) and k(y) = 0 are the solutions of (4):

−J(p)h(p) + k(F (p)) = −J(p)

s∑
j=1

φj(p)hj(p) + 0 =

s∑
j=1

φj(p)[−J(p)hj(p)]

=

s∑
j=1

φj(p)µ(p) = µ(p)

s∑
j=1

φj(p) = µ(p)

This means that the equation (4) is soluble. Therefore, the following proposition
is true.

Proposition 1.3.2. Let given n ≥ υ for chosen set D condition(3)be satisfied
for mapping (1).Then mapping(1) is stable in domain D0 = D \ γ(D)

3. Now consider the case, when given n ≥ υ condition (3) is not satisfied
for some points of domain D0 (that is, the case, when domain D0 contains the
critical points of mapping F). Denote by S1(F ) set of points of domain D0, in
which Jacobian matrix of mapping Frank is less by unit than the maximal one,
that is

S1(F ) = {P ∈ D : rank(J(p) = υ − 1}

It is known that when the additional condition (j1F ◃▹ S1, where j1F is 1-
stream of mapping F, S1 is submanifold in the space of 1-streams J1(D0, E)
consisting of streams with 1 co-rank, ◃▹ is the sign of transversality), is satisfied,
the set S1(F ) is a submanifold in D0 with dimension υ − 1 [23].

Definition. Let the mapping F : D0 → E satisfy condition j1F ◃▹ S1. Point
p ∈ S1(F ) is called as fold point, if sum of tangent space to S1(F ) and kernel of
tangent mapping dF at this point has dimension n, that is, if

TpS1(F ) +Ker(dF )p = TpD (6)

Since sum of dimensions of summands of LHS is equal to the dimension of
RHS (υ − 1) + (n − υ + 1) = n, then condition (6) is equivalent to that these
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summands have the only common point - origin of coordinates and

cos∠(TpS1(F ),Ker(dF )p) ̸= 1 (7)

Definition. Mapping F : D0 → E is called a submersion with folds, if eachits
singular pointis a fold point. In this case submanyfold S1(F ) is called as a fold.

It is known that if F : D0 → E is submersion with fold, then F mapping
constraint on S1(F ) fold is immersion.

The following theorem is valid [23].
Consequence 1.3.4. If F : D0 → E is submersion with fold and F |S1(F ) is

injective, then mapping F : D0 → E is stable.
We present an algorithm for estimating the satisfaction of these conditions of

this consequence.
Algorithm 1.6. Aggregate algorithm for estimating mapping F : D0 → E as

stable submersion with fold.
Let given n ≥ υ, after use of algorithm 1.4, the estimate of singular points

set of the mapping Fin terms of non-empty set D̃ ⊂ D and set of P̃ vertices of
elementary parallelepipeds, containing D̃, be found. Algorithm steps for testing
transversality condition (j1F ◃▹ S1) is not presented here because of unhandiness.
We will assume that condition j1F ◃▹ S1 is estimated as satisfied.

1. For each primary parallelepipedDk ⊂ D̃, satisfaction of condition rank(J(p)) =
υ − 1 is estimated in the following way.

Let {pkj }2
n

j=1 be set of parallelepiped vertices Dk; {|Mi(p
k
j )|}li=1 is set of val-

ues of υ − 1-order minor determinants of Jacobian matrix J(pkj ) at point pkj ;

l = Cυ−1
n n = n!n

(υ−1)!(n−υ+1)! . If for chosen Dk one can find such number i, that

all determinants |Mi(p
k
j )| for j = 1, ..., 2n have the same sign, then rank(J(p))

is estimated by number υ − 1 in parallelepiped Dk. If rank(J(p)) is estimated
by number υ − 1 for all Dk ⊂ D̃, then set D̃ is considered to be the estimate of
submanifold S1(F ). Otherwise, if one can find such parallelepiped Dk ⊂ D̃, that
for each chosen i = 1, ..., l numbers |Mi(p

k
j )| for j = 1, ..., 2n have different signs,

then subset D̃ is not estimated as a fold. Stop.
2 The next steps 3, 4, 5 are performed for each point of the net P̃ .
3. For p ∈ P̃ basis vectors (e1, ..., eυ−1) of tangent space TpS1(F ) are estimated

in the following way. Choose M (where M ≫ υ−1) close (except this point itself)
to p points of the net P̃ : {p1, ..., pM}. Identify the following set of M vectors
{fi = pi − p : i = 1, ...,M}. Here the points pi and p are consider edasradius-
vectors. Linear envelope of arbitrary set of n-dimensional vectors (e1, ..., eυ−1)
denote by T = T (e1, ..., eυ−1). The distance from point fi up to the plane T



18 A. Ashimov: The Theory of Parametric Control of Macroeconomic Systems and ...

denote by d(fi, T ). Sum of squares of distances from points fi to T denote by

S(e1, ..., eυ−1) =
M∑
i=1

(d(fi, T ))
2 (8)

Coordinates of required e1, ..., eυ−1 vectors are determined by the least squares
method from the condition of S(e1, ..., eυ−1) function minimum.

4. (g1, ..., gυ−n+1) basic vectors of Ker(dF )p kernel for p ∈ P̃ are estimated in
the following way.

4.1. Since mapping matrix (dF )p with theoretical rank υ − 1 is estimated
by numerically found Jacobian matrix J(p) , all υ − 1-order minors of which
have determinants close to zero, we firstly determine the row close to linear
combination of other rows of the matrix J(p). In case, if matrix rank is less by
unit than the number of its rows, according to the theorem about principal minor,
one of matrix rows is a linear combination of its other rows and its elimination
does not change the kernel of the linear operator, appropriate to this matrix.

Let {J1, J2, ..., Jυ} be the set of all normalized (the elements of each row
divide to the magnitudeof this row, if magnitude of any row is zero, then the
problem in item 4.1 is solved) row of J(p) matrix. Let P i, (i = 1, ..., υ) be linear
envelope of all rows of mentioned set, except the row J i, which is considered as
plane in the space Rn. Let mi be the distance from the point J i ∈ Rn to plane
P i : mi = d(J i, P i). mi value can be found by finding minimum of function of
υ − 1 variable (α1, ..., αi−1, αi+1, αυ):

Di(α1, ..., αi−1, ..., αi+1, αυ) = |J2 −
υ∑

j=1,j ̸=i

αiJ j |2

Choose number i relevant to minimal number mi. Denote the matrix J(p) of
size (υ − 1)× n with removed i-row by J̃(p).

4.2. Solve the linear homogeneous system from (υ − 1) equation with n un-
knowns and with matrix of system J̃(p) by Gauss method. Herewith, basis of its
decision space (g1, ..., gυ−n+1) is found.

5. For p ∈ P̃ estimate angle cosine (cosφp) between the planes TpS1(F ) and
Ker(dF )p in Rn in the following way.

Let (e1, ..., eυ−1) and (g1, ..., gυ−n+1) be the found above estimates of bases of
these planes; (α1, ..., αυ−1) and (β1, ..., βυ−n+1) be variables sets. Let the vector
e =

∑υ−1
i=1 αiei be arbitrary vector of plane TpS1(F ), vector g =

∑υ−1
i=1 βigi be

arbitrary vector of plane Ker(dF )p. Define function f (expressing angle cosine
between the vectors e and g) on n variables in terms of (α1, ..., αi−1, β1, ..., βn−υ+1)

y = f(α1, ..., αi−1, β1, ..., βn−υ+1) =
fg

|f ||g|
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Its maximal value takes as the value of required φp.
6. Choose small number ε > 0. If for all p ∈ P̃ condition cosφp < 1− ε is met,

then based on the definition, D̃ set is the fold estimate and mapping F : D0 → E
is estimated as the submersion with fold.

Otherwise, if p ∈ P̃ is found, for which cosφp ≥ 1 − ε, then D̃ set is not esti-
mated as fold. Stop.

7. Estimate the injectivity of the mapping F on fold D̃. Since F mapping con-
straint on fold is immersion then local injectivity of this constraint is guaranteed.
Nonlocal injectivity is estimated by algorithm 1.5, in which one should substitute
the net P by the net P̃ . Number ε, used in this algorithm, should exceed doubled
diameter of elementary parallelepipeds of D̃ set. Two cases are possible given
sufficiently large amount of step iterations of algorithm 1.5.

a) The sequence of obtained m values are diminishing about proportional to
the P̃1 net step. In this case, F mapping constraint on the fold D̃ is estimated as
non-injective (in other words, F (D̃) set is estimated as self-crossing). Additional
study of F (D̃) self-crossing points for normality is required.

b) Condition m > ε is met for all nets in question with sufficiently small step.
In this case, F mapping constraint on the fold D̃ is estimated as injective (in oth-
er words, F (D̃) set is estimated as non-self-crossing). Based on the consequence
1.3.4, the mapping F : D0 → E, in this case, is estimated as stable.
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