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Abstract
The development of standards for wind farms, presupposes the correct description
of wind potential and this can be done with the field measurements of wind flow
by cup anemometers. The utilization of new concepts, coming from the world of
Cybernetics of Nonlinear Science and Complex Systems could open the road to
uncover information hidden in both the mean polar velocity and the mean an-
gle time-series. In particular, with the use of block entropies, it is shown that
we can achieve a better and deeper understanding of the phenomenon of filtered
turbulence, produced by time-series of the average wind velocity logged every ten
minutes. The present analysis allows in principle a characterization of the exper-
imental time-series in terms of the complexity for selected stationary windows of
the signal, as well as the underlying mechanisms of the filtered turbulence.
Keywords wind farm, anemometer, wind velocity measurements, filtered turbu-
lence, symbolic dynamics, block-entropies.

1 Introduction.

In the context of energetic problems of modern societies, a proposed solution has
been the use of alternative energy sources. One particular realization of this idea
is for instance the installation and usage of wind farms for electricity. A cluster
of wind turbines in the same site used to produce energy is called wind farm.
Investment in a wind farm consults temporal measurements of the wind poten-
tial on the prospective site by using suitably located towers. The wind velocity,
the pressure and temperature, are collected in the measurement tower by cup
anemometers and meteorological instruments [1]. The height of the tower is up to
the hub height of the planned wind turbines, and the data are recorded frequently,
i.e. contains the averaged quantities every ten minutes, and for at several months.
These data, in principle, may allow the developer to decide if the investment in a
wind farm is economically feasible for the selected site.

Understanding and quantify aspects of their behaviour and nature is one of
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the most important and challenging problem of modern engineering [2]. The long
recordings of the averaged wind velocity time-series from the anemometer, are a
kind of filtered turbulent temporal data set with intermediate properties that may
be analysed. The most important problem in this framework is the prediction of
the production of electric energy in wind farms [2]. The problem of prediction is
exactly, what connects these studies with cybernetics and nonlinear science.
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Fig.1 Time-series of the velocity field between 23 March 2005 and 16 December
2005. The collected data have been obtained from the mountains of Peloponnesus,
Greece. Shown are the distributions over time (obtained from the anemometer)
of (a) the mean polar velocity in m/s, (b) the standard deviation of the mean
velocity, the distribution of (c) the mean angles (degrees) and (d) the standard
deviation of the angles.
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Fig.2 Segments of experimental time-series (a) for the mean value of the velocity
and (b) the mean angle of the anemometer depicted in Fig.1. The vertical lines
indicate the months during the measurements.
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The development of standards for wind farms presupposes the correct descrip-
tion of wind potential and this can be done only with the field measurements
of wind force by anemometers. Herein, we utilize new concepts coming from the
world of Nonlinear Physics, to quantify and understand the relative complexity of
wind signals of filtered or mild turbulence. Although field measurements of filtered
turbulence by mechanical purpose anemometers presuppose enormous and violent
averagings on the molecular nature of turbulence, also averagings in time (months,
epochs), not to mention the inertial phenomena in the measuring apparatus. We
intend to show that a coherent and self-consistent mathematical description of
turbulence within the arsenal of Nonlinear Physics is not only possible, but also
beneficial for physicists and engineers.

In this paper, one set of wind speed data from one measurement tower situated
in the mountains of the region Achaia, Peloponnesus, Greece, in the form of polar
velocity and angle was analyzed. The data set consists of some thousands of wind
speed values, recorded over every ten minutes by a cup anemometer, covers the
period March 2005 to December 2005. More specifically, the wind polar speed and
angle was measured using cup anemometers and the 38500 recordings logged into
a digital anemograph logging equipment system.

The complexity and variability of the data is analyzed here by the use of non-
linear techniques, and the information hidden in both the mean polar velocity
and the mean polar angle time series are discussed.

More precisely, the temporal evolution of nonlinear characteristics is studied by
applying a recently proposed technique [4-5]. The original continuous time, of the
mean polar velocity/angle data are projected to symbolic sequence and a block
entropy analysis by the novelty of lumping follows [4-5].

The paper is articulated as follows : In Sec 2, we recall basic facts about sym-
bolic sequences, and the block entropy analysis by lumping. Sec 3, will be devoted
to the application of the entropy analysis by lumping to anemometer recordings.
Finally, in the last Sec 4, we draw the main conclusions and discuss future plans.

2 Symbolic dynamics

A way to examine transient phenomena is to analyze the original time series
(anemometer recordings) into a sequence of distinct time windows (epochs). The
basic aim is to discover a clear difference of dynamical characteristics as time
evolves by employing techniques from the toolbox of symbolic dynamics. In par-
ticular here we employ the notion of block entropy analysis by lumping [4-10].
Towards this direction, within a stationary time window, the block entropy serves
as a measure of "complexity" of the signal. The lower the value of entropy, the
more "ordered" it is. In the following, in order to proceed with the analysis of the
experimental data we will briefly review the concepts of symbolic dynamics and
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Fig.3 Block-entropy per letter as a function of the word length for the various
stationary windows shown in Figs.2 (a) and (b). We observe a reduction of the
block-entropy per letter which can be interpreted as a sign of complexity reduction
of the respective time-window of the signal.

the notion of block entropies [3-18].
We restrict ourselves to the simplest possible coarse graining of the recording.

This is given by choosing a threshold C and assigning the symbols "1" and "0"
to the signal, depending on whether it is above or below the threshold (binary
partition or bipartition). In this way, each stationary time window of the original
aiolic time-series for a given threshold is transformed into symbolic sequences,
which contains "linguistic" or "symbolic dynamics" characteristics.

More specifically, the block entropies, depending on the word-frequency dis-
tribution, are of special interest, extending Shannon’s classical definition of the
entropy of a single state to the entropy of a succession of states. Thus, each en-
tropy takes a large (small) value if there are many (few) kinds of patterns, i.e it
decreases while the organization of patterns is increasing. In this manner we can
argue that the block entropy constitutes a measure the complexity of a stationary
signal.

In particular, we estimate the block entropy by lumping [4-5]. Lumping is the
reading of the symbolic sequence by "taking portions", as opposed to gliding [10-
17] where one has essentially a "moving frame". In general, the basic novelty of
the analysis by lumping is that, unlike the Fourier transform or the conventional
entropy by gliding, it gives results that can be related to algorithmic aspects of
the sequences. It is useful to transform the initial raw data of the anemometer
recording into symbolic sequences taking values in the alphabet {0, 1}, according
to the rules Ai = 1 if A(ti) > E[A(ti)] and Ai = 0, if A(ti) < E[A(ti)]. Here the
quantities A(ti) denote the values of the measured mean velocity/polar angle at
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Fig.4 The observed scaling of the Block Entropy H(n) (Eq. 6) as a function of
the word length n. The experimental values show a linear best fit for small word
lengths with a very good precision. The slope of the line gives the Kolmogorov-
Sinai entropy which in 1D coincides with the Lyapunov exponent. This scaling is
consistent with the corresponding theoretical predictions, see Nicolis and Gaspard
[13].

time ti and E[A(ti)] =< A(ti) > is the mean value in the particular time windows.

So, let us consider a subsequence of length N , selected out of a very long
(theoretically infinite) symbolic sequence. We stipulate that this subsequence is
to be read in terms of distinct "blocks" of length n, i.e :

· · ·A1...An︸ ︷︷ ︸
B1

An+1...A2n︸ ︷︷ ︸
B2

... Ajn+1...A(j+1)n︸ ︷︷ ︸
Bj+1

· · · . (1)

We call this reading procedure "lumping" and we shall implement it in the
following to the experimental time-series of the filtered turbulence. It is also useful
to mention the following quantities which give the information content of the
sequence :

– The dynamical (Shannon-like) block-entropy for blocks of length n has the
form :

H(n) =
∑

(A1,...,An)

p(n)(A1, ..., An) ln p
(n)(A1, ..., An), (2)

where the probability of occurrence of a block A1, ..., An, denoted p(n)(A1, ..., An),
is defined by the fraction (when it exists) in the statistical limit as follows :

No of blocksA1, ..., Anencounteredwhen lumping

total No of blockswhen lumping
, (3)
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Table 1 The Kolmogorov-Sinai (KS) entropy h, the estimated error δh and the
corresponding percentage h/ln(2) (see Fig.5) in respect to the maximum value of
the KS entropy for the different windows (see Figs. 2(a),(b))

Window No. h δh h/ ln 2(%)

W1 0.2192 0.0350 31.6
W2 0.2784 0.0163 40.2
W3 0.2588 0.0407 37.3
W4 0.2040 0.0128 29.4
W5 0.2301 0.0152 33.2
W6 0.2065 0.0194 29.8
W7 0.2611 0.0576 37.7
W8 0.1879 0.0414 27.1
W9 0.1781 0.0611 25.7
W10 0.1245 0.0398 18.0
W11 0.3140 0.0535 45.3
W12 0.1277 0.0201 18.4

starting from the beginning of the sequence. However, the associate entropy
per letter reads :

h(n) =
H(n)

n
. (4)

– On the other hand, the entropy of the source (a topological invariant), defined
in the limit (if it exists) reads :

h = lim
n→∞

h(n), (5)

which is the discrete analog of metric or the Kolmogorov-Sinai entropy.
Therefore, in order to determine the abundance of long blocks one is led to examine
the scaling properties of H(n) as a function of n (see also Fig.4).

3 Results in terms of symbolic dynamics.

To begin with, in Fig. 3 we depict the block entropy by lumping per letter as
a function of the word length for the selected time windows that we present in
Fig. 2. We note that a complete absence of structure in the signal, would lead to
an horizontal line in the block entropy diagram. As one can observe this is not
the present case. However, one important conjecture, due essentially to Ebeling
and Nicolis [13-14] states that the most general (asymptotic) scaling of the block
entropies takes the form

H(n) = y + nh+ gnµ0(lnn)µ1 , (6)
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Fig.5 The normalized Kolmogorov-Sinai entropy (taken as the normalized slope
of the linear part of the Block entropy H(n)), for the respective time-windows of
(a) the mean velocities (W1-W6), and (b) the polar angles (W7-W12).

where y, h and g are constants and µ0 and µ1 are the corresponding non-scaling
constant exponents.

In the following, we attempt to examine the behavior of eq.(6) for each of the
twelve stationary windows under study, which are depicted in Fig. 2. Hence, in
Fig. 4 we present the typical variation of the block entropy by lumping H(n)
as a function of the word length n for three representative windows. This study
reveals that if we restrict ourselves to the first five values of H(n), a linear scaling
is observed with a great precision. In this manner, we next perform a least square
method for this region and we estimate the slope h. Note, that the associated
correlation coefficients r, are close to 1 with a precision better than 10−4. Working
similarly for the rest of the 9 time windows, we conclude that for n < 6 the same
behavior is observed, i.e. the equation for the scaling of the block entropy by
lumping, is transformed to the remarkably simple linear relation

H(n) = y + nh. (7)

This means that g = 0 , for n < 6. In Fig 2(a),2(b) we isolate 6 time win-
dows for the mean velocity and 6 time windows for the polar angle respectively,
which present a good overall stationary behavior according to our tests. Their
corresponding KS entropy is given in Table 1. The KS entropy (complexity) of
the whole window W6 (mean velocity) is of the order of 30%. This shows that the
underlying mechanism of filtered turbulence has an underlying organized molec-
ular basis, as it does not correspond to a completely random process (Bernoulli
shift). The maximum value of KS entropy for the mean velocity is about 41% for
the window (W2), while the minimum value is about 30% (see also Fig.5). A close
inspection of the W2 window, shows that it has a structure more reminiscent of
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noise and this is confirmed by its high value of KS entropy. The KS entropy of
the whole window for the mean angle (W12) is about 19% and it is quite low. The
highest value is achieved in W11 which is of the order of 46%.

We note that when g = 0 and h > 0, long words are penalized exponentially. We
focus on the quantity h, namely the Kolmogorov-Sinai entropy defined as the slope
of eq. (7). We notice that for a one-dimensional process the Kolmogorov-Sinai en-
tropy coincides with its Lyapunov exponent. The Lyapunov exponent under these
conditions gives a measure of the chaoticity (or dynamical randomness) of the
signal. For a two-letter alphabet, the Kolmogorov-Sinai entropy h takes values
from zero to ln 2 (see the discussion in Sec 2), so that one can normalize dividing
by ln 2 and obtain the respective percentage. Hence, it is important to note that
the linear part of the scaling helps for a classification and categorization of the
recordings. The question which arises naturally, is whether this is an independent
algorithmic law of nature. This seems to be an open problem for the moment.
However, our results strongly support this hypothesis.

Remark : We restrict ourselves to the region n < 6, because the maximum sta-
tistical accuracy for the block entropies by lumping is of the order of lnL, where
L is the total number of points (the size of the window). In our case L, is of
the order of 2800, so that n < 8 and due to the underestimation of the higher
entropies, we have enough statistical precision for n < 6.

4 Conclusions.

In this paper, we made an attempt to apply techniques and methods from Cy-
bernetics, Nonlinear Physics and General systems to the temporal unfolding of the
phenomenon of filtered turbulence in wind farms as measured by cup anemome-
ters. The tremendous molecular averaging implied by this simplistic procedure,
has been equilibrated by the high specialization and the novelty of the techniques
used in General systems.

Block entropy analysis by lumping, as introduced by Karamanos et al. [4-5],
is for the first time used for the understanding and categorization of time series
of filtered turbulence in anemometer recording. A first linear region has been re-
vealed, as it has been already happened for EM preseismic precursors [6], cardiac
signals of coronary patients [9], and DNA strands in oligonucleotide basis ACGT
[8]. Hence, it is important to note that the linear part of the scaling helps us
for a complete classification and categorization of the recordings. As it has been
already pointed out, the question which arises naturally, is whether this is an
independent algorithmic law of nature. This seems to be an open problem for the
moment. However, our results strongly support this hypothesis.

Future projects include the enhancement of data and recordings, the cross-
checking of many complexity measures, the month-to-month monitoring of the
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dynamics and the application of prediction techniques, with special use to wind
parks.
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