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Abstract
Robust performance is one of the most important concerns in design of any sys-
tem in manufacturing industry. This performance can be achieved by the robust
design. The paper will provide a brief overview of the robust design. It includes
discussions about how to account for design uncertainty, and how to measure
and evaluate robustness for both static and dynamic systems. By reviewing the
strengths and weaknesses of different design methods, the challenges in this area
will be discussed.
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1 Introduction

In order to design and manufacture high quality productions at a minimal cost,
increasingly accurate systems are required in practical industry. One serious prob-
lem in these systems is the inconsistent performance due to uncontrollable vari-
ations existing in the real-world, including manufacturing operations, variations
in material properties and the operating environment. If these variations are not
considered, they will degrade the performance and may result in a failure in prac-
tice [1]. Thus, robust performance is one of the most important concerns in design
of any system.
The concept of the robust design was introduced by Taguchi. The fundamental
principle in the robust design is to improve the quality of a product by minimizing
the effects of variations without eliminating the causes [2]. By making a design
more robust to variations, it is possible to improve number of the eligible parts
or use less experiment [3]. In past decades, much effort has been dedicated to the
robust design. In general, robust design may be classified two groups, static model
based design and dynamic model based design.
• Static model based robust design is relatively simple since it is irrelevant with
time and only considers the effect of the static variations on performance ;
• Dynamic model based robust design is complex because it must consider the
stability, flexibility and robustness of the system in the whole operating process.
The aim of this paper is to review and compare the applicable methods, so that
their underlined philosophy can be clearly shown and easily understood. Though
the review, the challenges in this area can be discussed.
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2 Uncertainty

In a robust design problem, the system includes three kinds of variables :
• Design variables (or control variable) ĺC since their nominal values can be
selected between the range of upper and lower bounds, they are controllable ;
• Uncertainties - that can not be adjusted by the designer, so they are uncon-
trollable ;
• Performances - that are the objective of design, they depend on the system
model, design variables and uncertainties.
These uncertainties, which should be first identified to obtain the robust perfor-
mance, mainly include :
• Noise - it is caused by changes of operating conditions, such as, environmental
temperature, pressure, humidity and material change, etc. Thus, it is of stochastic
nature.
In a robust design problem, the system includes three kinds of variables :
• Model parameters - it is often caused by manufacture error. Parameters of
a product can only be realized to a certain degree of accuracy due to machinery
limitation. It could be either stochastic or non-stochastic.
• Model uncertainty - it is often caused by approximations in the modelling
process.
Basically, these uncertainties can have following three different natures :
• The deterministic type defines the domains in which the uncertainties can
vary ;
• The probabilistic type defines probability measure describing the likelihood
by which a certain event occurs ;
• The possibilistic type defines fuzzy measures describing the possibility or
membership grade by which a certain event can be plausible or believable.
These three different types of uncertainties are usually modelled by crisp sets,
probability distributions and fuzzy sets, respectively.

3 Robust design

The robust design framework is shown in Figure 1. The key issue in this frame-
work is the robust design strategy, which optimizes the design variables to make
the system less robust to uncertainties.
All existing robust design methods depend on the characteristics of a system given
in Table 1 and Table 2. If a system model is unknown and design parameters are
non-probabilistic type, then no robust design method is applicable to it. The in-
direct method for this case is data-based modelling methods that transfer it into
the case of the known model.
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3.1 Static model based robust design

This robust design includes three different approaches : deterministic robust de-
sign, probabilistic robust design, and fuzzy analysis.

Table 1 Existing robust design methods for static system

System Static model
model known Unknown

Uncertainty Non-probabilistic Probabilistic Non-probabilistic Probabilistic
type type type type

•Monte Carlo
simulation •Taguchi

Robust •Deterministic •First and second method
design robust methods order moment N/A •Monte

methods •Fuzzy analysis methods Carlo
•Probabilistic simulation

sensitivity analysis
• Performance index

Table 2 Existing robust design methods for static system

System Static model
model known Unknown

Uncertainty Non-probabilistic Probabilistic Non-probabilistic Probabilistic
type type type type

•Monte Carlo
simulation •Taguchi

Robust •Deterministic •First and second method
design robust methods order moment N/A •Monte

methods •Fuzzy analysis methods Carlo
•Probabilistic simulation

sensitivity analysis
• Performance index

3.1.1 Deterministic robust design

The design parameters are deterministic.
(1) Euclidean norm method and Conditional number method
The methods obtain the system robustness by analytically measuring the sensi-
tivity of a design using the gradient information of parameters. The sensitivity
analysis is based on the Taylor-series expansion of the performance. The Euclidean
norm method [1, 3] is to minimize the largest singular value σmaxof the sensitivity
matrix. The condition number method [1, 4] is to minimize the condition number
σmax
σmin

of the sensitivity matrix. Caro, et al. [1] has compared these two methods
when designing the damper, and shown that the Euclidean norm is more suitable
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as the robust index than the condition number.
(2) The sensitivity region measures method
Gunawan & Azarm [5] proposed the sensitivity region measures for the single
objective robust design optimization. This method first projects the desirable ob-
jective function space into the design parameter space, where the sensitivity region
is constructed. Then the most sensitivity direction in the sensitivity region can
be found. This most sensitivity direction is actually a measurement of a robust
performance.
Li, Azarm & Boyars [6] proposed another sensitivity region measures for robust
optimization. This method first projects the design parameter space into the de-
sirable objective variations domain, where the objective sensitivity region is con-
structed. Then the maximum performance variation in the sensitivity region is
found. This variation is used as a measurement of a robust performance. More-
over, the comparison with the Gunawanąŕs method is carried out.

3.1.2 Fuzzy analysis

The possibility methods are proposed to apply in areas where it is not possible
to obtain accurate statistical data dueto restriction of resource or conditions. Its
foundation is possibility theory. The extension principle calculates the possibility
distribution of the fuzzy response from the possibility distribution of the fuzzy
input variables.
Recently, this method was applied to the robust optimal design to deal with the
epistemic uncertainty [7]. Also, this method was applied for the modeling of toler-
ances and clearances in the mechanism analysis [8]. The comparison of probability
and possibility for design against catastrophic failure under uncertainty was pre-
sented by [9]. The review of this application can be found in He & Qu [10] and
Beyer & Sendhoff [11].

3.1.3 Probabilistic robust design

This probabilistic robust design will be less conservative than the deterministic
robust design since it makes use of the probabilistic information of parameters.
(1) Monte Carlo simulation
Monte Carlo methods are a class of computational algorithms that rely on re-
peated random sampling from probabilistic density function of each parameter
to compute their results. Then, an experiment is executed under the generated
samples and the process data is collected. Finally, the statistical method is used
to estimate its probability density function from the process data.
(2) First and Second order moment methods
The most widely used non-statistical uncertainty analysis method is moment
methods. A Taylor series expansion is employed to estimate response variance
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based on variance of model parameters X as

σfirstorderY = (
∂y

∂x
) |µX2σ(X) (3.1)

σsecondorderY = (
∂y

∂x
) |µX2σ(X) (3.2)

(3) Probabilistic sensitivity analysis
This method evaluates the effect of design variables on performances using the
sensitivity information. Probabilistic sensitivity analysis methods have been de-
veloped to provide insight into the probabilistic behavior of a model, which can
be used to identify those non-significant variables and reduce the dimension of
random design space. A review about probabilistic sensitivity analysis was pre-
sented by [12]. The sensitivity analysis includes : variance-based methods [13],
probabilistic sensitivity coefficients [14], Kullback-Leibler Entropy based proba-
bilistic sensitivity analysis (PSA) method [15].
(4) Performance index
Various performance indexes are constructed to measure the performance and ca-
pability of a system.
• Suhąŕs information content
The information axiom is used to evaluate quality of designs so that an appro-
priate design can be chosen from available design alternatives. According to the
information axiom proposed by Suh [16], a design candidate that has minimum
information content should be selected. Thus, the information content is regarded
as a robust index.
• Design capability indices
The six standard deviations(±3σ)is commonly a measure of process capability,
which compares the variation of a process to the customer specifications through
the equation

Cdl =
USL− LSL

6σ
(3.3)

Where USL is the upper specification limit, LSL is the lower specification limit,
is the standard deviation of the process. We hope that Cp is greater than one so
that the process variation is less than the specification limits and the performance
can satisfy the requirement.
Chen, et al. [18] extended the concept of measuring process capability to measure
the approximate degree between the mean of the process and the target value.
They proposed design capability indices (DCI) as metrics for system performance
and robustness. The indices Cdu, Cdl and Cdk means that smaller is better, larger
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is better and target is better respectively, and are defined as

Cp =
USL− LSL

6σ
,Cdu =

URL− µ

3σ
,Cdk = min(Cdl, Cdu) (3.4)

Where URL and LRL are upper and lower requirement limits.
The index is expected to be greater than unity so that the design will meet the re-
quirement satisfactorily. Forcing the index larger to unity is achieved by reducing
performance deviation and/or locating the mean of performance deviation farther
from requirement limits.
(5) Taguchi method
Taguchi robust design, also known as parameter design, is an approach to iden-
tify design variable values that satisfy a set of performance requirements despite
variation in noise factor [2]. Since 1960, Taguchi methods have obtained a great
success in improving the quality of products and design robustness. This method
is based on experimental data and includes three parts : experimental design,
quality loss function and signal-to-noise ratio.
Taguchi robust design approach for the variable design starts from the experimen-
tal design, where the orthogonal array is used for design. Control factor resides in
an inner array and noise factors conditions in an outer array. The experimental
results in all combinations of control factors and noise factors are recorded. Then,
Taguchi proposed a signal-to-noise ratio for measuring sensitivity analysis of re-
sponse to variation of noise factors. Based on the signal-to-noise ratio, the robust
design is obtained.
Although Taguchiąŕs method has obtained great success, there are certain assump-
tions and limitations associated with his methods. Use of the Taguchi method will
not yield an accurate solution for design problems that embody highly nonlinear
behavior [19]. The Taguchi method has been criticized by the statistical commu-
nity [20]. Many of Taguchiąŕs statistical methods, e.g., orthogonal arrays, linear
graphs and accumulation analysis, are not statistically efficient [20]. Shoemaker
et al., [21] presented a combined single array for both control and noise factors
instead of orthogonal array.

3.2 Dynamic model based robust design

These uncertainties are, in general, also dynamic in nature and correspond to
variations in either external variables or internal process parameters [22].
3.2.1 Stability based design

The recent integration of the steady-state design and the dynamic stability is
to explicitly consider dynamic elements in the process design by use of the eigen-
value theory. Blanco and Bandoni [23] proposed the multi-period program to solve
the Lyapunovąŕs stability matrix equality that can guarantee the system stability
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under uncertainty and disturbance. However, the accuracy of this method will
depend on the degree of discretization. Since Lyapuovąŕs criteria for asymptotic
stability can not be easily implemented within a design optimization framework,
Mohideen, Perkins & Pistikopoulos [24] and Kokossis & Floudas [25] proposed
an alternative robust stability criteria based on the matrix measures, which can
avoid the tedious calculation of all eigenvalues. Matrix measures can provide a
single upper bound for all eigenvalues. However, this bound should not be used
because it is typically not tight, therefore, may result in an overestimation of the
stability boundary. Monnigmann & Marquardt [26] and Grosch, Monnigmann &
Marquardt [27] proposed the stability design in the steady-state process opti-
mization. This design employed manifolds method to figure out the bound of the
parameter variations that guaranteed all eigenvlues of the process smaller than
zero when the parameter variations were limited in this bound.

3.2.2 Flexibility analysis

The flexibility, which defines the ability to maintain feasible operation over a
range of uncertain conditions, is a vital important characteristic for the operation
of these plants. As the state of Dimitriadis & Pistikopoulos [22], the flexibility
analysis problem generally consists of two tasks which are complementary to each
other.
• The first task is to determine if a given design can feasibly operate over
the range of uncertainty considered. This problem is known as the flexibility test
problem.
• The second task is to calculate a measure to quantify the ability of the design
to operate in the presence of uncertainty. This is known as the flexibility index
problem and is usually tackled by establishing the maximum parameter range
over which the design can operate feasible.
The flexibility measure is often used to select the suitable design by comparing
different design alternatives with respect to their flexible operation [28]. Swaney
and Grossmann [29] defined the flexibility index for measuring the flexibility of
steady-state processes where the uncertain parameters are described by bounds of
a specified range of operation. This approach was also extended to the analysis of
dynamic systems under time-varying uncertainties [22]. The stochastic flexibility
index is a metric for quantifying the ability of a process to maintain feasible
operation in the face of stochastic uncertainties [30].

3.2.3 Robustness index

Various robustness indexes can be designed to measure the degree to which a
system can meet its design objectives despite external disturbance and uncertain-
ties in its design parameters. Since adequate robust index is a necessary part of
the optimal process design, it is desirable to consider process resiliency assessment
when determining the process structure and establishing the operating range
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The resiliency indexmeasures the effect of the disturbance on the control input u.
Skogestad & morari [31] and Lewin [32] considered the ratio of the control input
u to disturbance d as the resiliency index based on the linear process model. Cao,
Rossiter and Owens [33] applied it to select the control inputs. Solovyev & Lewin
[34] extended this resiliency index into the nonlinear system.
The condition number is defined as the ratio between the maximum and minimum
singular values. The condition number provides a direct measure of the direction-
ality of the system. A large condition number indicates that the gain of the plant
changes significantly with the input direction and that the system is sensitive to
input uncertainty [35].
The disturbance condition number is a measure of the input magnitude which is
needed to reject a disturbance in the given direction, relative to rejecting a distur-
bance with the same magnitude, but in the direction requiring the least control
effort. A small disturbance condition number are most effective for disturbance
rejection [36].
The relative gain matrix (RGA)was originally proposed by Bristol [37]. Its objec-
tive is to provide a measure of interactions for multivariable square systems [31,
35]. If the plant has large RGA elements within the frequency range where effec-
tive control is desired, then it is not possible to achieve good reference tracking
with feedforward control because of strong sensitivity to diagonal input uncer-
tainty. Manousiouthakis et al. [38] generalized the concept of the RGA to block
relative gain which is capable of handling partially decentralized control systems.
Chen and Yu [39] extended this method to non-square multivariable systems for
selection of square subsystem from non-square system. A dynamic relative gain
was proposed by Avoy, et al. [40].

3.2.4 Operability index

The operability measure can quantify the inherent ability of the process to move
from one steady state to another and to reject any of the expected disturbances.
The operability index is defined by Vinson and Georgakis [41] to effectively cap-
ture the inherent operability of continuous processes. Vison and Georgakis [41]
applied this index to analyze the steady state of the linear system. The technique
has also been proven to be effective for nonlinear processes [42]. It was also ex-
tended to dynamic systems by Uztĺźrk and Georgakis [43]. A brief survey paper
about the operability index was presented by Georgakis, et al. [44].

4 Challenge

Any method has its strength and weakness. The fundamental difficulties in
robust design are related to model/parameter uncertainties and nonlinearity of
the system. Most of the existing methods can deal with linear system with the
known model, and are not capable to handle model uncertainty or nonlinearity
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that in turn generates extra uncertainties to the system. The weakness of the
existing design methods poses the challenges to unsolved problems as shown in
Table 3.

4.1 Robust design for static system

1) There is still no method that can consider the model uncertainties in the
deterministic robust design. The accurate model is needed for Euclidean norm
method and Conditional number method to obtain the gradient information. The
sensitivity region measure methods are based on the projection between parameter
space and performance space, which requires the system model.

2) The model uncertainties still can not be handled in the probabilistic robust
design, where all the existing methods can be classified two categories : model-
based robust design and data-based robust design.
The data-based robust design includes Monte Carlo method and Taguchi method.
• Since Monte Carlo method is a simulation method, all system knowledge,
which has to be known beforehand, need to be translated into computer code.
Thus, the accurate system model is critical. Moreover, it costs huge computational
time that will limit its application.
• Taguchi method obtains the system robustness based on the experiment data.
However, it is only suitable for the stochastic environment and not suitable to
minimize the effect of parameter variations.
The model-based robust design includes first- and second- order moment methods.
Since these methods are based on the Taylor series expansion, which requires the
accurate system model. Thus, the model uncertainty will lead to the significant
performance degradation. So far, there is still no solution.
3) The membership function in fuzzy analysis is defined according to human
experience, which could be too subjective and causes uncertainties. It would be a
challenge if the experimental data can be used to reduce subjective uncertainties
of the membership.

4.2 Robust design for dynamic system

In difference to the static system, another problem for the dynamic system is
that the design optimization becomes extremely difficult when the system has
both continuous and discrete design variables.
1) The current stability design can work for the linear system, where its eigen-
values are critical to the system stability. The weakness of the existing methods
have not considered two influences : one is model uncertainties on the eigenvalues
and their variations, and the other is parameter perturbation on the eigenvaluesąŕ
variations.
2) The stochastic flexibility index is only applicable to the linear dynamic system.
So far, there is still no study on its application to the nonlinear dynamic system.
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4.3 Potential solutions

For the static system, a novel model-based robust design is proposed to design
the system using the nominal model. The system-model mismatch, model uncer-
tainties, can be properly considered in the design.
For the dynamic system, a novel stability based robust design is proposed to guar-
antee the robust performance as well as the system stability, so that the method
can also be applied to the weak nonlinear system.

5 Conclusion

This paper presents a brief overview about advances in robust design. Different
approaches in robust design are reviewed and compared, upon which challenges
have been proposed to the unsolved problems. Two novel approaches are proposed
to the unsolved problems.

Table 3 Summary of evaluation of existing methods

Design classification Existing method Challenges for unsolved problems
Deterministic
system

Deterministic ro-
bust design

These methods need an accurate model
and can not handle the model uncer-
tainty.

Probabilistic

Data-based
methods

All these methods can not handle
model uncertainties properly, further-
more,

Static • Monte Carlo • Monte Carlo simulation costs huge
computational time, and requires the
accurate model ;

robust system • Taguchi method • Taguchi method is not effective to
parameter variations ;

Model-based
methods

• Model-based methods require the ac-
curate model ;

design Fuzzy sys-
tem

• Fuzzy analysis Membership function strongly depends
on human experience that causes sub-
jective uncertainties.

Dynamic robust design

• Stability based design All existing methods can not work for
the system with model uncertainties,
and

• Feasibility design hybrid system withboth continuous
and discrete design variables, further-
more,

• Other design • Stability design has not been ap-
plied to the nonlinear system.

• Feasibility design has not been
applied to nonlinear dynamic system.
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