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Abstract

Modeling expression of complexity is one of the frontier research fields in system
science. Classical graphical models characterize two-relations but lack of the
ability of depicting multi-relations among objects in a system. In this paper, a
multi-relation expression model is proposed based the subspaces of the attribute
space of objects in a system. Properties of the multi-relation model are analyzed
and an algorithm is provided to find the multi-relation subspaces in a data set.
The relationship between the multi-relation model and a hyper graphical model
is also discussed.
Keywords Complexity; Relation; Subspace; Hyper-graph.

1 Introduction

There are two types of research in studying the complexity of a system [1-3], One
considers how to characterize and compute the overall complexity of a system [4].
Boltzmann entropy in statistical physics is such a representative which gives an
overall measure for the system status. The other type of research describes the
interactive relationships among various objects in a system. Graphical models
from graph theory or complex network are typical representatives [5]. A graph-
ical model regards the objects in a system as vertices and relationships among
objects as edges that can be undirected, directed or weighted. Graphical models
have a lot of applications in the analysis of e-mail data, communication data, web
data, biological data, financial data, social networks, actor networks, etc. [6-8].
However, graphical models only depict two-relation between objects, lack of the
description of multi-relation in a system in practice. Recently, some research ar-
ticles discuss the multi-relation using hyper-graph models [9-13], but no rigorous
definitions and generating methods of hyper-graphs from data are given.

In this paper, we propose a subspace multi-relation model to characterize the
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different types of relationships in the attribute space of objects. In this model,
each relationship exists in its own subspace, which is a part of the attribute space.
The traditional graph model is a special case of our model, which can be called
one-dimension relation model.Based on the subspace clustering principle [14-16],
we give the algorithm to find subspace multi-relation from the object attribute
space, which is helpful to understand the complexity of data from multiple per-
spectives. Real data are used to verify the validity of our model. We discuss the
vector hyper-graph models at the end.

2 Methods

2.1 Definitions of Subspace Multi-Relation

In this section, we define the subspace multi-relation model.

Definition 2.1 If m objects have a common property of P , we call the m objects
as m-relation.

In the examples provided by Tables 1 and 2, there are three events and three
individuals. Property P means that there are individuals appearing in the same
event. In Table 1, any two individuals appear simultaneously in one event, and
therefore there exists a two-relation between any two individuals, which can be
expressed by the fully connected network model. In Table 2, we notice that three
individuals simultaneously appear in the event A. Individuals 1, 3 appear in the
event B and individuals 2, 3 appear in the event C. Thus there are one three-
relation and two two-relations by Definition 2.1. The difference between Table
2 and Table 1 shows that: Firstly, three-relation cannot be obtained from two-
relation; Secondly, the definition of the multi-relation needs consider the subspace
arising relation. Thus we should make some modification to Definition 2.1.

Table 1 Any two individuals appear simulta-
neously in one event, and hence, two-relations
between any two of them exist.

Event A Event B Event C
Individual 1 1 1 0
Individual 2 1 0 1
Individual 3 0 1 1

Table 2 There are three individuals appearing
in the event A at the same time, which indicates
that a three-relation exists.

Event A Event B Event C
Individual 1 1 1 0
Individual 2 1 0 1
Individual 3 1 1 1

Establishing relations among objects needs to consider the object attribute
space. For example, a person can be described by an attribute space including
gender, age, education, hobby, strength, event, and so on; an email attribute space
includes sender, recipient, delivery time, subject, body, attachments, and people
names that appear in the mail, and so on. Hence each object can be expressed by a
numerical vector in its attribute space. Assuming there are m objects denoted by
xi, i = 1, 2, · · · ,m, of which attribute space is n-dimensional. Then each object
can be represented as a n-dimensional vector xi = (xi1, · · · , xin)T ∈ Rn, i =
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1, 2, · · · ,m. In order to be able to obtain the multi-relations among objects from
the attribute space, we give the definition of subspace multi-relation.

Definition 2.2 Suppose that Rn = X1 × X2 × · · · × Xn,and if there exists a
sub-sequence denoted by i1 < i2 < · · · < ik, Aij ⊂ Xij is a subset of Xij , j =
1, 2, · · · , k,which makes the subset B = Ai1 × Ai2 × · · · × Aik in the k-dimension
subspace Xi1 ×Xi2 × · · · ×Xik has a common property denoted by P . Then we
call set B as the k-dimension subspace m-relation, where m is number of element
in set B.

Definition 2.2 shows that the relation not only means that the objects in set
B have a common property, but also tells us that the relation occurs in which
attribute space. As defined, the multi-relation in Table 1 can be written as
(x1, x2;A), (x1, x3;B), (x2, x3;C), and the multi-relation in Table 2 can be written
as (x1, x2, x3;A), (x1, x3;B), (x2, x3;C). Therefore there are three one-dimension
subspace two-relations in Table 1, and two one-dimension subspace two-relations
and one one-dimension subspace three-relation in Table 2. We have defined the k-
dimension subspace multi-relation. How can we compute subspace multi-relations
in real data? The following Definition 2.3 provides a solution.

Definition 2.3 Given ϵ > 0, let Rn = X1 × X2 × · · · × Xn, if there is a sub-
sequence of 1, 2, · · · , n denoted by i1, i2 < · · · < ik, Aij ⊂ Xij is a point set of
Xij , which makes the subset B = Ai1 × Ai2 × · · · × Aik in Xi1 ×Xi2 × · · · ×Xik

be covered by the hypercube U(ϵ), ϵ > 0 in Rk, then the subset B is called the
k-dimension subspace m-object relation, m is the number of element in subset B.

Note: In Definition 2.3, U(ϵ) refers to the k-dimensional hypercube of side length
2ϵ in Rk, where ϵ > 0 depends on the specific situation. For example, if we define
U(ϵ) = (−ϵ, ϵ), ∀ϵ > 0 in the space of R1, then, there are one one-dimension
subspace three-relation and two one-dimension subspace two-relations in Table 2
by simple calculation.

2.2 Properties of Subspace Multi-Relation

Theorem 2.1 Subspace multi-relation is of downward compatibility. That is to
say, if B is a k-dimension subspace m-relation, then for any k1,m1, 0 < k1 <
k, 0 < m1 < m, B is also k1-dimension subspace m1-relation.

Proof. Let B = {xi|i = 1, 2, · · · ,m} has the k-dimension m-relation. Given
ϵ > 0, then there exists a positive integer k,Rk ⊂ Rn, which makes the projection
xi|Rk = (xi1 , xi2 , · · · , xik)T of xi covered by the hypercube of U(ϵ), ϵ > 0. Thus
for any subspace Rk

1 with Rk
1 ⊂ Rk, and any subset {xi|i = i1, · · · , im1}, ∥ xi −

xj ∥Rk1≤∥ xi − xj ∥Rk< ϵ. So B is k1-dimension subspace m1-relation.
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Theorem 2.2 Subspace multi-relation is of upward aggregation. Assuming that
all one-dimension subspace multi-relation in the set of objects S denoted by si, i =
1, 2, · · · ,M . If si1i2···ik = si1 ∩si2 ∩· · ·∩sik ̸= ∅, 1 ≤ i1 < i2 < · · · < ik ≤ M , then
si1i2···ik is k-dimension subspace mi1i2···ik-relation, where mi1i2···ik is the number
of element in set (si1i2···ik .

Proof. For any xi, xj ∈ si1i2···ik , xi = (xi1 , · · · , xik), xj = (xj1 , · · · , xjk), To elim-
inate the influence of the different subspace calculation, we use the Manhattan
distance which is normalized on dimension as following:

dRk(xi, xj) =

k∑
s=1

|xis − xjs |/k

As xi, xj ∈ si1i2···ik ,then |xis − xjs | < ϵ,thus dRk(xi, xj) =
∑k

s=1 |xis − xjs |/k < ϵ

Note: Here we assume that the ϵ > 0 is uniform on different subspace in the
proof, but the ϵ > 0 can be different according to the actual problems.

3 Algorithm

We have given the definitions of subspace multi-relation and discussed its prop-
erties. In this section we will discuss the searching algorithm of subspace multi-
relation and give some practical examples.

The subspace multi-relation is downward compatibility and upward aggre-
gation, which allows us to adopt a bottom-up searching algorithm to obtain
subspace multi-relation from low-dimension to high-dimension. Firstly, multi-
relation is searched in one-dimension subspace. Secondly any two of one-dimension
subspace multi-relation are used to compute intersection, and which being not
empty is to form two-dimension subspace multi-relation. Thirdly, three-dimension
subspace multi-relation could be found by computing the intersection of any t-
wo of two-dimension subspace relations. Finally, based on this process all the
existing subspace multi-relations in attribute space will be found. This method
is capable of avoiding the effect of the high-dimension disaster problem which is
encountered during the direct search in the high-dimension space, and hence can
greatly improve the computational efficiency.

Assume that there are m objects xi, i = 1, 2, · · · ,m, which are expressed as
xi = (xi1 , · · · , xin)T ∈ Rn, i = 1, 2, · · · ,m in the attribute space. Here we want to
find the complex relations among the objects in attribute space based on subspace
multi-relation model.

The main steps of subspace multi-relation searching algorithm are given as
follow:

Step 1: Search one-dimension subspace multi-relation. Let j = 1, according
to some clustering methods, we cluster the projection {xij , i = 1, 2, · · · ,m} in
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one-dimension subspace Rj with each cluster covered by an interval of length 2ϵ.
The result is denoted by cj(i), i = 1, 2, · · · ,mj , and let sj(i) = {x : xij ∈ cj(i)}, i =
1, 2, · · · ,mj , which is belong to Rn.

j = j + 1 until j = n.
Step 2: Search two-dimension subspace multi-relation. If

sj1j2(i1i2)
= sj1i1 ∩ sj2i2 ̸= ∅

let
mj1j2

(i1i2)
= Num(sj1i1 ∩ sj2i2 )

Then there exists a two dimension mj1j2
(i1i2)

-relation,1 ≤ j1 < j2 ≤ n, 1 ≤ i1 ≤
mj1 , 1 ≤ i2 ≤ mj2 , i1 < i2.

Step 3: Similarly, we can search for higher dimension subspace multi-relations.
k=3; If

sj1j2...jki1i2...ik
= sj1i1 ∩ sj2i2 ∩ ... ∩ sjkik ̸= ∅

1 < i1 < i2 < · · · < ik ≤ m, 1 ≤ it ≤ mi, t = 1, 2 · ··, k

Then we say
sj1j2···jk(i1i2···ik) = sj1i1 ∩ sj2i2 ∩ · · · ∩ sjkik

has k-dimension mi1i2···ik -relation, where

mi1i2···ik = Num(sj1j2···jk(i1i2···ik))

k=k+1,If all of the intersection is empty, then stop searching.
Note 1: The clustering method of one-dimension space above can be suitably

selected according to actual data such as k-means method or hierarchical clus-
tering method;

Note 2: When dealing with big data, in order to control the number of sub-
space multi-relation, the number N of objects in which is asked to be greater
than a given positive integer that is used to characterize how many objects are
interesting, and parameter ϵ refers to the tightness of relation.

4 Examples

4.1 Experiment 1

In the department of mathematics of some college, the data set consists of 84
staff vertices, where each vertex has a total of 52 attributes including gender,
education, job title, hobby, physical health, etc. The searching algorithm given
above is used to find subspace multi-relation in data. The parameters ϵ is set to
0.5 and N (the number of staffs in subspace multi-relation) is 5.

The total 125 subspace multi-relations are found. By use of traditional graph
model we can only obtain fully connective graph which lost a lot of information
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in data. That is because classical two-relation just indicate whether two objects
have relation, but do pay attention to neither the simultaneously relation of how
many objects nor in which subspace the relation happened. The more complex
relation that exists in actual data can be expressed by the subspace multi-relation
model, which can not only tell us how many objects have relation but also point
out the attribute space which the relation exists in. In example given above,
staffs link together differently because of schoolfellows, countrymen, or the same
research field and so on.

4.2 Experiment 2

Enron was one of the most important companies in the U.S. energy industry. In
2001, the accounting fraud scandal of the Enron was exposed. Then the Federal
Energy Planning Board took e-mail communications between Enron employees
posted online [17] for publicity and academic research. Here, we want to discover
some interesting groups based on these email. From the body content of those
emails which happened before the fraud scandal we extract 2062 different people
as vertices and set 144 staff’s mailbox as the attributes of vertices. Let ϵ be
0.5 and N be 60, we finally find 275 subspace multi-relations by our searching
algorithm.

It is very interesting that the highest dimension of subspace in all subspace
multi-relation is 8 with 86 mailboxes, referring to 8 people including Chief Op-
erating Officer, Director of Risk Management, Vice President and Chief, Online
President of Enron, Enron CEO in North America, and other two important fig-
ures, who all are suspected of fraud, which tell us Maybe the event come from
people’s talking.

5 Subspace Multi-Relation And Vector Hyper-Graph

As two-dimension relation corresponds to the graph model, subspace multi-
relation corresponds to the hyper-graph model. Recently studies on hyper-graph
model have mainly focused on how to expand the existed properties in graph
theory into hyper-graph, such as hyper-path, hyper-chain, graph partitioning
and so on [9-13]. Furthermore, hyper-graph models do not indicate that the
multi-relation exists in different subspaces.

Here we propose the concept of vector hyper-graph corresponding to subspace
multi-relation.

Definition 5.1 let X = {x1, x2, · · · , xs}, xi ∈ Rn be a finite set. A vector hyper-
graph of X is denoted by G = (E1,Rk1), · · · , (Ep,Rkp) where Ei is the finite
collection of subset of X, such that:

(1)Ei ̸= θ, i = 1, 2 · ··, p
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(2)
p
∪
i=1

Ei = X,Rki < Rn, 1 ≤ ki ≤ n, i = 1, 2 · · · p

In the vector hyper-graph G, xi is called a vertex, (Ei,Rk
i ) is called vector hyper-

edge. There exists a natural connection between the vector hyper-graph and
subspace multi-relation. Assume that a vector hyper-graph X has a vector hyper-
edge (Ei,Rki) = (xi1 , xi2 , · · · , ximi

, Rki), then the objects xi1 , xi2 , · · · , ximi
has

multi-relation on subspace Rki , which means ki-dimension mi-relation, and vice
versa. Hence we can use the vector hyper-graph to express subspace multi-relation
and study the complex relation in system.

6 Conclusions

We discuss the method to express the complexity of a system by a subspace
multi-relation model. Based on the attribute space of objects, we establish the
rigorous definition of subspace multi-relation. The traditional graph model or
complex network is a special case which is equivalent to the one-dimension two-
relation. Moreover, an algorithm is given to search for the subspace multi-relation
and its effectiveness is verified by real data. Finally, vector hyper-graphs related
to multi-relation models are discussed. The equivalence of the subspace multi-
relation and the vector hyper-graph is pointed out, which provides a new method
to study system complexity through vector hyper-graphs.
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