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Abstract

This paper analyzes and structures modern challenges in the field of big data
handling, arising before hardware developers, experts in applied mathematics
and artificial intelligence, as well as researchers focused on different application
domains. The author outlines further development of the theory and applications
of big control, i.e., control based on big data.
Keywords Big data, Data analysis, Big control, Big data management

1 Introduction

I am a great believer in the simplicity of things and as you probably know I am
inclined to hang on to broad & simple ideas like grim death until evidence is too
strong for my tenacity.

C Sir Ernest Rutherford
From Letter to Irving Langmuir (June 10, 1919).

The term “big data” means unstructured data whose volume exceeds the avail-
able handling capabilities in required time. This term appeared just a few years
ago [1], but became very popular among IT experts, scientists, business analysts
and other specialists. For instance, a retrieval request to Google returns mil-
lions of links on the subject. What are the capabilities and risks carried by big
data? What challenges and problems do they formulate before scientists, experts
in different application domains (particularly, specialists in systems science and
control theory-big data usage in control problems and big data management), the
education system as a whole?

2 Big Data. Big Analytics. Big Visualization

In information technology, big data (perhaps, the term was first mentioned in the
special issue of Nature[1]) represents a direction of theoretical and practical in-
vestigations on the development and application of handling methods and means
for the big volumes of unstructured data.

Big data handling comprises their1:
- acquisition;
- transmission;
- storage (including recording and extraction);
- processing (transformation, modeling, computations and analysis);

1In certain classifications, big data handling is associated with 4D (data discovery, discrimi-
nation, distillation and delivery/dissemination).
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- usage (including visualization) in practical, scientific, educational and other
types of human activity.

In the narrow interpretation, the term “big data” sometimes covers only the
technologies of their acquisition, transmission and storage. In this case, big
data processing (including construction and analysis of corresponding models)
is called big analytics (including big computations), whereas visualization of the
corresponding results (depending on users cognitive capabilities) is called big vi-
sualization (see Fig. 1).

The universal cycle of big (generally, any) data handling is illustrated by Fig.
2. Here the key role belongs to an object and a subject (a “customer”); the latter
requires knowledge on the state and dynamics of the former. However, sometimes
there exists a chasm between the data acquired on an object and the knowledge
necessary for a subject. Primary data must be preprocessed, i.e., transformed
into more or less structured information. Subsequently, necessary knowledge is
extracted from this information depending on a specific task solved by a subject.

Fig.1“The big triad”2: Data, analytics, visualization

Particularly, a subject may adopt this knowledge for object control , viz.,
exerting purposeful impacts on an object to ensure its required behavior. Control
can be automatic in a special case (an inanimate subject). Perhaps, the term “big
control”3 will become common soon for indicating control based on big data, big

2We will not discuss another fashionable triad (big data, high-performance computations,
cloud technologies

3For justice’ sake, note that in the recent fifteen years experts in control theory have tended
to consider the problems of control, computations and communication jointly (the so-called C3
problem (Control, Computation, Communication)). According to this viewpoint, control actions
are synthesized in real time taking into account the existing delays in communication channels
and information processing time (including computations). There is another generally accepted
term (large-scale systems control), but big data can be generated by “small” systems.]
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analytics and, possibly, big visualization.4

Fig.2 The universal cycle of big data handling

The qualitative analysis of numerous publications on big data leads to the
author’s subjective expert appraisal for the current distribution of attention paid
by researchers and developers (but not users!) to big data handling problems.
This expert appraisal is demonstrated in Fig.3.

Fig.3 The current distribution of attention paid by researchers and developers
to big data handling problems

4An alternative interpretation of “big control” concerns control of big data handling pro-
cesses. Actually, this represents an independent and nontrivial problem.
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In other words, the overwhelming majority of big data investigations create
the technologies of big data acquisition, transmission, storage and preprocessing,
whereas big analytics and visualization receive by far less consideration. Big
control problems are almost not studied, despite that control objects become
more and more complicated and multi-scale, while “networkism” represents a
leading trend of modern control theory [2]!

3 Civilization-Scale Problems

However, is the current state of affairs (see the distribution in Fig.3) reasonable?
On the one hand, the answer is affirmative. Indeed, technologies followed exactly
this path of development; moreover, data analysis and visualization requires data
acquisition and storage (no doubt, with the feasibility of rapid accessing and
processing). On the other hand, the existing “disbalance” is the result of the
following. Nowadays, mankind realizes the potential utility of any data, but does
not completely understand what should be done with the growing avalanche of
data.

This problem seems not novel, since a class of similar civilization-scale prob-
lems has appeared recently, formally called the problems of anticipatory technolo-
gies development. To elucidate this idea, consider the correlation among science,
technologies and practice (see Fig.4). During different periods of mankind de-
velopment, science often initiated creation and adoption of certain technologies;
sometimes, the chain was “inverse” (presently, we observe exactly this picture!).

Fig.4 Science, technologies and practice

Really, appeal to history. Starting from the middle of the 19th century, for
over 100 years mankind had experienced the triumphal development of science
and the technological boom (science anticipated and predetermined technologies,
the latter were widely adopted in practice; generally speaking, before science was
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stimulated by practice).In this context, we mention electricity, communications,
nuclear power engineering, electronics, etc. Most technologies were clear and
available to average men.5

Later on (approximately, since the 1970s) the situation gradually changedCthe
accumulated fundamental scientific results were enough for technologies growth
(i.e., some technologies even “anticipated” science). Consequently, their “demand
for science” was reduced (perhaps, living systems made an exception).

Nevertheless, technologies demonstrate further development, and the pace of
their development even increases. For instance, in the recent decade advances in
information and communication technologies (ICT) have been even anticipating
practice6, including human recognition of new technological capabilities, devel-
opment prospects and associated threats.7

In other words, the threshold of the third millennium was remarkable for a
turning point: mankind had earlier mastered science and technologies to satisfy
its needs, whereas afterwards technologies rather dictated the directions, restric-
tions and conditions of scientific development, at the level of individuals and at
the level of states and mankind as a whole.8 Exactly this effect is called “anticipa-
tory technologies development”. Mankind will have to realize the corresponding
civilization-scale problems and learn to respond to them.

Similar things happen with big data: human beings have mastered technolo-
gies for accumulating giant volumes of data, but are still unable to process and
utilize them. The major problem concerns the comprehension of why should big
data processed (rather than how should it be done).

To have a clear view of the challenges faced by scientists and engineers, we

5Amusingly, the heroes of fantasy books on technological breakthrough, owing to isolation
(e.g., Cyrus Smith from J. Verne’s The Mysterious Island) or a trip to the past (e.g., the hero
from M. Twain’s A Connecticut Yankee in King Arthur’s Court), are often engineers or average
men but not scientists.

6As a positive feature, we acknowledge that advances in ICT were stimulated by the devel-
opment of applied mathematics, particularly “network mathematics” (random graphs, large-
dimensional graphs, network games and others, see the surveys [3-6]).

7Scattered manifestations of this phenomenon took place earlier; e.g., A. Noble and the
participants of the Manhattan Project thought about the ethical responsibility of scientists.

8The problems of information security have become common. Today is the right time for
thinking not just about technological security (cybersecurity), but about the social, economic
and other security of information technologies, i.e., the security of ICT users, their groups and
society as a whole against informational impacts (here a striking example concerns social media
including online social networks [7]). Recall that all important decisions (at the level of an
enterprise and at the level of a government) are made on the basis of information coming from
certain sources and processed by certain methods (far from always, a decision-maker knows these
sources and methods). Therefore, we have to acknowledge the relevance of the socioeconomic
security of ICT, i.e., the security of an individual, an economy, a society and a country against
the consequences of decisions made by modern ICS (including decision support systems applied
in economics, military science, politics, etc.).
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discuss a series of questions. Which data are actually big? Where do big data
arise? What are the modern applications of big data? How can one improve
the efficiency of their usage in future? What is the role of science in big data
handling?

4 Sources and Customers of Big Data

They include large groups, namely:
- science (astronomy and astrophysics, meteorology, nuclear physics, high-

energy physics, geoinformation systems and navigation systems, distant Earth
probing, geology and geophysics, aerodynamics and hydrodynamics, genetics,
biochemistry and biology, etc.);

- Internet (in the wide sense) and other telecommunication systems;
- business, commerce and finances, as well as marketing and advertising (in-

cluding trading, targeting and adviser systems, CRM-systems, RFIDCradiofre-
quency identifiers used in sales, transportation, logistics and so on);

- monitoring (geo-, bio-, eco-; space, air, etc.);
- security (military systems, antiterrorist activity, etc.);
- power engineering (including nuclear power engineering), SmartGrid;
- medicine;
- governmental services and public administration;
- production and transport (objects, units and assemblies, control systems,

etc.).
Numerous applications9 of big data in these fields can be found in popular

science literature (or even “glossy” journals) available at public Internet sources.
We will not describe these applications here to avoid embarrassing “zettabytes”
and “yottabytes”.

In almost all fields cited, the modern level of automation is such that big data
have automatic generation. Therefore, the following question gains growing im-
portance. What is the volume of “lost” data flows (due to insufficient capabilities
or time for their storage or processing)? This question seems correct for an en-
gineer in ICT, but not for a scientist or a user of big data processing results.
Rather, the former and the latter would ask “What are essential losses in this
case?” and “What are the changes if we successfully acquired and processed all
data?”, respectively.

9The principal idea of using big data is revealing “implicit regularities”, i.e., answering non-
trivial questions: epidemic prediction based on information from social networks and sales in
drugstores; medical and technical diagnostics; retention of clients by analyzing sellers’ behavior
in stores (the spatial movements of RFID-tags of products); and others.
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5 Which Data Are Big? Scientific Challenges

Traditionally, big data are unstructured data whose volume exceeds the available
handling capabilities in required time. However, this definition appears some-
what“cunning”: data considered big today cease to be such tomorrow owing to
the progress of data handling methods and means. Data that looked big several
hundreds or even thousands of years ago (in the absence of automatic treatment)
are easily processed today by home computers. The competition between the
(hypothetic) computational demands of mankind and corresponding technical
capabilities has been known very long ago. Of course, the capabilities have been
always chasing the needs. And the gap between them represents a monumental
stimulus for science development. Researchers have to suggest simpler (yet, ade-
quate) models, design more efficient algorithms, etc.

Sometimes, the definition of big data includes the so-called 5V properties (Vol-
ume, Velocity, Variety, Veracity, Validity). Alternatively, the difference between
the big volume of conventional data and big data proper is that the latter form
the big flow of unstructured10 data (in the sense of volume and velocity as the
volume per unit time).

In the wide comprehension, the unstructuredness of big data (text, video, au-
dio, communications structures, etc.) is actually their characteristic feature and
a challenge for applied mathematics, linguistics, cognitive sciences and artificial
intelligence. Creation of real-time processing technologies11, including the feasi-
bility of implicit information revelation, for large flows of text, audio, video and
other information forms the mainstream of applications of the above sciences12

to ICT.
Therefore, we observe a direct (and explicit) query from technologies to science.

The second explicit query concerns adaptation of traditional statistical analysis,
optimization and other methods to big data analysis. Furthermore, it is necessary
to develop new methods with due consideration of big data specifics. A modern
fashionable trend is boosting analytics tools (generally, business analytics) for big
data. But their list almost coincides with the classical kit of statistical tools (or
is even narrower, since some methods are inapplicable to big data). This is also
the case for:

- machine learning methods (neural networks, Bayesian networks, fuzzy infer-
ence and other logical inference, etc.);

10Data unstructuredness can be the result of their omissions and/or different scales of studied
phenomena and processes (in space and time, see the so-called multi-scale systems).

11In the first place, these technologies must perform data aggregation (e.g., detecting changes
in technological data or storing aggregated indices). Really, one does not need all data (espe-
cially, “homogeneous” data).

12Mathematics rather easily operates structured data; and so, data structuring makes an
important problem.
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- high-dimensional optimization problems (in addition to traditional parallel
computing, intensive research focuses on distributed optimization, l1-optimization;
e.g., see [8-13]);

- discrete optimization methods (here an “alternative” lies in application of
multiagent program systems [14]) and others.

The common feature in the stated queries of technologies to science is adap-
tation or small modification of well-known tried-and-true methods. We have to
be aware of the following. Generally, automatic modeling (by traditional tools13)
based on raw data represents just a fashionable delusion.14 We expect to suggest
algorithms and apply them to bulky volumes of unstructured (often irrelevant)
information, thereby improving the efficiency of decision-making. Such delusions
occurred in the history of science at the early development stages of cybernet-
ics and artificial intelligence.15 They resulted in numerous disappointments and
considerably impeded the development of these scientific directions. There exist
no miracles in science: generally, new conclusions require new models and new
paradigms (e.g., see the books on science methodology [15-16]).

6 General Challenge

The complexity of the surrounding world grows at a smaller rate than the capabil-
ities of data detection (“measurement”) and storage. Perhaps, these capabilities
have exceeded the ability of mankind to realize the feasibility and reasonability
of their usage. In other words, we “choke” with data, trying to find what to do
with them.

However, there exists an alternative viewpoint of this situation as follows. Ob-
taining big data (having an arbitrary large volume) is possible and easy enough
(obvious examples arise in combinatorial optimization, nonlinear dynamics or
thermodynamics, see below). But we have to understand how to manage big
data (and ask the Nature correct questions). Furthermore, it is possible to con-
struct an arbitrary complex model using big data and then try to reach a higher
accuracy within the model. But the associated dilemma is whether we obtain
new results or not (in addition to very many new problems16). Long ago math-

13An additional encumbrance is the accumulated experience of a researcher/developer and the
traditions of its scientific school. Successful solution of a certain problem leads to the conviction
that same methods (only!) are applicable to the rest open problems.

14In some cases, additional information can be obtained by increasing the volume of data
(under correct processing).

15The behavior demonstrated by a cybernetic system is always the result of embedded algo-
rithms (stochastic, nondeterministic, etc.), despite the seeming generation of new knowledge or
revelation of new (“unexpected”) behavior. This is especially the case for interaction of very
many elements.

16We recognize the importance of model’s adequacy and stability of modeling results, but
omit these problems.
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ematicians and physics knew that increasing the dimensionality and complexity
of a model (aspiration for considering more factors and relations among them)
does not necessarily improves the quality of modeling results; sometimes, it even
carries to the point of absurdity.17

Let us study a series of examples.
Example 1. The book [17] by Nobel Prize winner H. Simon considered the

following example. Imagine an ant walking along a beach. The ant may try
to minimize the efforts required for moving from one point to another; and so,
it escapes rocks, sometimes turns back, etc. If we observe just the horizontal
projection of the ant’s path (without the knowledge of relief), explaining its be-
havior (a very winding, complex path) seems difficult. H. Simon arrived to an
important conclusion. The existing variety and complexity of human behavior
are explained not by their complex principles of decision-making (actually, these
principles appear simple), but by the diversity of related situations. One would
hardly disagree with this opinion. Really, nontrivial results can be provided by a
complex model based on simple input data and by a simple model based on com-
plex input data. Ideally, nontrivial results should be generated by simple models
owing to the correct choice of relevant and simple input data (mathematicians
are used to say that“simplicity is the sign of truth”).

Example 2. Suppose that, as if by magic, scientists of the 18th century receive
a modern laptop and a tomographic scanner of laptops (with user manuals). The
scientists make the tomographic image of the laptop and save it in the memory.
By analyzing these bulky and very detailed data on the physical structure of the
laptop, they would hardly understand the operation principle of the laptop. A
correct paradigm, a correct conceptual model forms a necessary (yet, not suffi-
cient) condition of a success.

Example 3. Take any NP-hard problem of combinatorial optimization [18],
e.g., the travelling salesman problem. There are about n! variants to-be-analyzed
for exact solution search; in the case of n∼100, the number of variants exceeds the
computational capabilities of mankind. The network excitation control problem
for a real social network possesses the dimensionality of n∼ 106[19]. This prop-
erty of NP-hard problems has been known for decades, motivating researchers
to develop (generally, heuristic) methods of approximate solution search with
estimated guaranteed accuracy at reasonable time. A similar example concerns
nonlinear dynamics models: the“observations” of dynamic chaos demonstrated
by a rather simple (medium-dimensional) nonlinear dynamic system may require
the memory of all computers in the world, but generate no new knowledge.

Example 4. A classical example from the history of physics is the discovery of

17Not to mention situations, when existing scientific paradigms make it impossible in principle
to model system behavior on a large time horizon (e.g., accurate weather forecasting).
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the law of universal gravitation. For two decades, T. Brahe (1546−1601) observed
planetary motion in the Solar System. For those days, his records represented big
data. Based on Brahe’s records, I. Kepler (1571−1630) formulated his empirical
(!) laws of planetary motion:

- the orbit of a planet is an ellipse with the Sun at one of the two foci;
- the square of the orbital period of a planet is proportional to the cube of the

semi-major axis of its orbit.
Keplers laws of planetary motion aggregated Brahes data, and the motion

of any planet could be calculated by them (instead of Brahe’s many-volumed
recordings) with a high accuracy. In other words, Brahe learned to describe18

planetary motion, whereas Kepler learned to describe and predict it. However,
Kepler’s laws did not explain why planets move so. The answer was later given
using the law of universal gravitation established by I.Newton (1643-1727). Per-
haps, Kepler’s laws would be derived by any modern computer (with adequate
algorithms embedded and initial data entered). At the same time, modern com-
puters would be unable to obtain the law of universal gravitation without the
corresponding model of mass interaction. Kepler’s laws are the “corollaries” of
the law of universal gravitation (can be deduced from it), just like Brahe’s re-
sults follow from Kepler’s laws. Therefore, the law of universal gravitation made
useless (epistemologically superfluous) both Kepler’s laws and Brahe’s big data.

Today’s experience in big data handling testifies that, in most cases, we are
at the level of Brahe and apply titanic efforts to reach the level of Kepler. But
a qualitative jump occurs only under the appearance of generalizations (at the
level of Newton) that radically simplify the situation. Once again, note that the
whole secret is“putting correct questions to the Nature.”

Example 5. The second classical example from the history of physics relates
to the development of molecular-kinetic theory. It shows that generation of a big
data flow appears easy. The whole point is what to do with this flow and what
questions to answer.

Consider the following mental experiment (the problem of ideal gas behavior
description). One cubic meter of air is in the normal conditions. It contains
approximately 1025 molecules. The motion of molecules and their collisions are
completely described by kinematics and dynamics (within the framework of the
ideal gas model). In other words, there exist no fundamental obstacles in such
description. During a second, each molecule suffers from 109 collisions with other
molecules. The real-time description of such a system (the coordinates and veloc-
ities of all molecules) requires the minimum data flow of 1035 bytes per second.

18Recall the basic functions of scientific cognition (particularly, modeling) [16]: description
(the phenomenological function)- explanation- prediction (the prognostic function) - control (the
normative function).



Advances in Systems Science and Application (2015) Vol.15 No.1 31

This data flow exceeds even the modern processing capabilities of mankind (to
say nothing of the processing capabilities in the 1850s when the theory appeared)!
Perhaps, physicians recognized the senselessness of such detailed analysis (even
despite its possibility in principle) and passed to macrodescription in terms of
aggregated characteristics (temperature, volume, pressure) and, subsequently, to
the description of probabilistic distributions within the framework of statistical
physics. But if physicians of that period were able to perform necessary calcula-
tions, science would never have statistical physics!

Today a similar effect arises, e.g., in informational control problems for on-
line social networks. Transition from microdescription using graphs with tens of
millions of nodes and billions of connections (no doubt, this is a big control
problem) to macrodescription in terms of probabilistic distributions [20] leads
to realistic theoretical study, still preserving the key properties of an object.

And finally, note the following. Depending on their source, big data can be
natural or artificial. In the former case, data are generated by some independent
object and we (“investigators”) decide what should be “measured” (Examples 1,
2 and 4). In the latter case, the source of data is a model (Examples 3 and 5);
complexity (data flow) is partially controlled and defined during simulation.

“Recipes.” There exist four large groups of subjects (see Fig.5) operating
(explicitly or implicitly) big data in their professional (scientific and/or practi-
cal) activity: - manufacturers of big data handling tools (software/hardware
developers, suppliers, consultants, integrators, etc.);

- designers of big data handling methods (experts in applied mathematics and
computer science);

- specialists in application domains (scientists focused on real objects or their
models) that represent big data sources;

- customers utilizing or planning to utilize the results of big data analysis in
their activity.

Representatives of the mentioned groups interact with each other (see the
dashed lines in Fig.5). The normative (“ideal”) division of “responsibility areas”
is illustrated by Fig.6; here the thickness of arrows corresponds to the level of
involvement.

Proceeding from sensus communis and not claiming to be constructive, we for-
mulate the following general “recipes” for the listed groups of subjects.

For manufacturers of big data handling tools: with the course of time, it
will be difficult to sell big data solutions (including analytical ones) without sug-
gesting new adequate mathematical methods and stipulating for the feasibility
of close cooperation between customers, the developers of appropriate methods
and specialists in application domains.

For mathematicians (the author’s “brothers-in-arms”): a topical query con-
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Fig.5 Subjects operating big data

Fig.6 Division of “responsibility areas”

cerns adapting well-known methods and developing new processing methods (in
the first place, with nonlinear complexity!) for the large flows of unstructured
data representing a good testing area for new models, methods and algorithms
(to the extent possible, at the expense of manufacturers and/or customers).

For specialists in application domains: big data technologies lead to new capa-
bilities for acquiring and storing the bulky arrays of “experimental” information,
conducting the so-called computing experiments; the associated methods of ap-
plied mathematics enable systems generation and rapid verification of hypotheses
(revelation of implicit regularities).

For customers: the expensive technologies of big data acquisition and storage
would hardly be economically sound without involving specialists in appropriate
methods and subject areas (only if it is absolutely clear which questions a cus-
tomer would like to answer using big data19).

Some threats. In addition to the emphasized necessity of searching for ade-

19Though, it is possible to store data de bene esse (e.g., to verify a certain hypothesis in future
based on them).
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quate simple models and the alerting trend of anticipatory technologies develop-
ment, we expect the future relevance of the following problems (the list below is
unstructured and incomplete).

• The informational security of big data. This requires adaptation of well-
known methods and tools, as well as development of fundamentally new ones.

• The energy efficiency of big data. Even today, data processing centers
represent a considerable class of power consumers. The bigger are data to-be-
processed, the higher is energy needed.

• The principle of complementarity was established in physics long ago; it de-
clares that measurements modify the state of a system. However, does it apply to
social systems whose elements (people) are active, i.e., possess their own interests
and preferences, choose their actions independently, etc. [21]?

A demonstration of this principle lies in the so-called information manipula-
tion (strategic behavior). According to theory of choice [4,22], an active subject
reports information by forecasting the results of its usage; generally speaking, an
active subject does not adhere to truth-telling.

Another example concerns the so-called active forecasting: a system changes
its behavior based on new knowledge about itself [23].

Are these and similar problems (e.g., crowdsourcing [4,24], conformity behav-
ior [25], etc.) eliminated or aggravated in the case of big data?

• As far as we have mentioned the principle of complementarity, it is necessary
to recall the principle of uncertainty in the following (epistemological) statement
[16]: the current level of science development is characterized by certain mutual
constraints imposed on results “validity” and results applicability. In the context
of big data, this principle means the existence of a rational balance between the
level of detail in the description of a studied system and the validity of results
and conclusions to-be-made on the basis of this description.

• A traditional assumption in design and operation of information systems (cor-
porate systems, decision support systems of governmental services, inter-agency
circulation of documents, etc.) is that all information in such systems must be
complete, unified and publicly available (under existing access rights). But it is
possible to show the “distorting-mirror” reality to each person, i.e., to create an
individual informational picture20, thereby performing informational control [4,
7, 21, 23]. Should we strive for or struggle against these effects in the field of big
data.

20At the very least, a fragment of the “objective” picture (hushing up the whole truth); at
the most, an arbitrary inconsistent system of beliefs about the reality.
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7 Instead of Conclusion

Thus and so, data have always been big. New, more and more perfected tools
of big data acquisition, storage and processing appear intensively. We wish we
managed to perform these operations in real time. This calls for developing
appropriate directions of applied mathematics and computer science (a topical
query from technologies and practice to modern science).

There also exists a pressing need for mass training of specialists in big data,
big analytics and big visualization (with focus on concrete application domains).

However, this is not enough: we have to accumulate knowledge (in appropriate
branches of science) and create models for compact and adequate description of
studied phenomena and processes (with due consideration of a solved problem).
In other words, it is desired to advance from the level of Brahe to the level of
Newton in each possible area of big data applications. Otherwise, we are doomed
to handle particulars, not seeing the wood for the trees (see E. Rutherford’s
citation above).

Furthermore, the anticipatory development of technologies has become the
civilization-scale problem to-be-accounted by scientists and engineers (including
the field of big data and big control), as well as by the consumers of appropriate
methods and tools created by them.
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