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Abstract

As the field of Sparse Matrix vector multiplication (SpMV) matures and its
breadth of application increases, the need for parallel implementation becomes
necessary. SpMV is proved to be a bottleneck due to its irregular access pat-
terns. Various storage formats for sparse matrices have been proposed to solve
this issue. The Quad tree-Compressed Row Storage (QCSR) format shows good
performance improvement over other formats such as Compressed Row Storage
(CSR) and Blocked CSR (BCSR) for SpMV. This paper extends QCSR format to
exploit the Single Instruction Multiple Data (SIMD) registers which are available
in current processors. Programming with SIMD registers in a single core proces-
sor achieves parallelism with reduced power and without any additional hardware
requirement, as in the case of Graphics Processing Unit (GPU) computing. To
program effectively in SIMD units Intels Streaming SIMD Extension (SSE) in-
structions are used. In this paper computational performance of QCSR-SpMV is
determined for over a collection of 10 benchmark matrices on SIMD units of X86
architecture. Experimental results demonstrate QCSR-SIMD achieves significant
average speedup of 2.0 x compared to CSR-SIMD.
Keywords OpenMp; GPU; Sparse Matrix; SpMV; CSR; QCSR; SIMD; SSE;
Performance; Programming model; Optimization; Parallel computing.

1 Introduction

There are multiple ways of accomplishing parallel computing in single machine
to cloud environment. In single machine, parallel computing is achieved through
thread level parallelism with Open Multiprocessing (OpenMP), message passing
method with Message Passing Interface (MPI) and through SIMD technique with
SSE instruction. Increasing clock speed has been ceased recently which gave a
way for multi or many cores CPU. The other alternative method to achieve many
core computing is through GPU. In GPU, parallelization is achieved with the ex-
pense of new hardware. Parallel computing in cloud environment is realized by
distributing the computing task to various computing resources and gathering
the result. In cloud computing allocating task is a major issue. Guiyi Wei, et al
addressed this issue of allocating the task to various computing resources in the
cloud[1]. It involves allocation matrix and expense matrix. If a matrix used in an
algorithm is dense then there is no issue but algorithm involving sparse matrix
is a concern one.
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A lot of work is being done in the field of sparse matrices and SpMV, to im-
prove the efficiency. Emphasis has been laid on the parallel implementation of
SpMV in the past decade. Sparse matrix structures are present in various appli-
cations, and efficient method for optimizing the performance of these applications
is a critical issue. SpMV is an operation found in many computational science
applications. Improving the speedup of SpMV boosts the performance of these
applications. Extensive research has been done in improving the performance of
SpMV using thread level and distributed memory parallelism. Samuel Williams
et al. examined SpMV on various multicore design namely AMD quad core, IN-
TEL quad core[2], etc. Shengfei Liu, et al. worked on SpMV with Compressed
Sparse Row (CSR) and Blocked CSR (BCSR) format[3]. They have implemented
multithreaded SpMV using OpenMP. Partitioning the matrices in to sub matrices
and hybrid programming model with MPI and OpenMP are the future methods
proposed in the paper to increase the performance of the kernel. Dakuan dis-
cussed SpMV with MPI[4]. Gerald Schubert et al. examined the performance of
SpMV kernel with hybrid programming (OpenMP and MPI) model[5]. This pa-
per does not explore the load balancing issues. M.Krotiewski and M.Dabrowski
presented a parallel implementation of SpMV on multicores with well- known
optimization such as matrix reordering, blocking and prefetching[6].

With the rise of high performance computing, most of the focus is now on
GPU computing. In literature, different formats of storage have been developed
to either improve the space efficiency, or the time of access of non-zero elements
for various operations. Some formats are specific to the execution environment
such as CPU or GPU. Tomas Oberhuber et al. proposed a new format such
as new row grouped CSR which performed well in GPU devices[7]. Jilin Zhang
et al. have implemented SpMV using a new type of storage format, Quad tree
CSR (QCSR) format using GPUs[8]. This format outperforms the Blocked CSR
(BCSR) format.

Recently vectorization capability using SSE instructions of the current proces-
sor proved to be better technology to improve the performance of many applica-
tions. Susana Ladra, et al. exploited SIMD instructions in current processors to
improve the classical string algorithms[9]. Kai Zeng et al. proved the usage of
SIMD technique in computed tomography CT reconstruction is efficient rather
than GPU implementation[10]. Image processing applications such as feature
detection, stereo vision class model estimation, and object detection achieved
better performance on the Compressed Sparse Extended ( CSX ) SIMD architec-
ture compared with GPU[11]. S.J.PennyCook et al. explored the use of SIMD
registers for molecular dynamics problem set[12].

To obtain better performance on numerical kernels, Martin Kong et al. pro-
posed a 3-step framework such as data locality, multicore parallelism and SIMD
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execution of programs[13]. Libo Huang et al. presents a dynamic vectorization
method to address the constraints in current SIMD engines such as register vari-
ation in the processors requires changing of vector operands and aligned memory
accesses[14]. NaserSedaghati proposed an extension to the instruction available
in Instruction Set architecture (ISA) to overcome the disadvantage of SIMD for
stencil computation application[15]. Neil G. Dickson et al. found that explicit
vectorization on the CPU gave 9x-12x speedup over the original CPU version,
and was also found to be 2x faster than the fully optimized GPU version that
uses explicit memory coalescing. These papers signifies the importance of single
core optimization on CPU[16].

Ji-Lin Zhang et al. have implemented SpMV using CSR format with SIMD
methodology and thread-level parallelizing[17]. They found out that these meth-
ods gave a speed up of around 2.11 over that of the non-optimized method. Kai
Zhang et al. improved upon this and broke the performance bottlenecks of the
SIMD processors like the low utilization of SIMD processors and the memory
bandwidth[18]. Their method showed a good speedup over the normal CSR vec-
tor kernel. NazliGoharian et al. demonstrated that CSR is the best storage for-
mat for information retrieval and query processing among various storage format
of sparse matrix[19].These paper explored SIMD in SPMV and its importance.

In this paper, we investigate the impact of SIMD acceleration on SpMV Kernel.
For this, SpMV kernel with CSR and QCSR format has been accelerated, i.e.,
SIMD is applied to all suitable operations and implemented in Haswell processor
using SSE instructions.
The main contribution of this paper are as follows.

1. Made an extensive study on strorage formats of sparse matrix structure
and analyzed the space complexity for benchmark matrices from different
applications.

2. SIMD acceleration is presented for all the data-parallel kernnels of SpMV
with CSR and QCSR format.

3. Implementation and optimization is performed with SSE instructions.

4. SIMD implementation of CSR outperforms the na?ve and thread level par-
allelism.

5. With SIMD optimization,SpMV with QCSR format gives 2 fold of speedup
compared to CSR-SIMD.

The rest of the paper is organized as follows: Section 2 deals with architecture
specifications, Section 3 describes the SpMV algorithm with its storage format
analysis; Section 4 explores about SIMD optimization of SpMV kernel with CSR
and QCSR storage formats; Section 5 deals with the results and observations;
Section 6 talks about the conclusion.
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2 Architecture Specification

Since the beginning of the processor, its performance has been steadily increasing.
Developments in semiconductor capability are the main reason for this remarkable
change. Advancement in architectural features like instruction- level parallelism,
data-level parallelism (DLP) thread-level parallelism (TLP) and memory-level
parallelism (MLP) brought remarkable improvement in performance. Here, in
this paper DLP is achieved through SIMD, and TLP is done through OpenMP.

2.1 DLP-SIMD

SIMD is one of the classifications of the Flynns taxonomy of computer architec−
ture[20]. It exploits DLP by performing the same operation on multiple data
points simultaneously. SIMD architecture consists of multiple processing elements
that perform identical task concurrently on the data elements as shown in Fig.1.

Fig. 1 SIMD architecture.

SSE instructions are now available in current generation processors to pro-
gram effectively with SIMD registers. These instructions are used effectively to
vectorise the code and to modify the data layout. Automatic vectorization has
certain limitations such as handling loops of irregular access patterns, pointer-
s, etc. Since Automatic vectorization has restricted applicability, programmers
write vectorised code using intrinsic which is directly expanded to machine in-
structions. Programming using intrinsic are tied to a specific Instruction set.
With the help of these SSE instructions, SIMD Programming is performed in
high level programming languages such as C. Compared to GPU, there is no
overhead incurred, like moving data from device to device or thread processing.
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It can also be combined with thread level parallelism technique to increase the
speed up further. SSE is included from Pentium III processors by adding 128 bit
registers and the instructions that can operate on them. Advanced Intel proces-
sors supports AVX which includes 256 bit register with extra SIMD instructions
in addition to SSE instruction set. SSE instruction set includes integer and float-
ing point arithmetic Instructions, comparison, shuffling, data type conversion,
bitwise operations, minimum, maximum, conditional copies, CRC 32 and popu-
lation count. Currently in many applications such as gaming, graphics, physics,
and Mathematics, SIMD instructions are used to perform shuffling, scalar prod-
uct, checksum calculations and complex operations. There are various versions
of SSE such as SSE- SSE4.2 which are capable of processing 2 double precision
floating point numbers or 4 single precision 32 bit floating point numbers. SSE
intrinsic is used to improve the performance of an application which has fine grain
parallelism in it. When dealing with sparse matrices, one of the most important
restrictions is that the average width of non-zero elements per row must be greater
than the SIMD width of the computer device. Else, the SIMD registers are only
partially utilized, and do not give a considerable increase in the efficiency.

2.2 TLP - OpenMP

Thread level parallelism is achieved when a single process is divided into various
sub- parts, and each part is carried out by a different thread, so at the end, it could
be combined to give the result. OpenMP is an API that provides shared memory
multi-processing programming using high level languages such as C, C++ and
FORTRAN. There are various methods to perform thread level parallelism for
SpMV-CSR kernel. Parallelism can be done row wise or column wise or block
wise. Here, we have performed row wise parallelism, where each row is assigned
to a thread. The accesses to the data are independent and hence can easily be
parallelized. One advantage of using the row wise partitioning is that individual
threads operate on different parts of the final resultant array unlike that of the
column wise partitioning, where all threads have to write to all parts of the array.

3 SpMV Algorithm

SpMV forms a basic computational kernel in many scientific and industrial appli-
cations. Modern High Performance computer systems (HPC) such as multicores,
GPU,SIMD computation using coprocessor and special XMM registers rely on Sp-
MV computation for numerous task. SpMV is usually represented as Y = A ∗X
where A represents a sparse matrix and Y and X represents a vector. Sparse
matrix is a matrix which has more number of zero elements than the non-zero
values. Storing a sparse matrix as it is in a memory is a space overhead and in
some applications it doesnt fit in to the available memory. To effectively reduce
the storage space many data structures have been proposed in the literature.
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These data structure stores only the non-zero elements of the matrix and thereby
reduces the computation of SpMV algorithm. This is important in HPC commu-
nity since all modern computer system is equipped with small storage devices.
The compression of sparse matrix using efficient storage format influence the per-
formance of SpMV operation.For the remainder of the paper, we use the following
notation:

N : Total number of non-zero values

n : order of the matrix

S( ): Storage space occupied

Nr : Number of rows

3.1 Storage formats

Sparse matrices are stored in computer memory with specific formats that give
high performance of SpMV operation. Few of the popular formats of storing
sparse matrices with space and time complexity are discussed here.Equations 1-5
represents the space complexity of various storage formats.

3.1.1 The Coordinate Format (COO)

This is one of the most general purpose formats. It consists of three 1-dimensional
arrays - one to store the non-zero values, one to store the corresponding column
index, and the other to store the corresponding row index [21].

Fig. 2 Example Matrix.

For example, the COO format for the matrix shown in Fig.2 is represented as :
Data = [1 1 1 1 1] Col = [1 1 2 2 4] Row = [1 2 2 3 3].

a Time complexity : The time complexity to convert this format to/from
the Compressed Row Storage (CSR) format is O (N+n)

b Space complexity : The space complexity of this format excluding the
data array is given by

S(COO) = 2 ·N · S(n) (1)
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3.1.2 The Compressed Row Storage Format (CSR)

This is one of the most efficient and hence most popular storage formats. It
consists of three 1-dimensional arrays C one to store the non-zero value, one to
store the corresponding column index, and the other to store the row pointer
value, that gives the total non-zero values in each row [21] for the example in
figure 2:

CSR format is given as:
Data = [1 1 1 1 1]
Col = [1 1 2 2 4]
Row-Ptr = [0 1 3 5 5]

a. Time complexity : The time complexity to convert this format to/from
the Coordinate (COO) format is O (N+n).

b. Space complexity : The space complexity of this format excluding the
data array is given by

S(CSR) = N · S(n) + n · S(N) (2)

3.1.3 The Quadtree storage format

Quadtree is a recursive tree data structure given by Ivan Simecek [22]. The
matrix is recursively divided into four quadrants until each block is equal to a
predefined size (called density). These blocks or nodes can be of three types:

a. Empty: The entire node is made up of zeroes.

b. Mixed: The node consist of a mixture of zeroes and non-zero elements.

c. Full: The entire node id made up of non-zero elements.

Empty nodes are ignored, and the mixed and full nodes are stored in any format
that is found to be appropriate for the application.The matrix in Fig.1, is divided
in to four quadrants and each quadrant is checked for the node types. Here the
second quadrant is empty and it is ignored and all other quadrants are further
retrieved through the indices for its operation as shown in Fig.3. The advantages
of this format are:

a. Easy conversion from popular formats.

b. Easy modifications to the data.

c. The recursive style of programming leads to better performance due to
better cache memory utilization.

a. Time complexity: The entire algorithm can be broken down into smaller
functions. The time complexity of each such function is as given below:
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(1) To find the total non-zero values in each quadrant: O (average per row.
(y2 - y1 + 1)).

(2) To check the given quadrant is empty or not:O (log2 average per row.
(y2 - y1 + 1)).

(3) For converting the matrix into Quadtree format, the complexity de-
pends on the density.

b. Space complexity: The space complexity completely depends on the den-
sity chosen and the creation of leaves.

3.1.4 The QCSR (Quadtree Compressed Row Storage) format

The QCSR format is a combination of the Quadtree format and the CSR for-
mat(Jilin Zhang, etal, 2013)[8]. After dividing the matrix into various nodes
using the Quadtree logic, the Mixed and Full nodes are stored in the CSR for-
mat. Though it is found to have a space overhead, the implementation of SpMV
is much faster in this format.

a. Time complexity : The time complexity of this format is the same as that
of the Quadtree format, in addition to which each quadrant is converted
into the CSR format.

b. Space complexity : This format gives an overhead in space.The maximum
overhead over the CSR format is given by:

Soh(QCSR) = (2Sr + Sl)xO(4d− 1) (3)

Where, Sr is the space occupied by the index pointer to the region, Sl is the
region length and d is the maximum depth of the tree.

Fig. 3 Splitting of matrix.

3.1.5 Minimal Quadtree format:

This format is developed by I.Simecek et al.[23]. It is a derivative of the Quadtree
format and consists of a bit stream of 1s and 0s. The matrix is recursively divided
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into blocks as in Quadtree format, but here, each block is represented by a single
bit- 0 if all the elements in the block are zeroes, 1 otherwise. The example given
in Fig. 1, can be divided into 4 blocks if the density is 2, and can be represented
as 4 bits- 1011 for only the second block is an empty block, and the others have
non-zero elements.

a. Time complexity : The total time complexity for this conversion is

O(N(n+
√
N)) · log2avg per row

b. Space complexity : The minimal size of the MQT format is given by:

S(MQTmin) = 4 · (N
3

+ log4(
n2

N
)) (4)

The maximal size of the MQT format is given by:

S(MQTmax) = 4 · (1
3
+ log4(

n2

N
)) (5)

As minimization of memory is an important criterion for SpMV operation, we
compared thespace complexity of various formats for the benchmark matrices
obtained from University of Florida database [24]. Table 1 shows the properties
of benchmark matrices used. Table 2 depicts the space occupied for these matrices
in COO, CSR, QCSR and MinQCSR format.

Table 1 Overview of the benchmark matrices

Benchmark Matrices
Number of

rows
Number of
columns

Number of
non- zero elements

bcsstk07 420 420 4140

adder dcop 08 1813 1813 11242

mhd4800b 4800 4800 16160

Meg4 5860 5860 26324

gemat11 4929 4929 33185

Cell1 b 7055 7055 34855

Ex12 3973 3973 42092

SiNa 5743 5743 102265

Na5 5832 5832 155731

From table 2, it is evident that Minimal QCSR, which is just a series of bits
is well suited for storing the structure of matrices and hence not suitable for
SpMV operation. CSR is the next format that has the least space complexity
and proved to be well utilized in SpMV operation. QCSR format has the space
overhead but that is not accounted for SpMV operation. Hence, among all the
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formats that have been developed so far, the CSR format is the most efficient
and effective format. A lot of improvements have been done on this format to
improve its efficiency. In this paper, we analyse the CSR format along with the
QCSR format for SpMV computation in SIMD architecture.

Table 2 The space complexity of various formats for benchmark matrices

Benchmark Matrices Original COO CSR QCSR MinQCSR

bcsstk07 391KB 97KB 76KB 118KB 394b

adder dcop 08 6.35MB 326KB 176KB 265KB 999b

mhd4800b 44MB 436KB 263KB 416KB 810b

Meg4 65.7MB 425KB 386KB 854KB 739b

gemat11 46.5MB 648KB 506KB 1.2MB 367b

Cell1 b 95.2MB 587KB 386KB 854KB 739b

Ex12 30.4MB 1.13MB 635KB 845KB 349b

SiNa 63.6MB 2.95MB 1.52MB 3.19MB 46b

Na5 65.9MB 4.54MB 2.3MB 4.25MB 384b

3.2 SpMV - CSR

SpMV kernel acts as a core kernel of many iterative algorithms and scientific
applications. It is one of the time consuming kernel in these methods. Optimizing
this kernel plays a vital role in improving the performance of these applications.
The performance of SpMV kernel is based on the storage format used. CSR
format has been proved to be the best format with space efficiency. Algorithm
3.1 and 3.2 shows SpMV with CSR format in naive and thread level parallelism.

Algorithm 3.1 SpMV with CSR- Naive

Inputs
Ptr - Pointer Array
Data - Data Array
Column - Column index array
X - Vector for multiplication

Output:
Z - Result Array

1. Begin
2. for each item i from 0 - Nr do
3. Z[i] = 0
4. for each item j in Ptr[i] to Ptr[i+1] -1 do
5. temp = Column [j]
6. Z[i] = Z[i]+ (Data[j] * X[temp])
7. end for
8. end for
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9. End

Algorithm 3.2 SpMV with CSR-Thread level parallelism

Inputs
Ptr - Pointer Array
Data - Data Array
Column - Column index array
X - Vector for multiplication

Output:
Z - Result Array

1. Begin
2. ♯ pragma omp parallel num threads(4)
3. ♯ pragma omp parallel for private (k, j, i) schedule(static, 10)
4. for i = 0 to N - 1 do
5. Z[i] = 0
6. for j = Ptr[i] to Ptr[i+1]-1 do
7. temp = colj
8. Z[i] = Z[i] + (val[j] * X[temp])
9. end for
10. end for
11. End

3.3 SpMV - QCSR

As elucidated in Section 3.1, the QCSR format is a combination of the Quadtree
format and the CSR format. The given matrix is first divided into various quad-
rants using the Quadtree format, and the mixed and full nodes are converted
into the CSR format as shown in algorithm 3.3 and 3.4 [8]. Here, sr stands for
Start Row, er for End Row, sc for Start Column, ec for End Column, a[][] is the
input matrix, and density is the size of the quadrant. QCSR format compared
to CSR format has space overhead. This overhead is due to storage of block and
intermediate node information. This overhead accounts for transformation and
representation of matrix and not in SpMV Kernel. This implies that QCSR is
suitable for SpMV Kernel with all general cases.

Algorithm 3.3 Matrix Conversion to QCSR format

Inputs
sr - Start Row
sc - Start Column
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er - End Row
ec - End Column

1. Begin
2. int mr=(sr+er)/2;
3. int mc=(sc+ec)/2;
4. int r=er-sr;
5. int c=ec-sc;
6. if( r≥ density && c ≥ density )
7. {
8. if( !isEmpty(sr,mr,sc,mc) )
9. trans(sr,mr,sc,mc);
10. if( !isEmpty(sr,mr,(mc+1),ec) )
11. trans(sr,mr,(mc+1),ec);
12. if( !isEmpty((mr+1),er,sc,mc) )
13. trans((mr+1),er,sc,mc);
14. if( !isEmpty((mr+1),er,(mc+1),ec) )
15. trans((mr+1),er,(mc+1),ec);
16. }
17. else if(c>density)
18. {
19. trans(sr,er,sc,mc);
20. trans(sr,er,(mc+1),ec);
21. }
22. else if(r>density)
23. {
24. trans(sr,mr,sc,ec);
25. trans((mr+1),er,sc,ec);
26. }
27. else
28. {
29. if( !isEmpty(sr, er, sc, ec))
30. Convert the quadrant into CSR format
31. }
32. End

Algorithm 3.4 isEmpty(sr,er,sc,ec)

Inputs
sr - Start Row
sc - Start Column
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er - End Row
ec - End Column

1. Begin
2. int isEmpty()
3. for all elements i from sr to er
4. {
5. for all elements j from sc to ec
6. {
7. if( a[i][j] != 0)
8. return 0
9. }
10. }
11. return 1
12. End

4 SIMD Optimization

4.1 SpMV CCSR

SIMD optimization is performed with the help of SSE 4.2 instructions. Here, Nr
is the total number of rows in the matrix, val is the array used to store the non-
zero elements, col is the array to store the column indices, row is the row pointer
array, and X is the vector for multiplication. Algorithm 3.5 gives SIMD optimiza-
tion of SpMV kernel with CSR format. In vectorization using SIMD technique,
four values are operated simultaneously, as the size of the SIMD register is 4.
The non-zero elements were loaded into the data register, and the corresponding
vector elements in the x register. Here data and X are the special XMM regis-
ters available in the current generation processors. These values are multiplied
simultaneously, hence decreasing the total number of operations performed.

Algorithm 3.5 SpMV with CSR-SIMD

Inputs
Nr C Number of rows
Val C Data Array
row C Pointer array
X - Vector for multiplication

Output:
Z - Result Array

1. Begin
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2. for every element i from 0 to Nr-1 do
3. for every element j in row[i] to row[i+1]-1 do
4. data = {val[j] , val[j+1], val[j+2], val[j+3]}
5. x = {X[col[j]] , X[col[j+1]], Xcol[j+2]], X[col[j+3]]}
6. y = mm mul ps(data, x)
7. Zi = sum{y}
8. j = j + 4
9. end for
10. end for
11. End

4.2 SpMV -QCSR

QCSR format is an improvisation on the Quad tree format, in which each of the
blocks is stored in the CSR format. We have performed sparse matrix vector
multiplication using this format. One condition that has to be met to maximize
efficiency is that, the total non-zero values in each block should be greater than
or equal to the size of the SIMD register. If not, the remaining bits in the SIMD
register must be padded with zeros which results in time overhead. QCSR with
SSE instructions is specified in algorithm 3.6. The following instructions are used
to vectorize the SpMV implementation of QCSR format.

1. mm loadu ps(array) : This is used for loading the registers with the ele-
ments in the array.

2. mm mul ps(reg1, reg2) : This is used to perform vectorized multiplication
of the elements in the two mentioned registers. The result is stored in reg1.

3. mm hadd ps(reg1, reg2) : This is used to perform vectorized addition of
the elements in the two mentioned registers. The result is stored in reg1.

4. mm storeu ps(ptr, reg) : This is used to store the results in the register to
the pointer.

Algorithm 3.6 QCSR with SIMD optimization

Each block in QCSR format consists of the following components:

Startrow: The row index of the first row in the block.
Startcolumn: The column index of the first column in the block.
Endrow: The row index of the last row in the block.
Endcolumn: The column index of the last column in the block.
structure csr: CSR representation of the block, which contains
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nz: The total non-zeroes values in the block
data[n]: Data array for the block.
ptr[n]: Row-pointer array for the block
col[n]: Column indices array for the block

MULTIPLY (EACH BLOCK)

i: To keep track of the number of rows in the block.
k: To keep track of the number of non-zero elements in each row.
t: To keep track of the ptr arrays index.
temparr: To store the padded data values.
data1, vect1, temp, res1: SIMD registers.
res: To store the multiplication result.
1. Begin
2. for i from startrow to endrow, do
3. for k from csr.ptr[t] to csr.ptr[t+1], do
4. q= csr.ptr[t+1] C csr.ptr[t];
5. a = minimum ( q-k, 4)
6. for j from 0 to a, do
7. temparr[j]= csr.data[k+j];
8. if j < 4
9. Pad the remaining places with 0.
10. end if
11. data1= mm loadu ps ( temparr )
12. vect1= mm loadu ps ( v[col[k]], v[col[k+1]], v[col[k+2]],
v[col[k+3]] )
13. temp= mm mul ps (data1 , vect1)
14. res1= mm hadd ps (temp , temp )
15. res1= mm hadd ps (res1 , res1)
16. mm storeu ps ( c , res1)
17. res[i] = res[i] + c
18. end for
19. t++
20. k=k+4
21. end for
22. End
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5 Results and Discussion

In this section we analyse the performance improvement of CSR-SPMV and
QCSR- SpMV format using instructions included in SSE 4.1/4.2 extension. To
carry out experiments, we have used Intel(R) CoreTM i5-4200U CPU@ 1.60 GHz
(2 cores) with 4 GB RAM. Visual Studio 2010 compiler was used for compilation.
The width of the SIMD register in the test system is 4. In this experiment, the
density size has been chosen to be 16 such that the non- zero elements in each
block are equal to or greater than the width of SIMD register.

Speed-up is a performance index, which is a ratio of the time taken to imple-
ment a program sequentially to the time taken to do the same in parallel. We first
performed SpMV using the CSR format both sequentially and in parallel using
OpenMP. In parallel implementation, we have considered the block size to be 10.
Each thread is given a single row and multiplication of these rows is performed
in parallel. One disadvantage of this method is, if the total non-zero elements in
one of the rows are much greater than that in the other rows, then stalling of
the other threads occurs. The remaining threads have to be idle until the thread
with that particular row finishes execution.

Next, we implemented the same using SIMD vectorization and compared this
with that of sequential execution. The SIMD registers are of size 128 bits, and
hence 4 32-bit integers can be loaded in it at a given time. Each row is consid-
ered separately, and the non- zero elements in it are loaded into the register, 4
at a time. If the number of non-zero elements left is less than 4, it is padded
with zeroes. This overcomes the disadvantage of stalling that occurs in thread
level parallelism. Another overhead that this method avoids is the time taken
for the creation of threads. The efficiency of the execution of SpMV using SIMD
completely depends on the arrangement of the non-zero elements in the matrix.
Fig. 4 shows results obtained when implementing SpMV using CSR format with
SIMD and OpenMP techniques.
From the graph shown in Fig. 4, we determine that the SIMD vectorization
technique gives better results when compared to that of sequential and parallel
execution. Hence, we implemented SIMD version of SpMV for various benchmark
matrices using the QCSR format using this technique of SIMD vectorization. In
this method of implementation, each quadrant is considered separately and is
treated as a separate matrix.

CSR SpMV using vectorization, as discussed above, is then carried out for each
quadrant. Here, the size of the quadrant depends on the density chosen. Since
the density is usually in powers of two and much smaller than the original matrix
size, the probability that the total non-zero elements in each row in the quad-
rant is less than 4 is quite high. Hence the number of times the SIMD registers
have to be loaded and padded is reduced. These results were compared with the
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results obtained from implementing SpMV with regular CSR format with SIMD
vectorization. Fig. 5 shows the graph of the speed-up obtained by the QCSR
format. The graph clearly shows that the QCSR format when implemented with
SIMD is more efficient than that of the CSR format with SIMD.

Fig. 4 Computing time for optimization schemes using CSR.

Fig. 5 Computing time for optimization schemes using CSR.

6 Conclusions

This paper explores the use of the SIMD technique provided in current proces-
sors, to accelerate the performance of SpMV using QCSR format. As SIMD units
are readily available with the current generation processors, and do not incur ad-
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ditional processing cost unlike GPU programming and threading, it is necessary
to avail the feature of this hardware to improve the performance of various ap-
plications with reduced power . Results show that the speedup of SpMV QCSR
with SIMD is an average of 2, compared to that of SpMV CSR with SIMD, for
the Benchmark matrices chosen. It is also apparent that the efficiency of this
technique completely depends on the arrangement of the non-zero elements per
row.
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