
Advances in Systems Science and Application (2015) Vol.15 No.4 351-365

High Throughput Area Efficient Architecture for
Light Weight Cryptography

Vanitha M and Subha

School of Information and Technology, VIT University, Vellore - 632014, Tamilnadu,
India

Abstract

Hummingbird algorithm is one of the recently proposed light weight cryptograph-
ic algorithms targeted for resource constrained devices like RFID (radio frequency
identification), smart cards and majority of wireless sensor nodes. The main ad-
vantage of this algorithm is that it provides adequate security with smaller block
size. As per the previous works on this algorithm, area and performance are
two main design tradeoff of this algorithm. Performance is increased by loop
unrolling and area is optimized by looping. So optimization in both area and
performance is a big challenge. This work, proposes efficient hardware architec-
ture for the hummingbird algorithm using partial loop unrolling which concerns
both the area and performance of hardware implementation. The overall ar-
chitecture was modeled using verilog HDL and synthesized using cadence RTL
compiler with 45nm Technology from TSMC. Proposed design also implemented
in low cost Spartan 3 FPGA board and the results are compared with the existing
implementations. Results show that there is an area reduction of around 6% and
throughput almost get doubles.
Keywords Hummingbird; Lightweight cryptography; RFID.

1 Introduction

The importance of low cost devices like RFID (Radio frequency identification),
smart cards and various wireless sensor devices is increasing in our present day
life. So the security of such devices is very important. Since these devices are ex-
tremely resource constrained in terms of computing power, battery power supply
and memory, the standardized cryptographic algorithms such as AES(Advanced
encryption standard) , DES(Data encryption standard), which are well focused on
software implementation rather than hardware, cannot be used as it is in these
devices. So a certain class of cryptographic algorithms known as light weight
cryptography is evolved. The design metrics of light weight cryptography are
security, cost, and performance. Practically it is difficult to optimize all the three
design goals.

1.1 Related Works

Many lightweight cryptographic algorithms are presented until now, a light weight
algorithm named HIGHT is proposed with 3048 gate equivalents (GE) which is
much faster than AES[1]. Scalable Encryption Algorithm (SEA), with a block



352 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

size and key size of 96 bits, and word size of 8 bits and 93 rounds operation can
encrypt one data block within 1428 clock cycles and 3758 GE[2].Slight Modifi-
cations is done on Classical Block Cipher lightweight DES variant called DESL
(DES Lightweight)[3]. ASIC implementation of the same requires 1848 GE and
it can encrypt one 64-bit data block in 144 clock cycles. The implementation of
DESL has approximately 20% smaller chip size than DES. Key whitening tech-
nique can be useful to improve the security of cipher in DESXL algorithm. For
encrypting the plaintext, it requires 2, 170 GEs and 144 clock cycles. PRESENT
algorithm is a lightweight substitution, permutation based block cipher, which
operates on 32 rounds, key size of 80 or 128 bits and 64 bit block size. PRESENT
serial version can be implemented with 1000GEs[4].

The Hummingbird algorithm is the one of the recently presented ultra-light
weight cryptographic algorithm[5]. The size of the key and the internal state of
Hummingbird provides adequate security level for many embedded applications.
The present researches are going on the development and different implemen-
tation of the same because of the simplicity in the architecture. Until now the
hummingbird has been implemented on different target platform, software as well
as in hardware and shows good efficiency in both. Xinxin fan implemented the
algorithm on 16 bit as well as 4-bit microcontroller.[6] Daniel engels implemented
the architecture on 8-bit microcontroller.[7] Xinxin fan implemented both area
oriented and throughput oriented design of hummingbird on low cost FPGA.[6,8]
Biao min proposed another efficient hardware implementation of the same FP-
GA.[9] Ismail san proposed yet another implementation on FPGA using copro-
cessor approach.[10] All these implementation shows that this algorithm works
well on different target platforms.

As per the previous works, Hummingbird can be implemented in different plat-
forms but each of which is focused on either optimizing area or optimizing the
speed. Here we are presenting an efficient architecture for the hummingbird al-
gorithm focusing to optimize the area as well as the speed. Comparison is made
with the existing implementations. The synthesized result shows the increase in
throughput by 111% and reduction in area by 6.6%.

The remaining portion of this paper is organized as follows. Section 2 presents
the standard Hummingbird algorithm, with its initialization, encryption and de-
cryption steps. Next, Section 3 discuss about the proposed architecture for in-
creasing the throughput and reducing the area. Section 4 presents the simulation
results, synthesis outcome in FPGA and ASIC platform and their comparison
with the existing architecture section 5 concludes this work.



Advances in Systems Science and Application (2015) Vol.15 No.4 353

2 Standard Hummingbird algorithm

Hummingbird is the recently proposed ultra-light weight cryptographic algorith-
m, which is the combination of block cipher and a stream cipher. The design of
hummingbird consists of 16-bit block size, 256-bit key size, and 80-bit internal
state. The main advantage of this algorithm is, it is having smaller block size
compared to other algorithms and provide sufficient security even though the
block size is small.

The overall structure of the hummingbird cryptographic algorithm includes
four 16-bit block ciphers EKi(i=1,2,3,4), four 16-bit internal state registers RSi
(i= 1,2,3,4), and a 16-bit LFSR (linear feedback shift register). The 256-bit key
with 4 internal registers and LFSR provides adequate security level. For each
block EKi., 256-bit secret key is divided into four 64-bit sub keys Ki(i=1,2,3,4).

Fig. 1 Initialization

Notations Used

RS1-
RS4

Internal State registers to hold
nonce value

EK1-
EK4

State registers to hold the mod-
ulo addition values of 16 bit reg-
ister RS with EK

+ Modulo addition

TV Register to store the final out-
put after 4 rounds of initializa-
tion

2.1 Initialization

The initialization process shown in Fig.1 initialize the four internal states regis-
ters EK1 to EK4 and get the LFSR initial value before encryption starts. The four
internal state registers are first loaded with four 16-bit random NONCE values.
Taking RS1 + RS3 as input data, four block ciphers are consecutively executed
four times and the states are updated accordingly as shown in Fig.1. The final
output after four iteration is shown in the register TV, which is used to get the
initial value of LFSR and used to update the state RS3 in encryption process.



354 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

The LFSR is used not only for RS3 updating but also to ensure that period of
the internal states are at least 216.

Fig. 2 Encryption

Notations Used

RS1-
RS4

Internal State registers

EK1-
EK4

16 bit register to hold the
block cipher value after
modulo addition

+ Modulo addition

PT Plain Text

CT Cipher Text

Fig. 3 Decryption

Notations Used

RS1-
RS4

Internal State registers

DK1-
DK4

16 bit register to hold the value
after modulo subtraction

- Modulo subtraction

+ Modulo addition

PTi Plain Text

CTi Cipher Text

LFSR Linear Feedback Shift Register



Advances in Systems Science and Application (2015) Vol.15 No.4 355

Fig. 4 Block cipher

2.2 Encryption/Decryption

After the initialization process, encryption starts by taking the input as the Plain
Text(PT) followed by the modulo 216 addition (shown in fig.2 as + ) of plain text
with internal state register RS1 and the result is applied to the block cipher EK1.
The whole process of encryption is shown in Fig.2.



356 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

This process is repeated for four times and produces the cipher text. When all
the four block ciphers are completed, the RSi state register is updated accordingly.
Decryption process is just reverse operation of the encryption as shown in Fig.3.

2.3 Block cipher

Block cipher used in encryption process as shown in Fig.4. It consists of four
rounds of operation and a final round. One regular round operation consists of
a key mixing step, a substitution step and a linear transformation step. The
sub-key of 64-bit is separated into four 16-bit round keys which will be used in
the next corresponding rounds respectively. In the key mixing process, plaintext
block uses an exclusive-OR with the round-key. The S-box produces the results
step by step. The substitution round uses 4 Serpent-type S-boxes with the input
and output of 4-bits. Table 1 shows the substitution value of 4bits used for
substitution process. Here each 4-bit input is substituted with another 4-bit to
make confusion in output. For the final step it uses one substitute step. There is
no linear transformation step in the final round. The linear transformation step
is defined in equation (1) where an XOR operation is performed between Din and
6 times right shifted value of Din and 10 times right shifted value of Din.

Dout = Din∧(Din << 6)∧(Din << 10) (1)

Table 1 Substitution S box values

0 1 2 3 4 5 6 7 8 9 a b c d e f

s1 8 6 5 f 1 c a 9 e b 2 4 7 0 d 3

s2 0 7 e 1 5 b 8 2 3 a d 6 f 6 2 9

s3 2 e f 5 c 1 9 a b 4 6 8 0 7 3 d

s4 0 7 3 4 c 1 a f d e 6 b 2 8 9 5

3 Proposed Architecture

Until now, hummingbird is implemented across different target platform. Each
of that implementation is either focusing area optimization by looping technique
or throughput optimizing by loop unrolling of block cipher. The proposed block
cipher is similar to the previous models with a modification that cipher loop is
partially unrolled. This architecture is a compromise between earlier looped and
loop unrolled architecture so that it tries to optimize both area and throughput.
It requires 6 XORs, 12 S-Boxes, a linear transform and 2 multiplexers. Here a
plain text can be encrypted in 8 clock cycles. So the proposed architecture is
an optimization of area and speed. Fig.5 shows the proposed block cipher archi-
tecture. The four rounds of the encryption are unrolled and the three operation
in a round like substitution, permutation and linear transformation is executed



Advances in Systems Science and Application (2015) Vol.15 No.4 357

in sequence. Since the four rounds are executed in parallel it requires 4 times
duplication of hardware but at the same time the number of clock cycle required
is only 1 and for the last round it require one more extra. This encrypted block of
16 bit data is passed for next 5 rounds in a looped pipelined manner with pipelin-
ing register R1 and R2. The final encrypted data is taken in a 64 bit register
at every clock cycle so it require 5 more clock cycle so in total it require 7 clock
cycle for getting the encrypted data. The Encryption block (EE) is represented
from EE1-EE4 which operates in parallel.

Instead of using the four sbox as such in the design, a hardware friendly sbox
is selected from the sbox given in the Table 1 and it is repeated four times to
improve the area and performance. From the Table 3, it is found that minimum
hardware required for S3 implementation. So it is selected as the hardware friend-
ly sbox’s and used in the further implementation. The overall encryption core
architecture is shown in fig.6. System is made reset before the first encryption
starts. Upon reset, the control signals data sel, rss el, key sel,init encr and the
counters reset to zero. Data sel is used to select corresponding input data to the
block cipher, rs sel is used to select required internal register during operation,
key sel is used to select corresponding sub keys and init encr is used to differen-
tiate between initialization and encryption.

At first the internal registers are loaded with the 16-bit random nonce val-
ues and core starts encrypting the RS1+RS3 for four iterations. Each iteration
takes 7 clock cycles as well as internal state updating and same block cipher
architecture is reused each time as shown in the fig.5 which ensures maximum
architecture reuse and hence better area and performance. After four iteration,
the initialization is completed and the control signal init encr set to 1. Once the
initialization is completed, i th plain text is taken as the input and after 7 clock
cycles, we get i th cipher text. During the above procedure, the corresponding
sub keys, internal register and input data are selected according to the control
signals key sel, rs sel and data sel respectively. The control signals are generated
based on two counters. Control signals rs sel and data sel should be updated after
each block cipher operation so it is controlled by a block counter. The init encr
signal is updated after initialization process so it is controlled by a round counter.
After each iteration, the internal states are updated accordingly. The LFSR is
initialized after initialization process and updated after each encryption. The
proposed architecture is not altering the algorithm; it is an optimized hardware
implementation of the same.



358 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

Fig. 5 Proposed block cipher



Advances in Systems Science and Application (2015) Vol.15 No.4 359

Table 2 Cipher comparison

Looped Loop unrolled
Proposed (partial
loop unrolled)

Area
5XOR 8Sbox
1Linear transfor-
m 2MUX

8XOR 20Sbox
4linear transform
No MUX

6XOR 12SBox
2Linear transfor-
m MUX

Clock cycles (en-
cryption)

16 4 7

Fig. 6 Overall architecture



360 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

Table 3 Area requirement of different sbox implemented on Spartan-3 XCS200
FPGA platform

Sbox #LUT #FlipFlop Total occupied slices

S1 187 16 101

S2 184 16 99

S3 184 16 98

S4 186 16 99

Fig. 7 Proposed architecture against scan attack

3.1 Cryptanalysis of proposed Hummingbird architecture

Cryptographic processors are subjected to side channel attack. If the processor
uses the intermediate registers, the probability of easy hacking is more. The Scan
chain based Flip-flop (FF) used in the design synthesis is more vulnerable to scan
attack. The hackers can easily run the processor for 2 to 3 rounds by operating
in NORMAL mode and then switch over to TEST mode which can retrieve all
the data stored in the intermediate register made of scan based FF. The hackers
can hack the data by running the processor for few clock cycles by applying all
possible inputs and outputs vectors in a reversal fashion. Based on the hamming
distance between the input pairs the plain text can be hacked. Usage of scan
based FF cannot be avoided because it facilitates the easy testability of a ICs
and this opens an easy way for the hackers to steal the data.

A response compactor register is used instead of using normal FF to store
the intermediate results. The response compactor is a Multiple Input Signature



Advances in Systems Science and Application (2015) Vol.15 No.4 361

Register (MISR) which compresses the scan FF intermediate data in a compact
register by XOR operation as shown in the Fig.7. This will reduce the area and
simultaneously make the architecture resistance to scan attack. We could see this
architecture provide two hamming distance (1 and 8) which are at extreme so
that we get 40 ≈ 25.32 possible values for each key byte. Therefore, on average,
the final key hypotheses is (25.32)16 = 285.15, which cannot be brute-forced easily.
Basically this architecture is resistance to attacks like birthday attack, differential
attack and linear attack.

3.2 Validation of the proposed architecture

The encryption and decryption block for 16 bit is modeled with Verilog HDL
and simulated using Modelsim. The functional verification is shown in Fig.8
and 9. The ASIC implementation is done by synthesizing the design with RTL
compiler with 45nm technology file from TSMC. The backend of the design is
done using SOC Encounter. The complete chip layout is shown in Fig.10 with
design specification. The cryptanalysis on the proposed architecture is performed,
since we have used the iterative architecture for compressing the scan chain FF
response in a response compactor it shows that it is very difficult for brute-forced
attach on our architecture.

4 Results and discussion

The architecture for encryption core as well as decryption core is modeled using
Verilog HDL and simulated in modelsim. The architecture is synthesized and
implemented using Cadence RTL complier and encounter. For comparison with
the previous implementations, the same architecture is also implemented using
Xilinx ISE 13.2 by taking low cost FPGA sparten-3 XC3S200 in package FT-256
with a speed grade of - 5.

Fig. 8 Simulation result of encryption

Fig. 9 Simulation result of decryption



362 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

Table 4 Cadence synthesis report in 45nm

Item
Area

Power(uW) Frequency 4900(MHz)
cell cell area

encr cipher 535 1126 794.09 218.91

decr cipher 463 1025 735.92 244.61

encryption 1393 3996 845.86 164.17

decryption 1956 5494 1623.29 216.07

Table 5 Performance comparison of FPGA implementations

Design Algorithm Key
size

Block
Size

FPGA Area
(S-
lices)

Memory
Blocks

Frequ-
ency

(MHz)

Through
put

(Mbps)

Efficiency
(Mbps/
#slice)

X.Fan
et
al.[6,8]

Hummingbird
(Throughput
opt)

256 16
Spartan-
3
XC3S200-
5

273 0 40.1 160.4 0.59

Hummingbird
(area opt)

253 0 66.1 66.1 0.26

Ismailsan
et
al.[10]

Hummingbird 256 16 Spartan-
3
XC3S200-
5

40 2 260.8 55.64 1.38

Biao-
min[9]

Hummingbird
(Throughput
opt)

256 16
Spartan-
3
XC3S200-
5

230 0 39.8 157.6 0.68

Hummingbird
(area opt)

183 0 72.9 72.9 0.39

Posch-
mann
et
al.[4]

PRESENT
80 64 Spartan-

3
XC3S400-
5

176 0 258 516 2.93

128 64 202 0 254 508 2.51

Kaps
et
al.[11]

STEA 128 64 Spartan-
3
XC3S50-
5

254 0 62.6 36 0.14

Yalla
et
al.[12]

HIGHT 128 64 Spartan-
3
XC3S50-
5

91 0 163.7 65.48 0.72

Mace
et
al.[13]

SEA 126 126 Virtex-II
X-
C2V4000

424 0 145 156 0.368

This
Work

Hummingbird 256 16 Spartan-
3
XC3S200-
5

255 0 69.96 140 0.54

Table 4 shows the 45nm synthesis report in Cadence. No comparison is made
with this report because it is done for the ASIC implementation of the algorithm.
Comparison is done with FPGA implementation of the same with existing im-
plementations. Table 5 shows the comparison of our implementation with other
existing implementations as well as other few cryptographic algorithm implemen-
tations. X.fan proposed throughput optimized implementation of hummingbird
with 273 slices with a throughput of 160.4Mbps,[8] X.fan implemented area op-



Advances in Systems Science and Application (2015) Vol.15 No.4 363

timized hummingbird with 253 slices and 66.1Mbps throughput.[6] Comparing
with [8] our implementation has better area performance (-6.6%) but throughput
is slightly lower. Comparing with [6] our implementation has a good through-
put performance (+111%) but area is slightly higher. Strictly speaking, our
implementation is a compromise between area optimized design and throughput
optimized design.

Fig. 10 Simulation result of decryption

This clearly shows that the proposed design is optimized in terms of both area
and throughput. Ismail san has very good area performance but it utilizes the em-
bedded memory in the FPGA and it utilizes instruction stored in the embedded
memory.[10] So this implementation cannot be assumed as a complete hardware
implementation. Biao min throughput oriented design has better performance
compared to our design.[9]But the proposed design have better throughput com-
pared to area oriented design of the same [9]. The algorithm PRESENT [4] has
better area and throughput performance than hummingbird implementation but
it required comparatively larger FPGA XC3S400 which intern increases the cost.
xTEA[11] and HIGHT[12] have very less throughput compared to hummingbird
implementation and for SEA[13] requirement of area is very high. The Loop un-
rolling can increase the throughput but simultaneously increase the area so an
optimum of around 50% rounds is unrolled to have a compromising solution for
area and performance.

5 Conclusions

This paper presented an efficient VLSI architecture for ultra-light weight cryp-
tographic algorithm named hummingbird. Previous implementation of this algo-
rithm was focusing on optimizing either the throughput or area. But this paper
presented a design which is optimized in terms of both in area as well as through-
put. The proposed design is a compromise between both area optimized and



364 Vanitha M and Subha S:High Throughput Area Efficient Architecture for Light ...

throughput optimized schemes. The hummingbird algorithm has good efficiency
compared to all other algorithms and also it has smallest block size compared
to all. The experimental results shows that the hummingbird algorithm is very
much useful for resource constrained embedded devices. The initialization of in-
ternal registers is done by loading some random nonce values which is highly
influences the security of the algorithm. The generation of these random values
on the hardware is done using an LFSR.

References

[1] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. S Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim and S. Chee. (2006), “HIGHT: a new
block cipher suitable for Low-Resource device”, Proceedings of CHES 2006,
volume 4249 of LNCS, pages 46-9, Springer.

[2] F. X Standaert, G. Piret, N. Gershenfeld and J.-J. Quisquater. (2006), “SEA:
a scalable encryption algorithm for small embedded application”, Smart
Card Research and Applications, Proceedings of CARDIS 2006, volume 3928
of LNCS, pages 222-236, Springer-Verlag.

[3] G.Leander, C.Paar, A. Poschmann and K. Schramm. (2007), “New
LightweightDES Variants”, Fast Software Encryption.

[4] A.Poschmann, A.bogdanov and L.R Knudsen. (2007), PRESENT: An Ultra-
Lightweight Block Cipher, springer.

[5] D. Engels, X. Fan, G. Gong, H. Hu and E. M. Smith. (2010),
“Hummingbird:Ultra-Lightweight Cryptography for Resource- Constrained
Devices”, toappear in the Proceedings of The 14th International Confer-
ence on Financial Cryptography and Data Security - FC 2010, Berlin,
Germany:Springer-Verlag.

[6] X.Fan, G. Gong, K.Lauffenburger and T.Hicks. (2010), Design Space Explo-
ration of Hummingbird Implementations on FPGAs, Techincal Report.

[7] Xinxin Fan, Honggang Hu, Guang Gong1, Eric M. Smith and Daniel En-
gels. (2009), “Lightweight Implementation of Hummingbird Cryptographic
Algorithm on 4-Bit Microcontrollers”, Institute of Electrical and Electronics
Engineers.

[8] Xinxin Fan, Guang Gong, Ken Lauffenburger and Troy Hicks. (2010), “FP-
GA Implementations of the Hummingbird Cryptographic Algorithm”, 978-
1-4244-7812-5/10/, IEEE.



Advances in Systems Science and Application (2015) Vol.15 No.4 365

[9] Biao Min, Ray C.C. Cheung and Yan Han. (2011), “FPGA-based High-
Throughput and Area-Efficient Architectures of the Hummingbird Cryptog-
raphy”, 978-1-61284-972-0/11/, IEEE.

[10] Ismail San and Nuray At. (2011), “Compact Hardware Architecture for
Hummingbird Cryptographic Algorithm”, 21st International Conference on
Field Programmable Logic and Applications, 978-0-7695-4529-5/11, IEEE.

[11] J.-P. Kaps. (2008), “Chai-tea, cryptographic hardware implementations of
xTEA”, INDOCRYPT 2008, LNCS, vol.5365, pp.363-375, Springer.

[12] P. Yalla and J.P. Kaps. (2009), “Lightweight Cryptography for FPGAs”, In-
ternational Conference on Re-ConfigurableComputing and FPGAs ReCon-
Fig’09.

[13] F. Mace, F.X. Standaert and J.J. Quisquater. (2007), “FPGAimplementa-
tion(s) of a Scalable Encryption Algorithm”, IEEETrans, Very Large Scale
Integ, (VLSI) Syst.Vol.16, No.2, pp.212-216.

Corresponding author
Vanitha M can be contacted at: mvanitha@vit.ac.in


