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Abstract   In this paper, the collapse behaviors of rectangular tube subjected to pure bending are studied by 
using the finite element method. Such bending collapse has been studied for a long time, including the landmark 
study by Kecman. According to these studies, there are two types of collapses. The first type is a collapse due to 
buckling at the compression flange. The second type is a collapse due to plastic yielding at the flanges. However, 
there may be another collapse. For a rectangular tube in which the web is wider than the flange, it is found that 
collapse due to buckling at the compression web may occur. Further, an approximation prediction method is 
proposed for estimating the maximum bending moment of rectangular tubes in which the web buckling is also 
taken into account. Its validity is verified by comparing with the numerical results by FEM under various 
conditions.  
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1．Introduction 

Evaluation of a car’s crush behavior when the car is subjected to an oblique load, such as in 
an offset crash, is becoming increasingly important for general car design. It is thus vital to 
understand the crushing characteristic of rectangular tubes that are used as general components 
in car. Because the oblique load can be decomposed into axial load and pure bending, the pure 
bending of the rectangular tubes has been widely studied for a long time [1, 2, 3], including the 
landmark study by Kecman [1]. According to these studies, there are two types of collapses. The 
first type is a collapse due to buckling at the compression flange. The second type is a collapse 
due to plastic yielding at the flanges. However, when the web is wider than the flange, it is 
considered that a collapse due to buckling at the compression web may occur because it was 
already reported in bending of open section beams [4].  

In the present study, the effects of the material and geometrical properties of rectangular 
tubes on their bending collapse are studied by using the finite element method. Further, based on 
the numerical results obtained, a method for estimating the maximum bending moment of 
rectangular tubes subjected to pure bending is proposed.  

In addition, a validity of FE analysis result under bending collapse has been already verified 
by comparing the experimental results by Kyriakides [5] with the previous numerical results by 
authors [6] under pure bending with cylindrical tubes.  

2．Analytical method 

The commercial FEM analysis package MSC. Marc[7] is used in this study to analyze large 
elastoplastic bending of the rectangular tubes shown in Fig. 1. In the present calculation, one end 
of the rectangular tube was completely fixed to a rigid wall. Pure bending was applied from the 
other end by modeling a lid rotating about the axis of z under rotary control. The effects of 
various geometric parameters, such as tube thickness t, tube flange width c1, and tube web width 
c2, on the bending collapse were investigated. The value of lid thickness tf was set to five times t 
as referred to Guarracino [8] because the lid must be stiff enough to prevent distortion.  
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The tube material used in the analysis was assumed to be homogeneous and isotropic elastic 
perfectly plastic material that conforms to von Mises yield conditions. In this study, it was 
assumed that Young’s modulus E = 72.4 GPa, and Poisson’s ratio v = 0.3. The influence of the 
material properties on the bending collapse of the rectangular tube was investigated in terms of 
the yield stress yσ . 

In this study, the updated Lagrange method was used to formulate the geometric nonlinear 
behavior, and the algorithm based on the Newton-Raphson method and the return-mapping 
method were used to solve the nonlinear equation. The rectangular tubes were modeled using 
four-node quadrilateral thickness shell elements (Element type 75). The elements were divided 
the flange and wed width into 20 sub lengths, and divided the axial length in a way that the 
elements become almost square. 

In addition, the rectangular length used in the analysis was assumed to be long enough in 
order to exclude the influence of the boundary conditions. The ratio of the length and flange 
width L/c1 was set to 1/ 6L c > . 
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Fig.1.Tube geometry and loading condition 
 

3．Results and discussion 

3.1 Comparison between proposal method by Kecman and results of present numerical 
analyses 

First, we show Kecman’s method for estimating the maximum bending moment of 
rectangular tubes subjected to pure bending. For a rectangular tube subjected to pure bending, 
the buckling stress bucσ  of the compression flange was derived in the following equation. 
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Fig.2. Schematic representation of axial stress distribution proposed by Kecman: (a) 

buc yσ σ< ; (b) 2buc yσ σ≥  
 

where E, v, a, b, and t are respectively, Young’s modulus, Poisson’s ratio, flange width, 
web width and tube thickness. In addition, a  is 1c t+  and b  is 2c t+ . 

Kecman presented a proposal method in which was decided by relations of the buckling 
stress bucσ  and yield stress yσ . 

 (1) In the case of buc yσ σ<  
If the buckling stress bucσ is less than the yield stress yσ , the compression flange buckles 
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and the edges stress come up to yield stress yσ .  In order to consider this phenomenon, an 
effective width eσ  is introduced in the following simplified equation. 

( )0.7 0.3 2buc
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σ
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⎝ ⎠y

　               　     　  

As a result, stress distribution in the maximum moment is shown in Fig. 2(a). In the figure, 
y1 in which the distances from a compression flange to the neutral axis is derived from the 
condition of zero axial loads. Therefore, y1 is given by the following equation. 
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By summing moments through the cross-section, the maximum bending moment is derived 
in the following equation. 
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(2) In the case of 2buc yσ σ≥  
In this case, stress distribution in the maximum moment is shown in Fig. 2(b). Namely, it is 

assumed that the maximum moment is equal to a fully plastic moment Mp. The maximum 
bending moment is derived in the following equation. 

( ) ( ) ( )2
max 0.5 2 5pM M t a b t b tσ ⎡ ⎤⋅ − + −⎣ ⎦y= =           　  

(3) In the case of 2y buc yσ σ σ≤ <  
First, if the buckling stress bucσ is equal to the yield stress yσ , it is assumed that the 

maximum moment is equal to a elastic moment Me in which the stress of flanges are equal to the 
yield stress yσ . This elastic moment Me is derived in the following equation. 
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And in the case of 2y buc yσ σ σ≤ < , the maximum bending moment is derived from linear 
interpolation: 
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Fig.3. Comparison between Kecman’s proposal and results of FEM with relation of t/c1 and 
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Figure 3 compares these proposal methods by Kecman and results of present numerical 
analyses for two levels of aspect ratio c2 /c1 with c1 =50mm, L=300mm, / 0.001y Eσ = . As can 
be seen from this figure, in the case of high-aspect ratio in which the web is wider than the 
flange, the results of maximum moment under various t/c1 between the Kecman’s proposal and 
results of FEM have a margin of error. In particular, the error increases with decreasing t/c1. 
Therefore, it is found that a region which does not apply to Kecman’s proposal exists. In order to 
estimate the maximum moment, it is vital to reveal the bending collapse mechanism of 
rectangular tubes.  
3.2 Two types of collapse mechanism pointed out by Kecman 

An investigation of two types of collapse mechanism pointed out by Kecman was presented 
by using square tubes in which the aspect ratio c2 /c1 was set to 1. Figure 4 shows the relation of 
a tube curvature / Lκ θ=  and moment M for a square tube with t=0.9mm, c1=50mm, c2=50mm, 

/ 0.001y Eσ = ( 1.52buc yσ σ= ). And figure 4 also shows the relations of the tube curvature 
/ Lκ θ=  and axial stress /x yσ σ  at point B and C (refer to schematic representation of 

cross-section in figure 4). As can be seen from the figure, the maximum moment is in good 
agreement with the value of Kecman’s proposal equation (7). The axial compression stress 

/x yσ σ  at point B in the middle of compression flange increases until the moment becomes 
maximum moment, and the value /x yσ σ  comes up to 1. In addition, the axial compression 
stress /x yσ σ  at point C in the quarter of web width increases until the moment becomes 
maximum moment. Figure 5 shows the axial stress distribution of cross-section at phase 
( )α and ( )β corresponding to 1/ 0.025L mθ −=  and 10.065m−  in Fig. 4. As can be seen from 
the figure, the absolute value of the axial stress when the maximum moment occurs is greater 
than the value at phase ( )α  in all cross-section positions. In addition, the axial stress 
distribution when the maximum moment occurs is in good agreement with Kecman’s proposal. 
It is confirmed from the above investigation that in the case of 2 1/ 1c c =  and y bucσ σ≤ , the 
collapse type is not due to buckling at the compression flange and web, but due to plastic 
yielding at the flanges. Therefore, to estimate the maximum moment by Kecman’s theory is 
possible in this case. 
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Fig.4. Relations of / Lθ  and , /x yM σ σ  for square tube with t=0.9mm, c1=50mm, 

c2=50mm 
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Fig.5. Axial stress distribution of cross-section for the square tube shown in Fig.4   
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Fig.6. Relations of / Lθ  and , /x yM σ σ  for square tube with t=0.4mm, c1=50mm, 

c2=50mm 
 

Figure 6 shows the relation of a tube curvature / Lκ θ=  and moment M for a square tube 
with t=0.4mm, c1=50mm, c2=50mm, / 0.001y Eσ = ( 0.31buc yσ σ= ). And figure 6 also shows the 
relations of the tube curvature / Lκ θ=  and axial stress /x yσ σ  at point B and C (refer to 
schematic representation of cross-section in figure 6). As can be seen from the figure, the 
maximum moment is in good agreement with the value of Kecman’s proposal equation (4). The 
axial compression stress /x yσ σ  at point B in the middle of compression flange decreases 
before the moment becomes maximum moment, and the maximum value /x yσ σ  is in good 
agreement with the equation (1) of elastic buckling stress. In addition, the axial compression 
stress /x yσ σ  at point C in the quarter of web width increases until the moment becomes 
maximum moment. Figure 7 shows the axial stress distribution of cross-section at phase 
( )α and ( )β corresponding to 1/ 0.012L mθ −=  and 10.038m−  in Fig. 6. As can be seen from 
the figure, although the axial compression stress in the middle of compression flange decreases 
due to buckling in the middle of compression flange, the axial compression stress in both edges 
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of compression flange increase because buckling doesn’t occur in both edges. Immediately after 
buckling, stress increment in the both edges is greater than stress decrement in the middle of 
compression flange. Therefore, total force of compression side and moment increase. In addition, 
the stress distribution of the web changes linearly because buckling doesn’t occur in the web. 
Therefore, the axial stress distribution when the maximum moment occurs is in good agreement 
with Kecman’s proposal by using an effective width in the compression flange. It is confirmed 
from the above investigation that in the case of 2 1/ 1c c =  and y bucσ σ> , the collapse type is 
due to buckling at the compression flange. Therefore, to estimate the maximum moment by 
Kecman’s theory is possible in this case. 
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Fig.7. Axial stress distribution of cross-section for the square tube shown in Fig.6 

 
3.3 Collapse mechanism which is different from Kecman’s indication 

In the case of high-aspect ratio in which the web is wider than the flange, it was confirmed 
that collapse due to buckling at the compression web occur. 
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Fig.8. Relations of / Lθ  and , /x yM σ σ  for rectangular tube with t=0.5mm, c1=20mm, 

c2=100mm 
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Figure 8 shows the relation of a tube curvature / Lκ θ=  and moment M for a rectangular 
tube with t=0.5mm, c1=20mm, c2=100mm, / 0.001y Eσ =  ( 2 12.83 , / 5buc y c cσ σ= = ). And figure 
8 also shows the relations of the tube curvature / Lκ θ=  and axial stress /x yσ σ  at point B 
and C (refer to schematic representation of cross-section in figure 8). As can be seen from the 
figure, the maximum moment is less than the value of Kecman’s proposal equation (5). In 
addition, the axial compression stress /x yσ σ  at point B in the middle of compression flange 
increases until the moment becomes maximum moment, and the value /x yσ σ  comes up to 1. 
And the axial compression stress /x yσ σ  at point C in the quarter of web width decreases 
before the moment becomes maximum moment. Figure 9 shows the axial stress distribution of 
cross-section at phase ( )α and ( )β corresponding to 1/ 0.036L mθ −=  and 10.048m−  in Fig. 8. 
As can be seen from the figure, the axial stress distribution in the compression flange is constant 
value and the absolute value is almost 1 when the maximum moment occurs. And the axial stress 
distribution in the compression web doesn’t increase linearly. Therefore, the sum of axial stress 
when the maximum moment occurs is less than the Kecman’s proposal as much as it is shown 
by arrows of Figure 9.  
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Fig.9. Axial stress distribution of cross-section for the rectangular tube shown in Fig.8 

 
It is found from the above investigation that in the case of high-aspect ratio and y bucσ σ< , 

the collapse type is not due to buckling at the compression flange but due to buckling at the 
compression web. Therefore, to estimate the maximum moment by Kecman’s theory is 
impossible in this case. 

Figure 10 shows the relation of a tube curvature / Lκ θ=  and moment M for a rectangular 
tube with t=0.4mm, c1=50mm, c2=100mm, / 0.001y Eσ = ,( 0.30buc yσ σ= ), ( 2 1/ 2c c = ). And 
figure 10 also shows the relations of the tube curvature / Lκ θ=  and axial stress /x yσ σ  at 
point B and C (refer to schematic representation of cross-section in figure 10). As can be seen 
from the figure, the maximum moment is less than the value of Kecman’s proposal equation (4). 
The axial compression stress /x yσ σ  at point B in the middle of compression flange decreases 
before the moment becomes maximum moment, and the maximum value /x yσ σ  is in good 
agreement with the equation (1) of elastic buckling stress. In addition, the axial compression 
stress /x yσ σ  at point C in the quarter of web width decreases before the moment becomes 
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maximum moment. Figure 11 shows the axial stress distribution of cross-section at phase 
( )α and ( )β corresponding to 1/ 0.007L mθ −=  and 10.016m−  in Fig. 10. As can be seen from 
the figure, the axial stress in the compression flange is concentrated in the edges when the 
maximum moment occurs. And the axial stress distribution in the compression web doesn’t 
increase linearly. Therefore, the sum of axial stress in the maximum moment is less than the 
Kecman’s proposal as much as it is shown by arrows of Figure 11 because the equation (2) 
applies to the axial stress distribution of compression flange, and linearly approximation doesn’t 
apply to the axial stress distribution of compression web. It is found from the above 
investigation that in the case of high-aspect ratio and y bucσ σ≥ , the collapse type is not only due 
to buckling at the compression flange but also due to buckling at the compression web. 
Therefore, to estimate the maximum moment by Kecman’s theory is impossible in this case. 
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Fig.10. Relations of / Lθ  and , /x yM σ σ  for rectangular tube with t=0.5mm, c1=20mm, 

c2=100mm 
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Fig.11. Axial stress distribution of cross-section for the rectangular tube shown in Fig.10 
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3.4 Proposal method of maximum moment considering the web buckling 
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Fig.12. Axial stress distribution in the range of buc yσ σ<  : (a) by Kecman’s method; (b) by 

present method 
 

Figure 12 shows a schematic representation of axial stress distribution in the maximum 
moment after buckling of the compression flange ( buc yσ σ< ). Figure 12(a) shows Kecman’s 
proposal in which doesn’t consider the web buckling, and figure 12(b) shows present proposal in 
which considers the web buckling. As can be seen in the figure(b), an effective width ae applies 
to the compression web as well as the compression flange. It is assumed that the effective width 
ae is independent of initial web width as referring to Karman’s theory [9]. A coefficient α in 
which represents the axial tension stress is derived in the following equation. 
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Figures 13(a) and (b) show comparison between results of FEM and proposals with the 
axial stress distribution. As can be seen in the figures, in the case of high-aspect ratio 2 1/ 2c c = , 
present proposal in which considers the web buckling is in good agreement with the result of 
FEM. And in the case of low-aspect ratio 2 1/ 0.6c c = , Kecman’s proposal in which doesn’t 
consider the web buckling is in good agreement with the result of FEM.  
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Fig.13. Axial stress distribution by results of FEM, Kecman’s proposal and present 

proposal: with (a) 2 1/ 2c c = ; (b) 2 1/ 0.6c c =  
 

Figure 14 shows a schematic representation of axial stress distribution in the maximum 
moment when the compression flange doesn’t buckle ( buc yσ σ≥ ). Figure 14(a) shows Kecman’s 
proposal in which doesn’t consider the web buckling, and figure 14(b) shows present proposal in 
which considers the web buckling. As can be seen in the figure, an effective width ae applies to 
only the compression web. A coefficient β in which represents the axial tension stress is 
derived in the following equation. 
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Figures 15(a) and (b) show comparison between results of FEM and proposals with the 
axial stress distribution. As can be seen in the figures, in the case of high-aspect ratio 2 1/ 5c c = , 
present proposal in which considers the web buckling is in good agreement with the result of 
FEM. And in the case of low-aspect ratio 2 1/ 2c c = , Kecman’s proposal in which doesn’t 
consider the web buckling is in good agreement with the result of FEM. 

We show present method for estimating the maximum bending moment of rectangular 
tubes subjected to pure bending. In the case of buc yσ σ< , a position of the center of gravity in 
the tension web G is derived in the following equation. 
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Fig.14. Axial stress distribution in the range of buc yσ σ≥ : (a) by Kecman’s method; (b) by 

present method 
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Therefore, in the case of buc yσ σ< , the maximum moment in which the compression web 
buckles is derived in the following equation. 
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1 2 2 2 2 (11)
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where 1,y α  and G  are respectively, the value of equation (3), (8) and (10). It is found from 
the above investigation that in the case of buc yσ σ< , the maximum moment is derived in the 
following equation. 

 ( ) ( )( ) ( )max . 4 , . 11 12M Min eq eq=              　     　  
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{ }1 ( 2 )( ) 2 ( ) ( 2 )( ) 2 ( )               (13)max 12 2 4

ab eM t a t b t b y G a t b t ay eσ β β= − − + − + − − + −  

Moreover, in the case of buc yσ σ≥ , the maximum moment in which the compression web 
buckles is derived in the following equation. 
where 1,y β  and G  are respectively, the value of equation  (3), (9) and (10). It is found from 
the above investigation that in the case of buc yσ σ≥ , the maximum moment is derived in the 
following equation. 

( ) ( ) ( )( ) ( )max . 5 , . 7 , 13 14M Min eq eq eq=               　   
Figure 16 shows comparison between results of FEM and Kecman’s proposal and present 

proposal with the maximum moment for two levels of /y Eσ . As can be seen in the figure, the 
lower values of Kecman’s proposal and present proposal is in good agreement with the results of 

FEM. 
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Comparison between results of FEM and Kecman’s proposal and present proposal with relation 

of 1/t c and ( )max 1 2/ yM c c tσ ⋅ ⋅ ⋅  for two levels of /y Eσ . 

4. Conclusion 

In this paper, the investigation of the bending collapse for rectangular tubes by using 
numerical analysis of the finite element method was presented. For a rectangular tube in which 
the web is wider than the flange, it is found that collapse due to buckling at the compression web 
may occur. It is possible to estimate the maximum moment under various the material and 
geometrical properties by using the present proposal in which applies an effective width to the 
web, and the Kecman’s proposal. 
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