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Abstract  The influence of impact velocity on the crushing behaviour of cylindrical shells subjected to an axial 
impact was investigated using a finite element analysis. The effects of the material properties, tube geometries 
and impact velocity V0 on the initial peak stressσ1 are explored.  

In this study, the applied material is assumed to be insensitive to the strain rate, and the effect of impact 
velocity is discussed as an inertia effect. It is shown that the initial peak stressσ1 during dynamic loading 
increases with increase of the impact velocity V0, which is due to the fact that the displacement in radial 
direction is delayed as the velocity V0 increases. Also, based on our numerical simulations, the peak stressσ1 can 
be regarded as a function of the ratio of tube thickness to radius t/R, hardening modulus to Young's modulus 
Eh/E and impact velocity to elastic stress wave speed V0/c. Moreover, an approximate equation to evaluate the 
peak stress is proposed and in good agreement with the FEM results and other researcher's results under a 
relatively low impact velocity (V0<40m/s). 
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1.Introduction 

Thin-walled structures such as circular and square tubes have been widely used in 
automotive and aerospace engineering as impact energy absorbing devices. A large number of 
studies concerning the static and dynamic response of thin-walled tubes subjected to axial load 
have been conducted by many researchers, and investigated some important parameters such as 
crushing distance, the peak load and the buckling shape in crashworthiness design [1-13]. Figure 1 
shows a schematic of compressive axial stressσx and displacement Ux for a cylindrical tube 
subjected to axial loading.  

The purpose of this study is to explore the effect of impact velocity on the peak load for 
circular tubes, and to propose an empirical equation to estimate the peak load by numerical 
simulation. 

 
2.Method of Analysis 

In this study, the dynamic numerical simulation of the impact crush test was carried out 
using the non-linear FE commercial code, MSC.Dytran. The geometry of the FE model and its 
boundary condition is shown in Fig.2. The model is struck from the upper edge by a rigid mass 
M having an initial kinetic energy T0=MV0

2/2=99 kJ. In the FE model, 4-node Key-Hoff shell 
elements(QUAD4, PSHELL) with three integration points are used to evaluate domain integrals, 
and the whole model is divided into 1440 elements. Here, parameters L, t and R are the tube 
length, thickness and mean radius, respectively. Also, the lower end of a tube is fixed to another 
rigid body, and a contact condition between the tube and the striker, and a self-contact condition 
at the inner and the outer surface of the tube are defined with the dynamic and static frictional 
coefficients of 0.2 and 0.3, respectively.  
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Fig.1. Schematic of axial compressive stress-displacement relationship for a tube subjected to 

axial impact 

 
Fig.2. Shell geometry and loading condition 

 
The analyzed FE model with a densityρ=2685 kg/m3 is assumed to be isotropic, and to obey 

the Mises yield criterion with strain hardening, and a strain rate insensitive bilinear relationship 
between the uniaxial stress and strain as:  
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Here, the Young's modulus, E, yielding stress, σy  and hardening coefficient, Eh are assumed to 
be 72.4 GPa, 72.4 MPa and 3.62 GPa, respectively. 

All models in our calculation have the same tube length L=150 mm, mean radius R=25 mm 
and thickness t=1 mm, unless otherwise mentioned. 

3.Results and Discussion 

3.1 Effect of Impact Velocity V0 on the initial peak stressσ1 
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Fig.3. Comparison of axial force and displacement behaviour for a tube under different impact 

velocity V0 
Figure 3 shows comparisons of axial compressive force and displacement diagram for a 

tube under the impact velocity V0=5, 180 and 360 km/h.  
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Also, the deformed shapes at the initiation of the initial peak stress and soon after the stress for 
the case of V0=5 km/h and 360 km/h are shown in Fig.4. It is evident from Fig.4 that the initial 
peak stress is associated with the initiation of local buckling deformation which occurs near the 
upper and lower ends of a tube. From the relationship between the axial load and displacement 
for each V0 which is shown in Fig.3, the initial peak stress can be calculated and summarized in 
Fig.5. Also in Fig.5, quasi-static buckling stress for the tube obtained by implicit finite element 
code, MSC.Marc, is shown by a dashed line. It is found from this figure that the initial peak 
stressσ1 for a lower impact velocity is almost equal to the value of the quasi-static result, and the 
stress value becomes higher as the impact velocity V0 increases.  

 
Fig.4. Comparisons of deformed shape at points 'A', 'B', 'C' and 'D' in Fig.3. 'A': buckling point for 
V0=5(km/h); 'B': point just after buckling for V0=5(km/h); 'C': buckling point for V0=360(km/h); 

'D': point just after buckling for V0=360 (km/h) 
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Fig.5. Variation of peak stress σ1 with impact velocity V0 
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(a) V0=5(km/h) 

Figure 6 illustrates propagations of the stress wave in the axial direction for V0=5 km/h 
(Fig.6(a)) and 360 km/h (Fig.6(b)) until the initial peak stress occurs. Also in Figure 6, values of 
the yield stressσy and the quasi-static buckling stress are shown by dotted and dashed lines, 
respectively. It is evident from Fig.6(a) that for the case of a lower impact velocity(V0=5 km/h), 
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the amplitude of the stress wave in axial direction at the initiation of impact is relatively small, 
and the stress wave travels and reflects many times along the tube until the local buckling 
deformation arises near the fixed end. In the end, the axial stress distribution developing over the 
tube becomes almost uniformly at t=0.16μs, and its amplitude increases stably to the quasi-static 
buckling stress. On the other hand, for the case of a higher impact velocity (Fig.6(b)), the 
development of axial stress distribution apparently differs from that for a lower impact 
velocity(Fig.6(a)).  
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Fig.6. Axial stress distribution until the initiation of the peak stressσ1  
In Fig.6(b), the stress concentration can be found at x=0.156 m. Such a stress concentration 

occurs by the existence of the flange at the impacted end, and does not affect the overall 
buckling behaviour of a circular tube. It is evident from Fig.6(b) that the amplitude of the stress 
wave bigger than the value of quasi-static buckling stress develops near the impacted end at the 
beginning. However, such the high stress field is relatively narrow, and no buckling behaviours 
seem to be observed even if the amplitude of stress wave is bigger than that of the quasi-static 
result. Moreover, even though the axial stress developing over the tube becomes larger than the 
quasi-static result at t=0.12μs, no buckling can be observed. Finally, the local buckling can be 
observed at t=0.14μs when the amplitude of the axial stress is almost twice larger than the 
quasi-static buckling stress. The mechanism of the buckling for circular tubes under higher 
impact velocities will be discussed as follows. 
 

 
Fig.7. Comparisons of deformed shape near the fixed end at the initiation of the peak stressσ1  

 
 Based on the previous work concerning the quasi-static axial compressive behaviour for 
circular tube, it is evident that the initial peak stress is associated with the sufficient local 
bending deformation which is observed near the tube end. That is, during the axial compression, 
the tube seems to expand in radial direction, but near the tube end, such a movement is restricted 
by the existence of the fixed boundary condition. As a result, the local bending deformation can 
be observed near the tube end, and the local bending deformation is necessary for initiating the 
buckling behaviour. Figure 7 shows comparisons of deformed shape near the fixed end when the 
initial peak stress is observed for some cases of impact velocity V0=5 km/h, 180 km/h and 360 
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km/h. It is evident that for the case of a higher impact velocity, the amount of the local bending 
deformation is smaller than that under a slower impact velocity. In order to initiate the buckling 
behaviour where the smaller amount of the local bending deformation occurs under higher 
impact velocity, that is, in order to increase the radial displacement, a large amount of axial 
stress should be needed. Therefore, it could be understood that the reason why the initial peak 
stress increases as increase of the impact velocity V0 is due to the fact that the impact for a 
higher impact velocity causes a smaller radial displacement than that for a lower impact velocity. 
Moreover, the reason why the bending deformation decreases as V0 increases can be explained 
by the radial inertia effect. That is, the more faster the impact velocity becomes, the more rapidly 
the axial stress increases, but the expansion in radial direction would be delayed by the radial 
inertia effect. Such a mechanism can be observed in Fig.8.  
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Fig.8.Variation of radial displacement Ur and axial stress σx at the apex of wrinkle with impact 

velocity V0 
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Fig.9. Variation of axial stressσx with radial displacement Ur at the apex of wrinkle for V0=5, 180, 

300 and 360 (km/h) 
 

Figure 8 presents the relationship between the radial displacement Ur and the impact velocity V0 
under almost the same amount of the axial stressσx. It is evident that the displacement Ur 
decreases as increase of V0 even if the same amount ofσx occurs. Moreover, the relationship 
between the axial stressσx and the radial displacement Ur for four cases of V0= 5, 180, 300 and 
360 km/h are chased and the initial peak stress for every V0 is summarized in Fig.9 by marks ●. 
From the figure, the reason why the higher velocity causes the larger initial peak stress can be 
explained as follows. While the axial stress increases by propagating the stress waves over the 
tube, the radial displacement Ur develops by the axial compression, but the rate of Ur relatively 
decreases as increase of V0. As a result, the axial stress increases by the stress wave reflecting 
many times until the sufficient radial displacement can be reached for initiating the local 
buckling.  

In order to discuss the influence of V0 on the peak stress quantitatively, an effective 
parameter considering the effect of mechanical properties on the inertia effect is needed. Figure 
10 shows the relationship between the normalized axial stress σx/E and displacement Ux/L for 
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three cases of a tube problem having different elastic modulus E, tube density ρ and the impact 
velocity V0. In the figure, parameter c represents the elastic wave speed for a one-dimensional 
rod, and can be shown as (E/ρ)1/2. Here, all models have different values of E, ρ and V0, but keep 
the same ratio V0/c. It is evident that all models behave the same response of the axial stressσx/E 
and Ux/L diagram. Strictly speaking, the elastic and the plastic wave speed for a circular tube are 
distinct from the elastic wave speed c for a one-dimensional rod. However, based on the fact that 
the relationship between the normalized axial stressσx/E and displacement Ux/L is the same 
under the same V0/c, the non-dimensional parameter V0/c can be used for evaluating the effect of 
impact velocity on the initial peak stressσ1. 

 
Fig.10. Normalized axial compressive stress and displacement behaviour for tubes having the 

same ratio of V0/c 
 

3.2 Effects of tube geometries and material properties on the initial peak stress 
 As the other effective parameters for the dynamic initial peak stressσ1, tube geometries 

(such as mean radius, R and thickness, t) and material properties (such as Young's modulus, E, 
hardening coefficient, Eh and yield stress,σy) can be given, and the effects of these parameters 
onσ1 are discussed as follows. 
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Fig.11. Comparison of the compressive stress and displacement behaviour for tubes having the 

same ratio of tube thickness to radius t/R 
 

Figure 11 summarizes effects of mean radius R and thickness t on the axial stress and 
displacement behaviour for tubes having different tube radius R and thickness t, but the same 
ratio of t/R. It is evident from Fig.11 that if the ratio of t/R has the same value, the initial peak 
stressσ1 has the same value. 
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Fig.12. Normalized axial compressive stressσx/E and displacement Ux/L behaviour for tubes 

having the same ratios of Eh/E and V0/c 
 

Figure 12 shows the comparison of the relationship between two tubes having the different 
E and Eh but the same ratio of Eh/E. In the figure, the stress value is normalized by E. It can be 
observed from Fig.12 that the normalized initial peak stressσ1/E can be arranged as a function of 
the ratio, Eh/E.  

Moreover, the yield stressσy for a tube also affects the initial peak stress, but if the valueσy 
is quite smaller than the peak stressσ1, the effect seems to be negligible.    

From the above results and discussions, the normalized initial peak stressσ1/E for a tube 
obeying a bilinear stress and strain relationship can be expressed by a function composed of four 
parameters, V0/c, t/R, Eh/E andσy /E as: 
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 Figure 13 shows the relationship between the normalized impact velocity V0/c and the peak 
stressσ1/E for some combinations of ratios, t/R, Eh/E andσ1/E. It is clear from the figure that the 
stressσ1/E increases linearly with the parameter (V0/c)2. Also, the slope and intersect of the 
relationship depend on these ratios, Eh/E and t/R. 
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Fig.13. Normalized impact velocity V0/c and the peak stressσ1/E for some combinations of t/R, 

Eh/E andσy/E  
 

Based on these charateristics, the normalized initial peak stressσ1/E can be written by the 
following type of equation as: 
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where, 
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Equation (3) means that the initial stress can be expressed by the sum of the inertial term 
including the parameter V0/c and the quasi-static term for V0=0. 
 Here, the quasi-static term C2 has already been discussed in the previous study[11], and 
proposed an approximate equation as follows: 
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Figure 14 shows comparisons of the parameter C2 obtained by FEM and its approximation 
obtained by Eq.(4). In the figure, results forσy/E=1/1000 and 3/1000 correspond to solid and 
dotted lines, respectively. It is clear that both results coincide with each other, and the 
approximate equation which is shown as Eq.(4) can be used to estimate the quasi-static peak 
stress with a good accuracy. 
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Fig.14. Comparisons of quasi-static term C2 in Eq.(3) for tubes having some combinations of 

t/R,σy/E and Eh/E 
 

In Figure 15, results of the parameter C1 for some ratios, Eh/E,σy/E and t/R are summarized. 
It is found from the figure that the parameter C1 increases with increase of Eh/E, and its value 
becomes larger as the ratio of tube thickness to radius t/R decreases. Also, the value C1 depends 
on the yield stress σy. For example, C1 for t/R=0.02 and 0.08 under the same ratios, Eh/E=0.1 
andσy/E=0.001 are almost equal to 13.0 and 8.0, respectively, so that the difference between 
them is almost 5.0. However, by concerning the term (V0/c)2, for example, if the impact velocity 
V0 is 100km/h, the order of the parameter (V0/c)2 is about 10-5, and the scale of the difference is 
one digit smaller than the parameter C2. Based on the fact, the parameter C1 can be written by 
the following equation as: 
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and shown in Fig.15 as a solid line.  
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Fig.15. Comparisons of quasi-static term C1 in Eq.(3) for tubes having some combinations of 

t/R,σy/E and Eh/E 
 
 Consequently, an approximate equation for the non-dimensional initial peak stress for a 
cylindrical tube subjected to axial impact load is proposed in this paper as follows: 
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(a) for the case of t/R=0.04 
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(b) for the case of t/R=0.08 

Fig.16. Estimation of the peak stress σ1 under some cases of impact velocity V0 

 
Figure 16 shows the relationship between the initial peak stress and the impact velocity for some 
cases of Eh/E for the ratio of t/R=0.04 (Fig.16(a)) and 0.08 (Fig.16(b)). In these figures, solid 
lines correspond to the approximate results obtained by Eq.(6), and the symbols show the 
numerical results obtained by FEM. It is clear from these figures that the predictedσ1/E agrees 
well with the numerical results for a wide range of impact velocity V0. 

4. Validation of the proposed prediction for σ1 
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In order to check the validity of the proposed prediction forσ1 as shown in Eq.(6), the same 
impact problem studied by Karagiozova and Jones[5] is examined and compared the prediction 
with their results in Fig. 17. In the figure, the solid line shows the approximation by Eq.(6), and 
dotted line and solid circles are the predictions and FEM results which can be found in 
Karagiozova and Jones' paper[5]. Here, the model is intended for a circular tube made of 
aluminium alloy, and the material and geometrical parameters of the model are shown in Fig. 17. 
It is evident that for relatively low impact velocity (V0<40m/s), the proposed approximation 
gives a good agreement with numerical results obtained by Karagiozova and Jones[5], which 
means that the proposed approximation can be effectively used for estimating the initial peak 
stressσ1 under a relatively low impact velocity. 
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Fig.17. Comparison of estimating the peak stressσ1 under some cases of impact velocity V0  

5. Conclusion 

In this paper, large displacement numerical simulation based on FEM is undertaken to 
explore the relationship between the impact velocity V0 and the initial peak stressσ1 for circular 
tubes when subjected to an axial impact.   

Based on our numerical results, the following points have been revealed. 
(1) The initial peak stressσ1 becomes higher with increases of the impact velocity V0. That is 

because the local displacement Ur in radial direction decreases as V0 increases, under the 
same axial stressσx. 

(2) The initial peak stressσ1 can be expressed by the sum of a term including V0/c and a term 
obtained by quasi-static numerical simulation. 

(3) The proposed approximate equation forσ1 can be effectively used under low impact velocity 
(V0<40m/s). 
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