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Abstract This paper is concerned with the stability analysis problem for a class of delayed
stochastic uncertain Hopfield neural networks with unbounded distributed delays and impulses.
A new Lyapunov-Krasovskii functional is constructed for the addressed system and several free-
weighting matrices combined with the S-procedure are employed to derive the delay-dependent
stability criterion. The criterion is derived and formulated in terms of linear matrix inequality
(LMI). In addition to that, two illustrated examples with simulation results are given to show
the effectiveness of the obtained theoretical results.
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1. Introduction

During the past several years, the stability of a unique equilibrium point of Hopfield neural
networks [2] with delays have received especially considerable attention due to their exten-
sive applications in solving optimization problem, traveling salesman problem and many other
subjects in recent years [4, 5, 6, 14, 15, 16, 17, 18, 23, 24]. Basically, the stability results of delayed
Hopfield neural networks can be classified into two categories: delay dependent stability and
delay independent stability. Delay-dependent stability results are generally less conservative
than delay-independent stability when the delays are small.

On the other hand, time-delays occurring in the interaction between neurons will affect the
stability of a network by creating instability, oscillation and chaos phenomena. Recently, a
number of global stability criteria of Hopfield networks with time-delays have been proposed
(see [13, 15, 16, 17, 18]). The dynamical systems are often classified into two categories of either
continuous-time or discrete-time systems. Apart from this two systems, yet there is a somewhat
new category of dynamical systems, which is neither continuous-time nor purely discrete-time,
these are called dynamical systems with impulses. A basic theory of impulsive differential equa-
tions has been developed in [11]. The stability conditions in [19, 20, 22] were established by using
the impulsive condition. In the real world, there are two common disturbances that affects the
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network process, one is stochastic perturbations and the other one is uncertain parameters. Re-
cently, there are some research papers about stochastic neural networks, has been investigated,
see for example [3, 5, 6, 7, 9, 10, 16, 17, 18]. In [12] the stability problem for both discrete and dis-
tributed delays were discussed. Yang [21] has been investigated the stability of neural networks
with distributed delays.

In practical, uncertainties often exist in most engineering and communication systems and
may cause undesirable dynamic network behaviors such as oscillation, instability and chaos.
More specifically, the connection weights of the neurons are inherent dependent on certain re-
sistance and capacitance values that inevitably bring in uncertainties during the parameter iden-
tification process. In the literature, uncertainties can possibly be described by norm bounded,
polytopic or linear fractional uncertainties characterizations and have been widely employed in
the field of robust control and performance analysis.

Based on the above descriptions, this paper aims to develop the problem of asymptotic sta-
bility for delayed stochastic uncertain Hopfield neural networks with unbounded distributed de-
lays and impulses. By constructing an appropriate Lyapunov-Krasovskii functional, employing
several free-weighting matrices and S-procedure, we obtain a delay-dependent stability crite-
rion in terms of LMIs. Finally, two numerical examples with simulation results are provided to
demonstrate the usefulness of the main results in this paper.

2. Network Model and Preliminaries

The delayed stochastic Hopfield neural network model with unbounded distributed delays
and impulses is defined by the following state equations:

dxi(t) =
[
− aixi(t) +

n∑
j=1

bijfj(xj(t− τ)) +

n∑
j=1

cij

∫ t

−∞
kj(t− s)fj(xj(s))ds+ Ji

]
dt

+
n∑
j=1

σij(t, xj(t))dwj(t), t 6= tk (1)

xi(tk) = Ikx(t−k ), t = tk, k = 1, 2, ...

where xi(t) is the state of the ith neuron at time t; ai > 0 denotes the passive decay rate;
bij and cij are the synaptic connection strengths; fj denotes the neuron activation functions;
Ji is the constant input from outside the system; τ represents the continuous delay and the
delay kernel kj is a real valued continuous function defined on [0,+∞] and satisfies, for each
i,
∫∞
0 kj(s)ds = 1. The stochastic disturbance w(t) = (w1(t), w2(t), ..., wm(t))T is an m-

dimensional Brownian motion; σij(·, ·) is locally Lipschitz continuous and satisfies the linear
growth condition as well; xi(tk) = Ikx(t−k ) is the impulse at moment tk, the fixed moment of
time tk satisfy t1 < t2 <, ..., limk→+∞ tk = +∞ and x(t−) = lims→t− x(s); Ik is a constant
real matrix at the moments of time tk.

Let PC([−τ, 0],Rn) denotes the set of piecewise right continuous functions φ : [−τ, 0]→
Rn with the sup-norm |φ| = sup−τ≤s≤0‖φ(s)‖. For given t0, and φ ∈ (PC[−τ, 0],Rn), the
initial condition of system (1) is described as x(t0 + t) = φ(t), for t ∈ [−τ, 0], φ ∈
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PC([−τ, 0],Rn).

The following assumptions is utilized throughout this paper:

(C1) The activation function f(x) is boundless and satisfies

0 ≤ fi(ξ1)− fi(ξ2)
ξ1 − ξ2

≤ li, for any ξ1, ξ2 ∈ R, ξ1 6= ξ2, i = 1, 2, ..., n

(C2) The function fi(xi(·)) = 0, i = 1, 2, ..., n satisfy

0 ≤ fi(xi(t))

xi(t)
≤ li, fi(0) = 0, ∀xi(t) 6= 0, i = 1, 2, ..., n

where li, i = 1, 2, ..., n are positive constants.

Remark 2.1 The above conditions ensures that the nonlinear resulting neuron activation func-
tions should be non-monotonic and be more general than the usual sigmoid function as well as
the commonly used Lipschitz condition.

The equilibrium point y∗ = [y∗1, y
∗
2, ..., y

∗
n] of system (1) will be shifted to the origin by the

transformation y(·) = x(·)− x∗, transforms system (1) into the following form

dy(t) = [−Ay(t) +Bg(y(t− τ)) + C

∫ t

−∞
K(t− s)g(y(s))ds]dt+ σ(t, y(t))dw(t), t 6= tk

(2)

y(tk) = Iky(t−k ), t = tk, k = 1, 2, ...

y(t0 + t) = ψ(t), t ∈ [−τ, 0]

where y = [y1, y2, ..., yn]T , A = diag[a1, a2, ..., an], B = [bij ], C = [cij ], K(t − s) =
diag[k1(t − s), k2(t − s), ..., kn(t − s)], g(y) = [g1(y1), g2(y2), ..., gn(yn)] with gj(yj(t)) =
fj(yj(t) + x∗j )− fj(x∗j ). Note that since each function fj(·) satisfies the assumptions (C1) and
(C2), hence each gj(·) satisfies

g2j (ξj) ≤ L2
jξ

2, ξjgj(ξj) ≥
g2j (ξj)

Lj
∀ξj ∈ R, gj(0) = 0

(C3) There exist a constant matrix D0 such that

trace[σT (t, y(t))σ(t, y(t))] ≤ yT (t) D0 y(t)

Lemma 2.2 [1] (S-Procedure) Let Ti ∈ Rn×n (i = 0, 1, ..., p) be symmetric matrices. The
conditions on Ti, (i = 0, 1, ..., p)

αTT0α > 0, ∀α 6= 0 s.t. αTTiα ≥ 0 (i = 0, 1, ..., p)

hold, if there exist τi ≥ 0 (i = 0, 1, ..., p) such that

T0 −
p∑
i=1

τiTi > 0
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Lemma 2.3 Let U, V,W andM be real matrices of appropriate dimensions withM satisfying
M = MT , then

M + UVW +W TV TUT < 0, ∀ V TV ≤ I
if and only if there exist a scalar ε > 0 such that

M + ε−1UUT + εW TW < 0

Definition 2.4 [25] The function V : [t0,∞)× Rn → R+ belongs to class v0 if

(1) the function V is continuous on each of the sets [tk−1, tk) × Rn and for all t ≥ t0,
V (0, t) ≡ 0;

(2) V (x, t) is locally Lipschitzian in x ∈ Rn;

(3) for each k = 1, 2, ..., there exist finite limits

lim
(q,t)→(x,t−k )

V (q, t) = V (x, t−k )

lim
(q,t)→(x,t+k )

V (q, t) = V (x, t+k )

with V (x, t+k ) = V (x, tk) satisfied.

In the following section, we will develop delay-dependent condition for the given system
such that the origin of the delayed stochastic Hopfield neural network (2) is asymptotically
stable.

3. Asymptotic Stability Criterion

Before discussing the stability analysis of the problem, we firstly introduce the Ito’s for-
mula for a general stochastic system.

Let V (y(t), t) : C([−τ, 0],Rn × R+ → R+) be a positive function which is continuously
twice differentiable in y and once differentiable in t. Thus, an operator L acting on V (y(t), t),
is defined by

LV (y(t), t) = Vt(y(t), t) + Vy(y(t), t)[−Ay(t) +Bg(y(t− τ)) + C

∫ t

−∞
K(t− s)g(y(s))ds]

+
1

2
trace[σT (t, y(t))Vyy(y(t), t)σ(t, y(t))] (3)

where

Vt(y(t), t) =
∂V (y(t), t)

∂t
, Vy(y(t), t) =

(∂V (y(t), t)

∂y1
,
∂V (y(t), t)

∂y2
, ...,

∂V (y(t), t)

∂yn

)
Vyy(y(t), t) =

(∂2V (y(t), t)

∂yi∂yj

)
n×n

Now, the following theorem gives a new stability criterion for system (2) without uncertain
parameters.
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Theorem 3.1 Suppose that the assumption (C1)− (C3) is satisfied. If there exist matrices

P =

[
P11 P12

P T12 P22

]
≥ 0 with P11 > 0, R =

[
R11 R12

RT12 R22

]
≥ 0

Q1 > 0, Q2 > 0, H1, H2, H3, H4, diagonal matrices E > 0, S > 0 and a positive scalar ρ > 0
such that the following inequalities hold:

P < ρI (4)

ITk P11Ik + 2ITk P12Ik + ITk P22Ik − P11 − 2P12 − P22 < 0 (5)

Ω =



Ξ11 Ξ12 Ξ13 Ξ14 −τATP T12 + τP T22 −τH1 −τATR22

∗ Ξ22 Ξ23 −HT
4 −τP T22 −τH2 0

∗ ∗ Ξ33 0 τBTP12 −τH3 −τBTR22

∗ ∗ ∗ −E τCTP12 −τH4 −τCTR22

∗ ∗ ∗ ∗ −τR11 −τR12 0

∗ ∗ ∗ ∗ ∗ −τR22 0

∗ ∗ ∗ ∗ ∗ ∗ −τR22



< 0 (6)

where

Ξ11 = −P11A−ATP T11 + P12 + P T12 + ρD0 +Q1 + LEL+ τR11 +H1 +HT
1 − τR12A

Ξ12 = P12 −H1 +HT
2 , Ξ13 = P11B +HT

3 + τR12B

Ξ14 = P11C +HT
4 + τR12C, Ξ22 = −Q1 −H2 −HT

2 , Ξ23 = LS −HT
3 , Ξ33 = −Q2 − 2S,

L = {l1, l2, ..., ln}. Then the origin of system (2) is the unique equilibrium point and it is
globally asymptotically stable.

Proof. Define new state variables

g1(t) = −Ay(t) +Bg(y(t− τ)) + C

∫ t

−∞
K(t− s)g(y(s))ds (7)

g2(t) = σ(t, y(t)) (8)

To prove the asymptotic stability result, let us consider the following Lyapunov functional can-
didate for system (2) as

V1 = δT1 (t)Pδ1(t), V2 =

∫ t

t−τ
yT (s)Q1y(s)ds, V3 =

∫ t

t−τ
gT (y(s))Q2g(y(s))ds

V4 =

∫ 0

−τ

∫ t

t−τ
δT2 (s)Rδ2(s)dsdσ, V5 =

n∑
j=1

ej

∫ ∞
0

kj(ξ)

∫ t

t−ξ
g2j (yj(γ))dγdξ (9)
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where P =

[
P11 P12

P T12 P22

]
≥ 0 with P11 > 0, R =

[
R11 R12

RT12 R22

]
≥ 0

and δ1(t) =

[
y(t)∫ t

t−τ y(s)ds

]
, δ2(t) =

[
y(t)
g1(t)

]
,

By Newton-Leibnitz formula, the following equation is true for any matrices Hi (i = 1, 2, 3, 4)
with appropriate dimensions:

2
[
yT (t)H1 + yT (t− τ)H2 + gT (y(t− τ))H3 +

(∫ t

−∞
K(t− s)g(y(s))ds

)
H4

]
×
[
y(t)− y(t− τ)−

∫ t

t−τ
g1(s)ds

]
= 0 (10)

when t 6= tk the derivative of V can be calculated by using Ito’s differential formula. Then the
trajectories of the system (2) is given as:

LV1 = 2δT1 (t)P δ̇1(t)

= 2

 y(t)∫ t
t−τ y(s)ds

T P11 P12

P T12 P22

−Ay(t) +Bg(y(t− τ)) + C
∫ t
−∞K(t− s)g(y(s))ds

y(t)− y(t− τ)


= −2yT (t)P11Ay(t) + 2yT (t)P11Bg(y(t− τ)) + 2yT (t)P11C

(∫ t

−∞
K(t− s)g(y(s))ds

)
+ 2yT (t)P12y(t)− 2yT (t)P12y(t− τ)− 2

∫ t

t−τ
yT (s)P T12Ay(t)ds+

∫ t

t−τ
yT (s)P T12B

× g(y(t− τ))ds+ 2

∫ t

t−τ
yT (s)P22y(t)ds− 2

∫ t

t−τ
yT (s)P22y(t− τ)ds+ 2

(∫ t

t−τ
yT (s)ds

)
× P T12C

(∫ t

−∞
K(t− s)g(y(s))ds

)
+ trace[σT (t, y(t))Pσ(t, y(t))] (11)

LV2 = yT (t)Q1y(t)− yT (t− τ)Q1y(t− τ) (12)

LV3 = gT (y(t))Q2g(y(t))− gT (y(t− τ))Q2g(y(t− τ)) (13)

LV4 = τδT2 (t)Rδ2(t)−
∫ t

t−τ
δT2 (s)Rδ2(s)ds (14)

LV5 =
n∑
j=1

ej

∫ ∞
0

kj(ξ)g
2
j (yj(t))dξ −

n∑
j=1

ej

∫ ∞
0

kj(ξ)g
2
j (yj(t− ξ))dξ

= gT (y(t))Eg(y(t))−
n∑
j=1

ej

∫ ∞
0

kj(ξ)dξ

∫ ∞
0

kj(ξ)g
2
j (yj(t− ξ))dξ

≤ yT (t)LELy(t)−
n∑
j=1

ej

(∫ ∞
0

kj(ξ)g
2
j (yj(t− ξ))dξ

)2
= yT (t)LELy(t)−

(∫ t

−∞
K(t− s)g(y(s))ds

)
E
(∫ t

−∞
K(t− s)g(y(s))ds

)
(15)
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It is noted from (C2) that,

gi(yi(t− τ))[gi(yi(t− τ))− liyi(t− τ)] ≤ 0, i = 1, 2, ..., n (16)

Now, by applying the S-procedure, we find that system (2) is asymptotically stable, if there exist
S = diag{s1, s2, ..., sn} such that

LV = LV1 + LV2 + LV3 + LV4 + LV5 + 2
[
yT (t)H1 + yT (t− τ)H2 + gT (y(t− τ))H3

+
(∫ t

−∞
K(t− s)g(y(s))ds

)
H4

][
y(t)− y(t− τ)−

∫ t

t−τ
g1(s)ds

]
≤ LV1 + LV2 + LV3 + LV4 + LV5 + 2

[
yT (t)H1 + yT (t− τ)H2 + gT (y(t− τ))H3

+
(∫ t

−∞
K(t− s)g(y(s))ds

)
H4

][
y(t)− y(t− τ)−

∫ t

t−τ
g1(s)ds

]
−2

n∑
i=1

sigi(yi(t− τ))(gi(yi(t− τ))− liyi(t− τ))

≤ LV1 + LV2 + LV3 + LV4 + LV5 + 2
[
yT (t)H1 + yT (t− τ)H2 + gT (y(t− τ))H3

+
(∫ t

−∞
K(t− s)g(y(s))ds

)
H4

][
y(t)− y(t− τ)−

∫ t

t−τ
g1(s)ds

]
−2gT (y(t− τ(t)))Sg(y(t− τ(t))) + 2gT (y(t− τ(t)))Sg(y(t− τ(t)))

≤ yT (t)[−P11A−ATP T11 + P12 + P T12 + ρD0 +Q1 + LEL+ τR11 +H1 +HT
1 − τR12A]

×y(t) + yT (t)[P12 −H1 +HT
2 ]y(t− τ(t)) + yT (t)[P11B +HT

3 + τR12B]g(y(t− τ))

+yT (t)[P11C +HT
4 + τR12C]

(∫ t

−∞
K(t− s)g(y(s))ds

)
+ yT (t)[−τATP T12B + τP T22

×
(∫ t

t−τ
y(s)ds

)
+ yT (t)[−τH1]

(∫ t

t−τ
g1(s)ds

)
+ yT (t− τ)[−Q1 −H2 −HT

2 ]

×y(t− τ) + yT (t− τ)[−HT
3 + LS]g(y(t− τ)) + yT (t− τ)[−τP T22]

(∫ t

t−τ
y(s)ds

)
+yT (t− τ)[−τH2]

(∫ t

t−τ
g1(s)ds

)
+ gT (y(t− τ))[−Q2 − 2S]g(y(t− τ)) + yT (t− τ))

×[−HT
4 ]
(∫ t

−∞
K(t− s)g(y(s))ds

)
+ gT (y(t− τ)[τBTP12]

(∫ t

t−τ
y(s)ds

)
+gT (y(t− τ)[−τH3]

(∫ t

t−τ
g1(s)ds

)
+
(∫ t

−∞
K(t− s)g(y(s))ds

)T
[−E]
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×
(∫ t

−∞
K(t− s)g(y(s))ds

)
+
(∫ t

−∞
K(t− s)g(y(s))ds

)T
[τCTP12]

(∫ t

t−τ
y(s)ds

)
+
(∫ t

−∞
K(t− s)g(y(s))ds

)T
[−τH4]

(∫ t

t−τ
g1(s)ds

)
+
(∫ t

t−τ
y(s)ds

)T
[−τR11]

×
(∫ t

t−τ
y(s)ds

)
+
(∫ t

t−τ
y(s)ds

)T
[−τR12]

(∫ t

t−τ
g1(s)ds

)
+
(∫ t

t−τ
g1(s)ds

)T
[−τR22]

×
(∫ t

t−τ
g1(s)ds

)
(17)

It is easy to see

y(t)− y(t− τ)−
∫ t

t−τ
g1(s)ds =

∫ t

t−τ(t)
g1(s)ds =

1

τ

∫ t

t−τ(t)
τ(τ−1τ(t)g1(s))ds (18)

This together with (16), implies

LV =
1

τ

∫ t

t−τ(t)
βT (t, s)Ωβ(t, s)ds

where βT (t, s) = [yT (t) yT (t− τ) gT (y(t− τ))
(∫ t

−∞
K(t− s)g(y(s))ds

)T
yT (s) gT1 (s)]

This implies that LV (y(t), t) < 0. When t = tk, we obtain the following result:

V (y(tk), (tk))− V (y(tk), t
−
k ) = δT1 (tk)

P11 P12

P T12 P22

 δ1(tk)− δT1 (t−k )

P11 P12

P T12 P22

 δ1(t−k )

= yT (t−k )
{
ITk

P11 P12

P T12 P22

 Ik −
P11 P12

P T12 P22

}y(t−k )

= yT (t−k )ITk P11Iky(t−k ) + yT (t−k )ITk P12Iky(t−k ) + yT (t−k )ITk P
T
12Iky(t−k )

+ yT (t−k )ITk P22Iky(t−k )− yT (t−k )P11y(t−k )− yT (t−k )P12y(t−k )

− yT (t−k )P T12y(t−k )− yT (t−k )P22y(t−k )

= yT (t−k )
[
ITk P11Ik + 2ITk P12Ik + ITk P22Ik − P11 − 2P12 − P22

]
y(t−k )

Based on the Lyapunov stability theorem, it follows that the delayed stochastic Hopfield neural
network (2) is globally asymptotically stable in the mean square. The proof of the theorem is
completed. �
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4. Robust Asymptotic Stability Criterion

Consider the system (2) with norm bounded parameter uncertainties that is

dy(t) = [−(A+ ∆A(t))y(t) + (B + ∆B(t))g(y(t− τ)) + (C + ∆C(t))

∫ t

−∞
K(t− s)

g(y(s))ds]dt+σ(t, y(t))dw(t), t 6= tk (19)

y(tk) = Iky(t−k ), t = tk, k = 1, 2, ...

where A+ ∆A(t), B + ∆B(t) and C + ∆C(t) are of the following structure:

[∆A(t) ∆B(t) ∆C(t)] = MF (t)[N1 N2 N3]

where M,N1, N2, N3 are known constant matrices with appropriate dimensions and bounded
which satisfies

F T (t)F (t) ≤ I, t ≥ 0

Theorem 3.2 Suppose that the assumption (C1)− (C3) is satisfied. If there exist matrices

P =

[
P11 P12

P T12 P22

]
≥ 0 with P11 > 0, R =

[
R11 R12

RT12 R22

]
≥ 0

Q1 > 0, Q2 > 0, H1, H2, H3, H4, diagonal matrices E > 0, S > 0 and four positive scalars
ρ > 0, ε1 > 0, ε2 > 0, ε3 > 0 such that the following inequalities hold:

P < ρI (20)

ITk P11Ik + 2ITk P12Ik + ITk P22Ik − P11 − 2P12 − P22 < 0 (21)
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Ω1 =

Θ11 Θ12 Θ13 Θ14 −τATP T12 + τP T22 −τH1 P11M 0 −τATR22 0

∗ Ξ22 Ξ23 −HT
4 −τP T22 −τH2 0 0 0 0

∗ ∗ Θ33 0 τBTP12 −τH3 0 0 −τBTR22 0

∗ ∗ ∗ Θ44 τCTP12 −τH4 0 0 −τCTR22 0

∗ ∗ ∗ ∗ −τR11 −τR12 0 τR12M 0 0

∗ ∗ ∗ ∗ ∗ −τR22 P22M 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τR22 τR22M

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3I


< 0 (22)

where

Θ11 = −P11A−ATP T11 + P12 + P T12 + ρD0 +Q1 + LEL+ τR11 +H1 +HT
1 − τR12A

+ ε1N
T
1 N1 + τε2N

T
1 N1 + τε3N

T
1 N1

Θ13 = P11B +HT
3 + τR12B − ε1NT

1 N2 − τε2NT
1 N2 − τε3NT

1 N2,

Θ14 = P11C +HT
4 + τR12C − ε1NT

1 N3 − τε2NT
1 N3 − τε3NT

1 N3,

Θ33 = −Q2 − 2S + ε1N
T
2 N2 + τε2N

T
2 N2 + τε3N

T
2 N2,

Θ44 = −E + ε1N
T
3 N3 + τε2N

T
3 N3 + τε3N

T
3 N3

and Ξ22,Ξ23, L are stated as in Theorem 3.1. Then the origin of system (2) is the unique
equilibrium point and it is globally asymptotically stable.

Proof. In order to prove the robust asymptotic stability, we use the same Lyapunov-Krasovskii
functional as defined in (9). By replacing A,B and C in (2) with A+ ∆A(t), B + ∆B(t) and
C + ∆C(t), respectively and by Ito’s differential formula, we can calculate the trajectories of
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the system (19), then we have

Ω1 = Ω

+ ε−11



P11M

0

0

0

0

P22M



×
[
MTP11 0 0 0 0 MTP22

]
+ ε1



−N1

0

N2

N3

0

0



×
[
−NT

1 0 NT
2 NT

3 0 0
]

+τε−12



0

0

0

0

R12M

0



×
[
0 0 0 0 MTR12 0

]
+ τε2



−N1

0

N2

N3

0

0



×
[
−NT

1 0 NT
2 NT

3 0 0
]

+τε−13



0

0

0

0

0

R22M



×
[
0 0 0 0 0 MTR22

]
+ τε3



−N1

0

N2

N3

0

0



×
[
−NT

1 0 NT
2 NT

3 0 0
]

Therefore, under condition (20)-(22), system (19) is robustly globally asymptotically stable
with respect to the uncertain parameters ∆A(t), ∆B(t) and ∆C(t). This completes the proof
of the theorem. �
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If we neglect the impulsive term and stochastic perturbations in (2), then it reduces to

ẏ(t) = −Ay(t) +Bg(y(t− τ)) + C

∫ t

−∞
K(t− s)g(y(s))ds (23)

Corollary 3.3 Suppose that the assumption (C1)− (C3) is satisfied. If there exist matrices

P =

[
P11 P12

P T12 P22

]
≥ 0 with L11 > 0, R =

[
R11 R12

RT12 R22

]
≥ 0

Q1 > 0, Q2 > 0, H1, H2, H3, H4 and diagonal matrices E > 0, S > 0 such that the following
inequalities hold:

Ω =



Ξ11 Ξ12 Ξ13 Ξ14 −τATP T12 + τP T22 −τH1 −τATR22

∗ Ξ22 Ξ23 −HT
4 −τP T22 −τH2 0

∗ ∗ Ξ33 0 τBTP12 −τH3 −τBTR22

∗ ∗ ∗ −E τCTP12 −τH4 −τCTR22

∗ ∗ ∗ ∗ −τR11 −τR12 0

∗ ∗ ∗ ∗ ∗ −τR22 0

∗ ∗ ∗ ∗ ∗ ∗ −τR22



< 0 (24)

where

Ξ11 = −P11A−ATP T11 + P12 + P T12 +Q1 + LEL+ τR11 +H1 +HT
1 − τR12A

Ξ12 = P12 −H1 +HT
2 , Ξ13 = P11B +HT

3 + τR12B

Ξ14 = P11C +HT
4 + τR12C, Ξ22 = −Q1 −H2 −HT

2 , Ξ23 = LS −HT
3 , Ξ33 = −Q2 − 2S,

L = diag{l1, l2, ..., ln}. Then the origin of system (2) is the unique equilibrium point and it is
globally asymptotically stable.

Proof. By arguing similar to the proof of Theorem 1, we can show that the equilibrium point
of system (2) is globally asymptotically stable in the mean square. This completes the proof of
the theorem. �

Remark 3.4 The authors Chen and Cao, [2] discussed the global asymptotic stability of de-
layed Hopfield neural networks. Wan et al. investigated the mean square exponential stability
of stochastic delayed Hopfield neural networks. In [18], Wang et al. proposed the robust stability
for stochastic Hopfield neural networks with time delays and Zhang et al., [24, 26] obtained the
global stability results for delayed Hopfield neural network. As a result, in all the above men-
tioned references, impulsive effect has not been taken into account. However, in our paper, we
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derived the delay-dependent stability results for stochastic Hopfield neural networks with im-
pulsive effects. Therefore, our main result is new, quite effective and leads to less conservative
results when compared with some existing works [2, 8, 19, 20].

Remark 3.5 It is noteworthy that in our paper, we employed several free weighting matrices
and S-procedure to derive the delay-dependent stability criterion. The derived criterion is ob-
tained in LMI forms whose feasibility can be readily checked by using the Matlab LMI toolbox.
Different from the conventional stability criteria that depend on the M-matrix computation, no
tuning of parameters will be needed when employing our LMI-based stability criteria. More-
over, two numerical examples with simulation results will show the effectiveness of the stability
conditions in this paper.

5. Illustrated Examples

In this section, we provide two numerical examples to demonstrate the effectiveness of the
main results presented in this paper.

Example 4.1 Consider a delayed stochastic Hopfield neural network (2) with parameters as:

A =

[
1.7679 0

0 1.8860

]
, B =

[
−0.2376 −0.4769
−0.6707 −0.7654

]
, C =

[
−0.1052 −0.5069
−0.0257 −0.2808

]
,

L =

[
0.5219 0

0 1.8993

]
, D0 =

[
0.33 0

0 0.25

]
, Ik = I =

[
0.2 0
0 0.2

]
It can be checked that system (2) satisfies the assumptions (C1) − (C3). For the delay bound
τ = 0.957, we have obtained the following feasible solutions to the LMIs (4) - (6) in Theorem
1

P11 =

[
25.7039 −1.6632
−1.6632 39.0949

]
, P12 =

[
4.3286 −0.9483
−0.9483 3.8977

]
, P22 =

[
8.8576 −1.6157
−1.6157 7.3501

]

Q1 =

[
18.9787 −6.6658
−6.6658 16.4166

]
, Q2 =

[
29.9330 20.6811
20.6811 51.6907

]
, R11 =

[
21.3444 −6.6192
−6.6192 19.6772

]

R12 =

[
6.4801 −1.9881
−1.9881 4.5859

]
, R22 =

[
7.2495 −2.6422
−2.6422 3.5791

]
, H1 =

[
−1.5463 0.9452
−1.2486 1.3717

]

H2 =

[
1.6552 0.8485
−0.6090 1.9241

]
, H3 =

[
1.8527 1.2408
2.4549 1.7661

]
, H4 =

[
−1.0116 2.4402
−1.5775 1.8661

]
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S =

[
18.3098 0

0 8.9915

]
, E =

[
22.2513 0

0 16.6959

]
, ρ = 1.8663× 103

In order to show the significant improvement of our results, we summerize the comparisons
between the previous works and the obtained result. For this example, the delay-dependent sta-
bility analysis in [3, 26, 27], cannot be satisfied for any τ > 0. Table 1 shows the maximum upper
bound of the previous works [8, 19, 20] as 0.4121, 1.7484 and 1.7644, respectively. However, by
theorem 1, we have that the origin of delayed stochastic Hopfield neural networks with im-
pulsive effect is globally asymptotically stable for any constant allowable upper bound τ > 0.
Hence, it is clear that the proposed method shows the less conservativeness than the existing
works [2, 8, 19, 20].

Fig. 1 State trajectories of y1, y2 for Example 1

Example 4.2 Consider a delayed stochastic uncertain Hopfield neural network (2) with the
following parameters:

A =

[
0.7679 0

0 0.8860

]
, B =

[
−0.1746 −0.8642
−0.2892 −0.7300

]
, C =

[
−0.8252 −0.4912
−0.4732 −0.8858

]
,

M =

[
0.07051 0

0 0.0342

]
, N1 =

[
0.3526 −0.1904
0.3322 −0.1564

]
, N2 =

[
0.2446 0.3674
−0.1753 0.2956

]
,
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Table 1: Maximum allowable bound of the delay

Method Maximum upper bound of τ

In Ref [2, 26, 27] -
In Ref [8] 0.4121
In Ref [19] 1.7484
In Ref [20] 1.7644
In this paper for any large finite τ > 0

N3 =

[
0.1981 −0.1313
0.1185 0.1645

]
, L =

[
0.07051 0

0 0.0342

]
, D0 =

[
0.85 0

0 0.85

]
,

For τ = 0.957 and by solving the LMIs (20)-(22) in Theorem 3.2, we get the following feasible
solution as follows:

P11 =

[
133.1390 −39.2261
−39.2261 103.1396

]
, P12 =

[
5.2825 −5.7032
−5.7032 10.4098

]
, P22 =

[
18.1026 −10.6945
−10.6945 25.6053

]

Q1 =

[
30.8319 −27.8887
−27.8887 47.6789

]
, Q2 =

[
90.1163 28.7709
28.7709 147.2412

]
, R11 =

[
39.5332 −37.1370
−37.1370 66.5761

]

R12 =

[
21.2050 −14.1850
−14.1850 21.1791

]
, R22 =

[
31.5030 −17.8344
−17.8344 21.7477

]
, H1 =

[
−13.2142 4.3068
−3.1365 −1.7307

]

H2 =

[
13.9993 −1.7353
−3.6838 8.4480

]
, H3 =

[
−9.5150 11.0562
−15.8051 17.3187

]
, H4 =

[
12.1911 −1.3902
−7.3453 12.0990

]

S =

[
72.1101 0

0 263.5610

]
, E =

[
491.5915 0

0 339.6219

]
, ρ = 7.1793× 103

ε1 = 26.1631, ε2 = 15.5658, ε3 = 16.3759.

Thus, all the conditions in Theorem 3.2 are satisfied. Therefore, the model (19) with above
given parameters is globally asymptotically stable in the mean square.

6. Conclusion

This paper has studied the problem of stability analysis for a class of delayed stochas-
tic uncertain Hopfield neural networks with distributed time-varying delays and impulses. A
delay-dependent asymptotic stability condition is developed in terms of an LMI, which can be
easily checked by using recently developed algorithms in solving LMIs. Finally, two numerical
examples has been provided to demonstrate the usefulness and the reduced conservatism of the
proposed results.

Advances in Systems Science and Applications (2011), Vol. 11, No. 1-2 107



References

[1] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in system
and control theory, Philadelphia, PA:SIAM, 1994.

[2] A. Chen, J. Cao and L. Huang, An estimation of upper bound of delays for global asymp-
totic stability of delayed Hopfield neural networks, IEEE Transactions on Circuits and
Systems I: Fundamental theory and applications, 49 (2002) 1028-1032.

[3] C. J. Chen, T. L. Liao and C. C. Hwang, Exponential synchronizations of a class of chaotic
neural networks, Chaos, Solitons and Fractals, 24 (2005) 197-206.

[4] L. Chua and L. Yang, Celluar neural networks: theory and applications, IEEE Transactions
on Circuits and Systems I, 35 (1998) 1257-90.

[5] H. Huang and J. Cao, Exponential stability analysis of uncertain stochastic neural net-
works with multiple delays, Nonlinear Analysis: Real World Applications., in press.

[6] H. Huang, D. W. C. Ho and J. Lam, Stochastic stability analysis of fuzzy Hopfield neural
networks with time-varying delays, IEEE Transactions on Circuits and Systems II, 52
(2005) 251-255.

[7] J. J. Hopfield, Neural networks and physical systems with emergent collective computa-
tional abilities, Proceeding of the National Academy of Sciences, 79 (1982) 2554-2558.

[8] H. He, A. N. Michel and K. Wang, Global stability and local stability of Hopfield neural
networks with delays, Physics Review E, 50 (1994) 4206-4213.

[9] Y. R. Liu, Z. D. Wang and X. H. Liu, On global exponential stability of generalized
stochastic neural networks with mixed time-delays, Neurocomputing, 70 (2006) 314-326.

[10] X. X. Liao and X. Mao, Exponential stability and instability of stochastic neural networks,
Stochastic Analysis and its Applications, 14 (1996) 165-185.

[11] V. Lakshikantham, D. Bainov and P. S. Simenov, Theory of impulsive differential equa-
tions, World Scientific, Singapore.

[12] Ju. H. Park, On global stability criterion for neural networks with discrete and distributed
delays, Chaos, Solitons and Fractals, 30 (2006) 897-902.

[13] H. Qiao, J. Peng and Z. Xu, Nonlinear measures: A new approach to exponential stability
analysis for Hopfield-type neural networks, IEEE Transactions on Neural networks, 12
(2001) 360-370.

[14] V. Singh, Simplified LMI condition for global asymptotic stability of delayed neural net-
works, Chaos, Solitons and Fractals, 29 (2006) 470-473.

[15] P. Van Den Driessche and X. Zou, Global attractivity in delayed Hopfield neural networks
model, SIAM Journal on Applied Mathematics, 58 (1998) 1878-1890.

108 Raja: Delay-dependent Stability Criteria of Stochastic Uncertain Hopfield . . . . . .



[16] L. Wan and J. Sun, Mean square exponential stability of stochastic delayed Hopfield neural
networks, Physics Letters A, 343 (2005) 306-318.

[17] Z. Wang, Y. Liu, K. Fraser and X. Liu, Stochastic stability of uncertain Hopfield neural
networks with discrete and distributed delays, Physics Letters A, 354 (2006) 288-297.

[18] Z. Wang, H. Shu, J. Fang and X. Liu, Robust stability for stochastic Hopfield neural net-
works with time delays, Nonlinear Analysis: Real World Applications, 7 (2006) 1119-
1128.

[19] D. Y. Xu and Z. C. Yang, Impulsive delay differential inequality and stability of neural
networks, Journal of Mathematical Analysis and its Applications, 305 (2005) 107-120.

[20] D. Y. Xu, W. Zhu and S. J. Long, Global exponential stability of impulsive integro-
differential equation, Nonlinear Analysis, 64 (2006) 2805-2816.

[21] H. Yang and T. Chu, LMI conditions for stability of neural networks with distributed
delays, Chaos Solitons Fractals, 34 (2007) 557-563.

[22] T. Yang, Impulsive control, IEEE Transactions on Automatic Control, 44 (1999) 1081-
1083.

[23] Q. Zhang, X. G. Wei and J. Xu, Delay-dependent global stability results for delayed Hop-
field neural network, Chaos Solitons and Fractals, 34 (2007) 662-668.

[24] J. Zhang and X. Jin, Global stability analysis in delayed Hopfield neural network models,
Neural Networks, 13 (2000) 745-753.

[25] Y. Zhang and J. T. Sun, Stability of impulsive neural networks with time delays, Physics
Letters A, 348 (1-2) (2005) 44-50.

[26] Q. Zhang, X. Wei and J. Xu, Global asymptotic stability of Hopfield neural networks with
transmission delays, Phys Lett A, 318 (2003) 399-405.

[27] Q. Zhang, X. Wei and J. Xu, Delay-dependent exponential stability of cellular neural net-
works with time-varying delays, Chaos, Solitons and Fractals, 23 (2005) 1363-1369.

Advances in Systems Science and Applications (2011), Vol. 11, No. 1-2 109


