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Abstract  In this paper, the author discussed the existence of compactly supported LP-solutions for
the dilation equations on the plane. Furthermore, two examples are given to illustrate the general theory.
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1. Introduction

A a-scale dilation equation is a functional equation of the form

N
f((L') = Z Cnf(ax - Bn)
n=0

where f : R — R(or C),a > 1,5y < p1 < --- < [ are real constants, and ¢, are real
(complex) constants. The equation is called a lattice k-scale dilation equation if

N
f@) =" cnflka —n)
n=0

for an integer £ > 2. A special case of the functional equation (k = 3, N = 4, and ¢,, =
1,2/3,1/3,1) was first studied by de Rham!!! as an example of a continuous nowhere dif-
ferentiable function. Recently this equation has attracted a lot of attention, especially for the
lattice case with £ = 2. In wavelet theory, the study of multiresolution and the search of var-
ious orthogonal, compactly supported wavelets has lead to the investigation of the existence,
uniqueness, and smoothness of such continuous integrable solutions?!. The equation also plays
an important role in the “subdivision schemes” and “interpolation schemes” of constructing
continuous spline curves, surfaces and fractal objects [>4] .

There are two major approaches to the equation: the Fourier method(the frequency domain
approaches) and the iteration method(the time-domain approaches). Using Fourier transforma-
tion, Daubechies and Lagarias!®! proved that the equation has a nonzero integrable solution. By
using the Fourier transform of f and the Paley-Wiener theorem, it was proved in 13! that f has
compact support in [0, 35 /(o — 1)]. The Fourier method, however, does not give sharp criteria
for the existence of L' — solutions in terms of the coefficients{c, }. Some partial results are
given in 1561,

The iteration method is restricted to the lattice case. It applies particularly well in the case
of compactly supported solutions. The basic idea is to identify a given function f supported by
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[0, N] with the vector-valued function
f(x) = [f(x)a e 7f(x + (N - 1))]T737 € [07 1]7

and to use the right side of the dilation equation to construct two N x N matrices T and 77.
A constant vector v is used as the initial condition, followed by iteration with the matrices Ty
and 77. The limit, if the sequence converges, will be the solution of the dilation equation.
Such an approach was used by Daubechies and Lagarias'¥!, and independently by Michelli and
Prautzsch!’!. It was also used by Collela and Heil® and [*) and Ka-sing Lau and Jianrong
Wang!'%,

Similarly, on the plane the dilation equation is defined as the form

M N

m=0n=0

where f : R?2 - RorC, Ais an expand matrix, QQ,, are vectors, ¢, are real (or complex)
constants. The equation is called a lattice dilation equation if

M

F@) = 33 e (e — (") @

m=0n=0
where A is an integer expand matrix.
In this paper we will study the existence of the compactly supported LP-solutionof the

equation(2) on the plane with ¢, € Rand A = <2 O> .

0 2
M N
As usually the basic assumption on the coefficients is > > ¢ = |det A| = 4.
m=0n=0
Let dy = (8),d2 = (?),d:; = (é),d4 = G),gpk(ac) =AYz +di), k = 1,2,3,4, there
4 4

exists an attractor 7' = [0, 1] x [0, 1] satisfing T = |J ox(T) £ U Tp.
k=1 k=1

At the same time there exist vectors {e;s = (2),0 <i<M-1,0<s<N—1}suchthat
M-1N-1

suppf C U U (T'+ eis).
i=0 =0
Let
Pio = (ci25—t)o<s, t<N—1, Pi1 = (Ci2s—t+1)o<s,t<N-1, 1 =0,1,--- | M.

For example,

€0,0
€02 €01 €00

P()O:(CO,2S—t)0§s,t§N—1: €04 €03 Co,2 Co,1 Co,0

0 0 0 0 0  Co,N CoN-1
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And let

)

My = (Poi—jo)o<ij<m—1= | Pio P30 Poo Pio Pop

0 0 0 0 0 - Pyo Pru-1p0

Py
Py Pin Poa
My = (Poi—ja)o<ij<m—1= | Pux P31 Pon Pii Poa ’
0 0 0 0 0 - Pyi Pyis
Pio Py

Psog Po Piog Pop
M3 = (Poi—jt10)o<ij<m—-1= | Pso Pio P30 Pog Pip FPoo ;

) )

P Poa
Ps1 Py P Py
My = (Poi—jt11)o<ij<m—-1= | Psqg Pi1 P31 Poi Piy Poa

)

0 0 0 0 0 0 -+ 0 Pupa

We define a vector function: F'(x) = (f(z+e), f(z+eo1), f(z+eo2), -, f(z+eon-1), f(z+
e10), , flx+ein-1),, fl@+eny_1n-1)) forz € T =[0,1] x [0, 1], then equation
(2) will satisfy

M F(py!(2)) = eTi=[0,1/2) x [0,1/2);

MyF(py ' () @€ To=1[0,1/2) x [1/2,1);

F(z) = { MyF(p3'(z)) =€ Ty=[1/2,1) x [0,1/2); ()
MyF(py'(2) @ eTy=[1/2,1) x [1/2,1);
0 x € others.

Let v is 4-eigenvector of (M + My + M3 + My),we have (M; + Mg — 21)v = —(Msy +
My — 2I)v.And let v = (M; + M3 — 2I)v, H(v) be the subspace in RM*Y spanned by
{M,v : o € ¥*}. Then the basic theorem is as follows.
Theorem 1.1. For1 < p < oo, the following are equivalent:

(1) equation (2) has a nonzero compactly supportedLP-solution;

(2) there exists a 4-eigenvector v of (M1 + Mo + Ms + My) satisfying

.1 ~
Jim g D I =0

lo|=t



64 Liu:Characterization of L2-solutions for the Dilation Equations on R?

(3) there exists a 4-eigenvector v of (M1 + Mo+ M3+ My) such that there exists an integer
l > 1 such that

1 ~
7 > IMoul|lP < 1 forallu € HB), |ul| <1

lo|=t

2. Preliminaries

Lemma 2.1. If equation(2) exists compactly supported LP-solution f, then suppf C [0, M| x
[0, N].

Proof Letsuppf C D, take z € D with f(z) # Othen Az— (") € D,i.e. x € A~HD+()).
Let E={0,1,2---M} x {0,1,2--- N}, then
D ¢ AYD+E)=A"'D+A'E
C A YA 'D+A'E)+ A E=ATD+ A2E+ A'E
C A'D+ A E+ A Vg4 4 ATE
let t — oo, then
o
Dc{)_ A'y:yeE}cC(o,M]x[0,N]
t=1
for the closed set F.

Proposition 2.2. Let f be supported by [0, M] x [0, N], and let F be defined as above, then f
is an LE—solution of (2) ifand only if F € LP? and F = MF, i.e. F satisfies equation(3).

M N
Proposition 2.3. If > > ¢y, = 4, then 4 is an eigenvalue of (M1 + Ma + M3 + My) with

m=0n=0

left eigenvalue [1,1,--- | 1].

Proof Obviously, the sum of each column is equal to 4 in the matrix (M + Ma + M3 + My).
O

It follows that the right 4-eigenvector of (M + Ms + M3 + M,) exists also; it will play a
central role in the existence of the solution of equation(2). Let f be the average of f over

Aies fa = gy o f-

Proposition 2.4. Let f be an compactly supported LP-solutionof equation(2), v = [friey,
JTveor * JTvenr—a, NﬁJT be the vector defined by the average of f on the M x N subintervals
as indicated. Then v is 4-eigenvector of (M1 + My + Mz + My).

Proof According to Proposition2.2, F' = M F, i.e.,

MiF(p;'(z)) z€Ty=1[0,1/2) x [0,1/2)

) = MyF(py'(z)) ze€Ty=1[0,1/2) x [1/2,1) @
M3F(p3t(z)) z€Ty=][1/2,1) x[0,1/2)
MyF(p;'(z)) zeTy=][1/2,1) x [1/2,1)
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when we integrate the expression over 77,75, T3 and T} separately, we have

[f[O,é]X[O,%]’ T 7f[M71,N7%]><[M—1,N—% ]T = M
Fodpxizy  foroiv— -l = Mav
U[%J]X[Oé]’ o ’f[M—%,N}X[M—l,N—% T = Mzv

Py S tovxpr— )" = Mav

On the other hand, note that on each interval [i,7 + 1] x [i,7 + 1] the average satisfies
f[z',i+§} x [iyi+1] + f[i,i+%] X [i+ 5 i+1] + f[i+%,i+1] x[iyi+1] + f[i+%,z’+1] x[i+3,i+1] = 4 [l i) x i1

hence we conclude that (M7 + My + M3 + My)v = 4v.

oo
Let ¥ = {1,2,3,4}, &7 = {(i1,dp,-- ,in) : i; € B}, X0 =, £* = |J ¥, £% =
n=0

{(d1,42,--+) : i; € X}. Foreach o = (iy,ig,---) € X, define o|,, = (i1,42,--- ,in). Let

0 = (ilai%"' 77'n) € 2*77— = (jlvj?a' o 7]m) € E*’deﬁne (UaT) = (ilai%"' 7in7j1;j27"'

4
'Ul T(5,4), and My := M;, M;, - - - M;, . So for any o, 7 € X*, we have T(,, ) C 1.
1=

Lemma 2.5. Let Fy(x) = v for x € T, and Fy11 = MFy, for k > 0. Then Fy, = Myv for
each x € T,. Moreover, if f is an LY —solution of equation(2) and v is the average vector of
f defined in Proposition 2.4, then

T
Fp = Myv = [fTa-i-eom fTa+eo1 T fTo+8M—1,N—1]

where (T, + j) = {x +j : x € T, }. Also, F}, — F in LP(T, RM*N),

Proof We will use induction to show that Fy(z) = M,v for x € T, with |o| = k. Suppose
that F(r) = Myv forx € T, Letz € T(y o) = ¢1(T5); then o1 (z) € T, and

Fp1(z) = MFy(2) = MiFy(¢7 ' (2)) = MiMev = My 5.

Similarly, if x € T(; 5, then Fyy1(z) = M; 50,1 = 2,3, 4.
Moreover, F = MF and F(z) = M,F(p,!(x)) for x € T,. Integrating this over the
interval T,,, we obtain [f7, +egos [T, +eors - * ,ng+eM_LN_1]T = M,v.

Lemma 2.6. Let v be a 4-eigenvector of (M1 + My + Ms + My), and let Fy, be defined as
above,then for each k,

/ Fy(x)dz = v. 5)
T

yIm) Ty :
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Proof This follows from the following induction argument:

/ Fiide = M F(o7 ) de + | MaFy(ey () da
T T Ty

+ | M3Fi(p3'(z))da+ | MyFy(p;*(z))da
T3 Ty

_ i(Ml/TFk(x)dx—|—Mz/TFk(x)d:U+M3/TFk(x)dx+M4/:FFk(:c)dac)

1
- 4(M1+M2+M3+M4)/Fk(x)dx
T
1
Z(M1+M2+M3+M4)v:v.

Theorem 2.7. For1 < p < oo, the following are equivalent:
(1) equation (2) has a nonzero compactly supported LP-solution;
(2) there exists a 4-eigenvector v of (M + Mo + M3 + My) satisfying

1
: <o _
lllglo i E | M,v||P =0

lo|=t

(3) there exists a 4-eigenvector v of (M1 + My + Ms + My) such that there exists an integer
l > 1 such that

1 ~
7 > IMoul|lP < 1 for allu € H(B), |ul| <1 (6)

lo|=t

Proof Let Fy = v and F,,y; = MF,. By Lemma (2.5), for x € T, and |o| = n, F,(z) =
Myv. Let Gy, = Fpp1 — Fy;then Fiypy = Fy + Go + - - - + G, where

Gn(w) = 4 Mo+ Mogv=2Mov =Moo ifw € Tig1) UT(os),
" o M(a.72)’U + M(UA)’U — 2MUU = —MO-/Q\)J ifz e T(O',Q) U T(O’,4)’

and 1
1Gall? = > 1M

|o|=n
Since (1) implies that ||G,, || converges to zero, (2) follows immediately.

To prove that (2) implies (3), we note that H (v) is finite dimensional and has a finite basis
of Mv’s. Let u = M,v with |7| = k; then

1 1 - 1 ~
7 2 Mol = 5 D IMMAI < 4 3 IMGFI = 0

|o|=n lo|l=n |o|l=n+k

as n — oo, and the convergence is uniform for all ||u|| < 1. Hence (6) follows by taking
I = n for n sufficiently large.
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Now assume (3) holds. Since H (v) is finite dimensional, there is a constant 0 < ¢ < 1 such
that for any u € H(v),

1
o 2 [Moull” < cllull”

lo|=t

For any |7| = n, let u = M,;v € H(v); then

1 ~ ~
7 2 1Mo MB|” < cf| M.
lo|=t
Summing over all |7| = n, we have

1 - 1 - c ~
LT = g 3 Y A < &

lo|=l+n lo|=l|r|=n |T|=n

It follows from the expression of ||G,,|| given above that
1Gna]]” < el Gnll”.

For each fixed n, {||Gp4r1]|}72; is dominated by a geometric series, hence F,1 = Fy + Go +
-+ + Gy, converges in LP. The limit ' is nonzero by Lemma (2.6), and so by Proposition (5),
(1) follows.

Remark 2.8. we can also consider the equation

J) = 33 e - ("))

m=0n=0

. 11 MXN e . .

with B = ( 1 1) and > > dm, = |det B| = 2, since iterating this equation again, we
- m=0n=0

obtain the equation (2).

Corollary 2.9. Under the same hypotheses of Theorem (2.7), assume that the solution f exists;
then v ¢ H(V), and the dimension of H(v) is at most M N — 1.

Proof By Theorem (2.7)(2),
1 ~
o Z || Myu||P — 0 for any v € H(v).
lo|=n

It follows that if v € H (), then

1 1
[0l = 1M+ My + M + M)l < = > IMgo|? =0
lo|=n

as n — oo. This contradicts v # 0.
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3. Some Examples

Example 1: We consider a dilation equation :

0= 3 Y e star () 0

m=0n=0
2 0y & &
whereA:< >,Z > Cmn =4
0 2 m=0n=0

Theorem 3.1. For1 < p < oo, equation(7) has a (nonzero) LE—solution if and only if either
co1 + c11 = 2 and

1

Z(!Coo + c10l? + 12 — (coo + c10)|F) < 1

or cop + c10 = 2 and coo + c19 = 2.

Proof Note that

M1:<Coo 0 >,M2:<001 COO),M3:<010 0 ),M4:<CH C1o>7
co2  Co1 0 coo cl2 c11 0 ci2

oo + ¢10 + co1 + C11 oo + €10
and My + My + M3 + My = .
! 2 s : < Co2 + C12 co1 + c11 + Cp2 + C12 )
If (coo + c10,c02 + c12) = (0,0), then My + My + M3 + My = 4I. Any nonzero
vector v = [x,y]T will be a 4-eigenvector. It is a direct calculation that v € H(?) and, by

Corollary(2.9), no nonzero LL—solution exists.

We assume that (cog + c10, co2 + ¢12) # (0, 0), then 4-eigenvector of My + Ma + M3+ My
isv = [C[)() + c10, Co2 + Clz]T, so that
(8)

§=(M1+M3—2[)v:( (600-1-610)(600—1-010—2) )

(co2 + €12)(2 = (co2 + c12))

For a L¥—solution exists, H () can only be {0} or one-dimensional(Corollary(2.9)).
In the first case, v = 0, condition(6) is automatically satisfied. The only possible cases
are
(coo + c10, co2 + c12) = {(2,2),(0,2),(2,0)}.

In the second case, v # 0. Since H () is invariant under My + M3 and My + My, (M7 +
M3)v = cv for some c. Expression (8) yields the following cases:

(@) coo + c10 = 0 or coa + c12 = 0. In this case v € H(v) and Corollary(2.9) implies that
(7) hasno LP—solution.

(b) coo + c10 = 2 or cp2 + c12 = 2. In this case a direct calculation shows that (M; +
M3)v, (My + My)v are independent. Since H (v) is 2-dimensional and by Corollary(2.9) no
LP —solution exists.
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(¢) coo+c10 # 0,2 and co2 +c12 # 0, 2. Let a = coo +c10,b = co2 +c12. By equating (8)

and 2( )

~ a“(a — 2

(My + My)o = < b(2 = b)(4 —a—b)+ (a—2)a] > ©
with (M7 + M3)v = cv, we have ¢ = a, so that by (8) and (9),
b[(2—-0)(4 —a—0b)+ (a—2)a] = ab(2 — b);
that is
(a+b—4)(a+b—-2)=0.

Hence, either (i) or (ii) below holds.

(i) a + b = 4. In this case v = [a,4 — a]T and ¥ = (a — 2)v. Once again v € H () and no
LY —solution exists.

(ii) a+b = 2. In this case a direct calculation shows that (M7 + M3)v = av, (Ma+ My)v =
bv. By Theorem(6), equation(7) has an LE—solution if and only if there exists an integer
{ > 1 such that

(a4 Y = 5 3 M < o
|o|=t
This is equivalent to
Lal 42— al) <1,
i.e.,
i(!coa + c10/” + 12 = (oo + c10) ) < 1.

The theorem follows by summarizing all the cases.

It follows directly from the theorem that if @ + b = 2 and if

() a € (—1,3), then an L} — solution exists;

(ii) @ € (0,2), then an L2 — solution exists;

(iii) @ = 1, then an L% — solution exists forall 1 < p < oo.

Example 2: Considering a dilation equation as follows:

g(z) = le Zlidmng(Bx - @L)) (10)

m=0 n=0

11

where B = G 11> and > > dmn = 2.. Iterating the equation once, we obtain the
- m=0n=0

suppg C [—1,2] x [0, 3].

Let f(z) = g(z — (;)), A=B%= <3 (2)> and let
0 dood1o do1d1o 0
| 4 doodor +d3y  doodi1 + diodiy  dordis
(Cmn)o<m,n<3 = 2 2
doodio  doodi1 + doodor  diy + diodin diy

0 do1dio dordi1 0
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then (10) is rewritten as the form

3

fl@) =2 icmnﬂAax - (ZL)) (11)

m=0n=0

with suppf C [0, 3] x [0, 3], so the discussion of the equation (11) is similar with the Example
1.
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