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tional differential equation with state-dependent delay

Dαx(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ J = [0, b], (1)

x0 = ϕ ∈ B, (2)

where b > 0, 0 < α < 1 and A : D(A) ⊂ X → X is the infinitesimal generator of

an α-resolvent family (Sα(t))t≥0 defined on a complex Banach space X. The function xs :

(−∞, 0] → X, xs(θ) = x(s + θ), belongs to some phase space B that will be defined later (

see Section 2), f : J ×B → X, ρ : J ×B → (−∞, b] are appropriate functions and ϕ belongs

to the phase space B with ϕ(0) = 0. The fractional derivative Dα is understood here in the

Riemann-Liouville sense.

The theory of functional differential equations has emerged as an important branch in non-

linear analysis. It is worth mentioning that several important practical problems have lead to

investigations of functional differential equations of various types ( see the books of Hale et al.

[11], Wu [31], and the references therein). On the other hand, functional differential equations

with state-dependent delay appear frequently in applications as model of equations and for this

reason, the study of this type of equation has gained great attention in the last decades, we refer

to [4, 5, 9, 14, 15, 22] and the references therein.

Differential equations of fractional order play a very important role in describing some real

world problems. For example some problems in physics, mechanics and other fields can be

described with the help of fractional differential equations, see [2, 7, 17, 24, 25] and references

therein. The theory of differential equations of fractional order has recently received much

attention and now constitutes a significant branch in differential equations. Lots of research

papers and monographs have appeared devoted to fractional differential equations, for example

see [1, 3, 6, 8, 18, 19, 20, 21, 26, 27, 28, 30, 33, 34] and the references therein.

Motivated by the above mentioned works, the purpose of this paper is to investigate the

existence results of mild solutions to a semilinear fractional functional differential equation with

state-dependent delay described in the general abstract form (1)-(2). The main technique is

based upon the α-resolvent family (Sα(t))t≥0 combined with suitable fixed point theorems.

This paper is organized as follows. In Section 2, we introduce notations, definitions and

some lemmas which are used in the sequel. In section 3, we prove the existence of mild solutions
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for the problem (1)-(2).

2. Preliminaries

From now on, we set J = [0, b]. We denote by X a complex Banach space with norm

‖ · ‖,C(J,X) the space of all X-valued continuous functions on J , endowed with the topology

of uniform convergence with norm

‖x‖∞ := sup
t∈J
‖x(t)‖.

And L(X) the Banach space of all linear and bounded operators on X. Moreover, Br(z0,Z)

denotes the closed ball with center at z0 and radius r > 0 in Z.

Definition 2.1 [25] Assume that f ∈ Cm(R+,X). If α ∈ (m− 1,m), where m ∈ N, then the

Riemann-Liouville fractional derivative of order α ∈ (m− 1,m) is the expression

Dα
t f(t) =

dm

dtm

∫ t

0
gm−α(t− s)f(s)ds,

where for β > 0

gβ(t) =


tβ−1

Γ(β) for t > 0,

0 for t ≥ 0.

Definition 2.2 [25] Let α > 0 and f : R+ → R be in L1(R+,X). Then the Riemann-Liouville

integral is given by:

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds.

Recall that the Laplace transform of a function f ∈ L1(R+,X) is defined by:

f̂(λ) =

∫ ∞
0

e−λtf(t)dt, Re(λ) > ω,

if the integral is absolutely convergent for Re(λ) > ω.
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Definition 2.3 [26] Let A be a closed and linear operator with domain D(A) defined on a

Banach space X and α > 0. Let ρ(A) be the resolvent set of A. We call A the generator of an

α-resolvent family if there exists ω ≥ 0 and a strongly continuous function Sα : R+ → L(X)

satisfying Sα(0) = I such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λα −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Sα(t) is called the α-resolvent family generated by A.

For construction of solution by using α-resolvent family, we refer to [26] and the references

therein. We also refer to [23, 29] for more information about resolvent or solution operator.

Remark 2.1 [26] Note that if A is the generator of an α-resolvent family (Sα(t))t≥0 then the

Laplace transform of Sα(t) is Ŝα(λ) = (λα −A)−1.

In this paper, we will employ the axiomatic definition of the phase space B introduced

by Hale and Kato in [12] and follow the terminology used in [16]. Thus, (B, ‖ · ‖B) will be

a seminormed linear space of functions mapping (−∞, 0] to X, and satisfying the following

axioms:

(A1) If x : (−∞, b) → X with b > 0, is continuous on [0, b] and x0 ∈ B, then for every

t ∈ [0, b) the following conditions hold:

(i) xt ∈ B;

(ii) There exists a positive constant H such that ||x(t)|| ≤ H‖xt‖B ;

(iii) There exist two functions K(·),M(·) : R+ → [1,+∞) independent of x(t) with K

continuous and M locally bounded such that

‖xt‖B ≤ K(t) sup{||x(s)|| : 0 ≤ s ≤ t}+M(t)‖x0‖B.

Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.

(A2) For the function x(·) in (A1), xt is a B-valued continuous function on [0, b].

(A3) The space B is complete.
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An example of phase space B satisfying (A1) − (A3) is the following space C0
g (see [31],

pp.44), where g : [−∞, 0]→ [0,∞) is a given continuous nondecreasing function such that:

(i) g(0) = 1 and g(−∞) =∞.

(ii) The function G(t) = sup
{
g(t+s)
g(t) : −∞ < s ≤ −t

}
is locally bounded for t ≥ 0.

Let

C0
g = {φ : (−∞, 0]→ X;φ is continuous and lim

s→−∞

|φ(s)|
g(s)

= 0}

Then C0
g , together with the following norm:

‖φ‖C0
g

= sup
|φ(s)|
g(s)

,

satisfies axioms (A1)− (A3).

The next lemma is a consequence of the phase space axioms and is proved in [14].

Lemma 2.1 ([14]) Let ϕ ∈ B and I = (γ, 0] be such that ϕt ∈ B for every t ∈ I . Assume

that there exists a locally bounded function Jϕ : I → [0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for

every t ∈ I . If x : (−∞, b]→ R is continuous on J and x0 = ϕ, then

‖xs‖B ≤ (Mb + Jϕ(max{γ,−|s|})‖ϕ‖B +Kb‖x‖max{0,s},

for s ∈ (γ, b], where we denotedKb = sup
t∈J

K(t) andMb = sup
t∈J

M(t), ‖x‖max{0,s} = sup {‖x(θ)‖,

θ ∈ [0,max{0, s}]}.

To conclude the current section, we recall the following well-known results.

Theorem 2.2 [10, Theorem 6.5.4]. Let D be a closed convex subset of a Banach space X and

assume that 0 ∈ D. Let Γ : D → D be a completely continuous map. Then, either the set

{x ∈ D : x = λΓ(x), 0 < λ < 1} is unbounded or the map Γ has a fixed point in D.

Lemma 2.3 ([13, 32]) Suppose b ≥ 0, α > 0 and a(t) is a nonnegative function locally in-

tegrable on 0 ≤ t < T ( for some T ≤ +∞), and suppose u(t) is nonnegative and locally

integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0
(t− s)α−1u(s)ds
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on this interval; then

u(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(bΓ(α))n

Γ(nα)
(t− s)nα−1a(s)

]
ds.

3. Existence Results

In this section, we present and prove the existence results for the fractional differential

problem (1)-(2). First, we present its mild solution.

Definition 3.1 A function x : (−∞, b] → X is called a mild solution of (1)-(2) if x0 =

φ, xρ(s,xs) ∈ B for each s ∈ J and

x(t) =

∫ t

0
Sα(t− s)f(s, xρ(s,xs))ds, for each t ∈ J. (3)

We are now in a position to state and prove our existence result for the problem (1)-(2).

For the study of this, we first list the following hypotheses:

(H1) There exist M > 0 and δ > 0 such that ‖Sα(t)‖L(X) ≤Meδt, t ∈ J .

(H2) The function f : J → B → X is completely continuous and there exists a continuous

function µ : J → (0,+∞) such that

‖f(t, ψ)‖ ≤ µ(t)‖ψ‖B, (t, ψ) ∈ J × B.

(H3) The function t → ϕt is well defined and continuous from the set R(ρ−) = {ρ(s, ψ) :

(s, ψ) ∈ J × B, ρ(s, ψ) ≤ 0} into B. Moreover, there exists a continuous and bounded

function Jϕ : R(ρ−)→ (0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ R(ρ−).

Remark 3.1 For more details on the hypothesis (H3), we refer to [14].

Theorem 3.1 Assume that the hypotheses (H1)-(H3) hold, then the problem (1)-(2) has at

least one mild solution on (−∞, b].
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Proof. Let Y = {u ∈ C(J,X) : u(0) = ϕ(0) = 0} endowed with the uniform convergence

topology and N : Y → Y be the operator defined by

Nx(t) =

∫ t

0
Sα(t− s)f(s, xρ(s,xs))ds, for each t ∈ J. (4)

where x : (−∞, b] → X is such that x0 = ϕ and x = x on J . From axiom (A1) and our

assumption on ϕ, we infer that Nx(·) is well defined and continuous.

Let ϕ : (−∞, b] → X be the extension of ϕ to (−∞, b] such that ϕ(0) = ϕ(0) = 0 on J

and Jϕ = sup{Jϕ : s ∈ R(ρ−)}.

We will prove that N(·) is completely continuous from Br(0, Y ) to Br(0, Y ).

Step 1: N is continuous on Br(0, Y ).

Let (xn)n∈N be a sequence in Br(0, Y ) and x ∈ Br(0, Y ) such that xn → x in Y . From

the axiom (A1), it is easy to see that (xn)s → xs uniformly for s ∈ (−∞, b] as n → ∞. By

(H2) we have

‖f(s, xn
ρ(s,(xn)s)

)− f(s, x
ρ(s,(x)s)

)‖

≤ ‖f(s, xn
ρ(s,(xn)s)

)− f(s, x
ρ(s,(xn)s)

)‖+ ‖f(s, x
ρ(s,(xn)s)

)− f(s, x
ρ(s,(x)s)

)‖,

which implies that f(s, xn
ρ(s,(xn)s)

) → f(s, x
ρ(s,(x)s)

) as n → ∞ for each x ∈ J . By axiom

(A1), Lemma 2.1 and dominated convergence theorem, we obtain

‖N(xn)−N(x)‖ = sup
t∈J

∥∥∥∥∫ t

0
Sα(t− s)

[
f(s, xn

ρ(s,(xn)s)
)− f(s, x

ρ(s,(x)s)
)
]
ds

∥∥∥∥
→ 0 as n→∞.

Thus, N(·) is continuous.

Step 2: N maps bounded sets into bounded sets.

Let µ∗ = sup
0≤τ≤b

µ(τ). If x ∈ Br(0, Y ), from Lemma 2.1, follows that

‖xρ(t,xt)‖B ≤ r
∗ = (Mb + J

ϕ
)‖ϕ‖B +Kbr. (5)

and so

‖N(x)(t)‖ =

∥∥∥∥∫ t

0
Sα(t− s)f(s, xρ(s,xs))ds

∥∥∥∥
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≤
∫ t

0
‖Sα(t− s)‖L(X)‖f(s, xρ(s,xs))‖ds

≤M
∫ t

0
eδ(t−s)µ(s)‖xρ(s,xs)‖Bds

≤Mµ∗r∗
∫ t

0
eδ(t−s)ds

≤Mµ∗r∗
eδb

δ
.

This implies that

‖N(x)‖∞ ≤Mµ∗r∗
eδb

δ
= l.

Step 3: N maps bounded sets into equicontinuous sets.

Let t1, t2 ∈ J with t1 > t2 and x ∈ Br(0, Y ). Then

‖N(x)(t1)−N(x)(t2)‖ =

∥∥∥∥∫ t1

t2

Sα(t1 − s)f(s, xρ(s,xs))ds

+

∫ t2

0

[
Sα(t1 − s)− Sα(t2 − s)

]
f(s, xρ(s,xs))ds

∥∥∥∥
≤ I1 + I2,

where

I1 =

∫ t1

t2

‖Sα(t1 − s)f(s, xρ(s,xs))‖ds,

I2 =

∫ t2

0

∥∥∥[Sα(t1 − s)− Sα(t2 − s)
]
f(s, xρ(s,xs))

∥∥∥ ds.
Here I1 and I2 tend to 0 as t1 → t2 independently of x ∈ Br(0, Y ).

In fact,

I1 =

∫ t1

t2

‖Sα(t1 − s)f(s, xρ(s,xs))‖ds

≤
∫ t1

t2

‖Sα(t1 − s)‖L(X)‖f(s, xρ(s,xs))‖ds

≤M
∫ t1

t2

eδ(t1−s)µ(s)‖xρ(s,xs)‖Bds

≤Mµ∗r∗
∫ t1

t2

eδ(t1−s)ds

= Mµ∗r∗
[eδ(t1−t2) − 1

δ

]
.
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Hence lim
t1→t2

I1 = 0. And

I2 =

∫ t2

0

∥∥∥[Sα(t1 − s)− Sα(t2 − s)
]
f(s, xρ(s,xs))

∥∥∥ ds
→ 0,

since f is compact and Sα is strongly continuous,
∥∥∥[Sα(t1 − s)− Sα(t2 − s)

]
f(s, xρ(s,xs))

∥∥∥
→ 0 as t1 → t2 uniformly for x ∈ Br(0, Y ). We conclude that lim

t1→t2
I2 = 0.

Step 4: The operator N maps Br(0, Y ) into a relatively compact set in X.

Indeed from the strong continuity of Sα(·) and (H2), the set
{
Sα(t− s)f(s, xρ(s,xs)), t, s

∈ [0, b], x ∈ Br(0, Y )} is relatively compact in X. Moreover, for x ∈ Br(0, Y ), using the

mean value theorem for the Bochner integral, we obtain

Nx(t) ∈ tconv{Sα(t− s)f(s, xρ(s,xs)) : s ∈ [0, b], x ∈ Br(0, Y )}, for all t ∈ [0, b].

Consequently the set {Nx(t) : x ∈ Br(ϕ|J , Y )} is relatively compact in X, for every t ∈ [0, b].

Step 5: A priori bounds.

Set Λ = {x ∈ Y such that x = λN(x) for some 0 < λ < 1}. Let x ∈ Λ. Then for each

t ∈ [0, b], we have

‖x(t)‖ ≤ λ
∫ t

0
‖Sα(t− s)‖L(X)‖f(s, xρ(s,xs))‖ds

≤M
∫ t

0
eδ(t−s)µ(s)‖xρ(s,xs)‖Bds

≤Mµ∗
∫ t

0
eδ(t−s)

[
(Mb + J

ϕ
)‖ϕ‖B +Kb‖x‖max{0,s}

]
ds

≤Mµ∗
∫ t

0
eδ(t−s)

[
(Mb + J

ϕ
)‖ϕ‖B +Kb‖x‖s

]
ds

≤Mµ∗(Mb + J
ϕ
)‖ϕ‖B

eδb

δ
+Mµ∗Kb

∫ t

0
eδ(t−s)(t− s)α−1(t− s)1−α‖x‖sds

≤ θ1 + θ2

∫ t

0
(t− s)α−1‖x‖sds,

where

θ1 = Mµ∗(Mb + J
ϕ
)‖ϕ‖B

eδb

δ

θ2 = Mµ∗Kbe
δbb1−α.
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In view of Lemma 2.3, we have for all t ∈ J ,

‖x(t)‖ ≤ θ1

[
1 +

∫ t

0

∞∑
n=1

(θ2Γ(α))n

Γ(nα)
(t− s)nα−1

]
ds

≤ θ1

[
1 +

∞∑
n=1

(θ2Γ(α))nbnα

nαΓ(nα)

]
= θ1

[
1 +

∞∑
n=1

[θ2Γ(α)bα]n

Γ(nα+ 1)

]
≤ θ1Λα[θ2Γ(α)bα],

where Λα[θ2Γ(α)bα] =

∞∑
n=0

[θ2Γ(α)bα]n

Γ(nα+ 1)
is the Mittag-Leffer function. This implies that

‖x‖∞ ≤ θ1Λα[θ2Γ(α)bα].

Hence combining Step 1–Step 5 and using the Theorem 2.2, we obtain that N has a fixed point

which is a mild solution of (1)-(2) on (−∞, b].

Next, we give an existence result when the nonlinearity f has a sublinear growth with its

state variable. Let us list the following condition:

(H2∗) The function f : J → B → X is completely continuous such that there exist a continuous

function µ : J → (0,+∞) and a continuous nondecreasing function W : [0,+∞) →

(0,+∞) satisfying

‖f(t, ψ)‖ ≤ µ(t)W (‖ψ‖B), (t, ψ) ∈ J × B, lim inf
ξ→+∞

W (ξ)

ξ
= γ < +∞.

Theorem 3.2 Assume that the hypotheses (H1), (H2∗) and (H3) are satisfied. Then the problem

( 1)-(2) admits at least one mild solution on (−∞, b] provided that

Meδbµ∗Kb

δ
γ < 1,where µ∗ = sup

0≤τ≤b
µ(τ). (6)

Proof. Let N be the operator defined by (4). We shall complete the proof by Schauder’s

fixed point theorem. Let r∗ be defined as (5).

We claim that there exists a positive number r such that NBr(0, Y ) ⊆ Br(0, Y ). If it is

not true, then for each r > 0, there exists xr(·) ∈ Br(0, Y ), but Nxr /∈ Br(0, Y ), that is,
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‖N(xr)(t)‖ > r for some t(r) ∈ J , where t(r) denotes t depending on r. However, on the

other hand, we have from (H1), (H2∗) that

r < ‖N(xr)(t)‖

=

∥∥∥∥∫ t

0
Sα (t− s) f

(
s, xρ(s,xrs)

)
ds

∥∥∥∥
≤ M

∫ t

0
eδ(t−s)µ (s)W (r∗) ds

≤ M
eδb

δ
µ∗W (r∗) .

Dividing both sides by r and taking the lower limit, we get

Meδbµ∗Kb

δ
γ ≥ 1,

where contradicts (6). Hence for some positive r, NBr(0, Y ) ⊆ Br(0, Y ).

Just the same as the proof in Theorem 3.1, we can show that N is continuous on Br(0, Y )

and N maps Br(0, Y ) into a relatively compact set in X. Next we prove that the family

{Nx : x ∈ Br(0, Y )} is an equicontinuous family of functions.

Let t1, t2 ∈ J with t1 > t2 and x ∈ Br(0, Y ). Then

‖N(x)(t1)−N(x)(t2)‖ =

∥∥∥∥∫ t1

t2

Sα(t1 − s)f(s, xρ(s,xs))ds

+

∫ t2

0

[
Sα(t1 − s)− Sα(t2 − s)

]
f(s, xρ(s,xs))ds

∥∥∥∥
≤ I1 + I2.

where

I1 =

∫ t1

t2

‖Sα(t1 − s)f(s, xρ(s,xs))‖ds,

I2 =

∫ t2

0

∥∥∥[Sα(t1 − s)− Sα(t2 − s)
]
f(s, xρ(s,xs))

∥∥∥ ds.
Here I1 and I2 tend to 0 as t1 → t2 independently of x ∈ Br(0, Y ).

Indeed,

I1 =

∫ t1

t2

‖Sα(t1 − s)f(s, xρ(s,xs))‖ds
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≤
∫ t1

t2

‖Sα(t1 − s)‖L(X)‖f(s, xρ(s,xs))‖ds

≤M
∫ t1

t2

eδ(t1−s)µ(s)W (‖xρ(s,xs)‖B)ds

≤Mµ∗W (r∗)

∫ t1

t2

eδ(t1−s)ds

= Mµ∗W (r∗)

[
eδ(t1−t2) − 1

δ

]
.

Hence lim
t1→t2

I1 = 0. And

I2 =

∫ t2

0

∥∥∥[Sα(t1 − s)− Sα(t2 − s)
]
f(s, xρ(s,xs))

∥∥∥ ds
→ 0,

since f is compact and Sα is strongly continuous,
∥∥∥[Sα(t1 − s)− Sα(t2 − s)

]
f(s, xρ(s,xs))

∥∥∥
→ 0 as t1 → t2 uniformly for x ∈ Br(0, Y ). We deduce that lim

t1→t2
I2 = 0.

Thus, by the Arzela-Ascoli theorem N is a completely continuous operator. In view of

Schauder’s fixed point theorem, we deduce that N has a fixed point which is a mild solution of

(1)-(2) on (−∞, b]. This finishes the proof.

According to Theorem 3.2, we can easily obtain the following consequence for the sub-

linear growth case.

(H2∗∗) The function f : J → B → X is completely continuous such that there exist a continuous

function µ : J → (0,+∞) and a contant ϑ ∈ (0, 1) satisfying

‖f(t, ψ)‖ ≤ µ(t)
[
1 + (‖ψ‖B)ϑ

]
, (t, ψ) ∈ J × B.

Corollary 3.1 Suppose that (H1),(H2∗∗) and (H3)hold. Then the problem (1)-(2) has at

least one mild solution on (−∞, b].
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