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Abstract  In the study of epidemiology aetiology, we usually cannot measure exposed effect relative to an 
individual, but under some assumptions, we approximately replace the exposed effect by estimator of population 
average causal effect. A multidimensional structural regression model for causal inference is established to 
estimate the population average treatment effect under strongly ignorable treatment assignment. Under the 
normal distribution, the maximum likelihood estimator for population average treatment effect is proved to be 
consistent, unbiased and asymptotically normal. 
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1. Introduction 

The objective of epidemiology study is to search aetiology, and to measure its causal effect 
in the light of quantity, thereby prevent from the occurrence of disease[1]. The case -control study, 
which attempts to find a contrasted or exposed group which can be compared with the treated or 
exposed one, is the common method that we employ in the research of epidemiology aetiology. 
Except the difference of being exposed and unexposed, the ideal treated group and the contrasted 
group are expected to share the rest of the other features, which serves as the guiding principle in 
the epidemiology research[2-3]. The dummy truth model laid a theoretical foundation for us to 
demonstrate this principle[4]. Let U be the study population, and denote a generic individual in 
U by u U∈ . A variable E  is defined on each u U∈  so that ( ) 1E u =  if u  is exposed 
to the casual agent of interest and ( ) 0E u =  if u  is not so exposed. )(1 uY and 

)(0 uY indicate the diseased status of u  as in the exposed and non-exposed cases respectively. 

Thus we can define the exposed causal effect of the individual u  as )(1 uY — )(0 uY .As we 

know, in any real epdidemilogic study, one does not observe )(1 uY and )(0 uY simultaneously. 
Therefore the casual effect of the exposure to the individual is not attainable. However, in some 
circumstances, we can get the population average causal effect, which can be defined 
as 1 0 E(Y (u)-Y (u)) , while )(⋅E denotes expection or population average (over U ). Under the 
circumstances of random tests, for the fact that the independence of the exposed E  and other 

variants, the result should be E （Y1，Y0），which indicates that the exposed E  is independent 
of the random Vector（Y1，Y0）. Thus the population average causal effect is shown as 

)( 01 YYE − = )()( 01 YEYE − = )0()1( 01 =−= EYEEYE .In other words, the causal effect 
can be estimated by the difference of the exposed population average diseased condition the 
non-exposed population average diseased condition[5]. The epidemiology, however, is an 
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observatory science in nature, so the above formula is not to be established which necessitates 
the assumption of the state of being ignorable[5-6] . 

Definition 1.1 Given the covariant X , the exposed E is called being strongly ignorable. If  

(1)（Y1，Y0） XE , i.e. the observed covariant X is given, the response  
                      variant is independent of the exposed E.                   (1) 

(2) 1)Pr(0 <=< XeE , i.e. for each and every X, they may receive various treatment.  

When the E  is strongly ignorable, by getting the matching-differencing-averaging 
between the exposed and non-exposed groups, we can get the unbiased estimate of population 
average causal effect[7]. But the above method is complicated in calculation and the additional 
sparse-data problems, excess covariant, though few, may arise. In addition, the method of 
ranking the individuals with the estimated propensity score is an advisable way to solve the 
problem, but the calculation is still very complicated[8]. [9] Under strongly ignorable treatment 
assignment, a structural regression model for causal inference is established to estimates the 
population average treatment effect. They are the series of results achieved. with the response 
variant being one dimensional. The paper will discuss the inference problem with 
multi-dimensional response variants. 

2. Multidimensional Structural Regression Model 

Definition 2.1 In Condition of Strongly Ignorable Treatment Assignment, denote 
multidimensional Structural Regression model as follows:  
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Here t=0,1 means two treatment； tjY is the random vector of order 1×p ,indicated the 

response variant of the jth observation for the tth treatment; tjX  is the covariant vector of order 

1×k ; tje is the random error vector of order 1×p ; tα  is the parameter vector of order 

1×p ; tβ  is the parameter matrix of order kp× ; xμ is the parameter vector of order 

1×k ;The covariant matrix tV和xΣ  of tjX  and tje  are both positive definite. 

Under model （2） 
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We can easily find txt VA ⋅Σ= ;because xΣ and tV are both positive definite, we can 

know 0≠Σ x , 0≠tV ；so 0≠tA ;therefore 1−
tA is valid, and we denote it as Bt .again 

based on the principle of block matrix inversion, we can get 
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Where: t=0，1 ； j=1，……，nt . 
We also get observation logarithm likelihood function of the sample ( )tjtj yx ,  with the 
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capacity nt (t=0，1； j=1，……，nt ) 
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tjtttjtjttttjxxx yVxxVx 1''1''1' 2 −−− −+Σ+ βββμμ                        （3） 

)22 1'1'1'1''
ttttttjtjttjttttj VVyyVyVx ααααβ −−−− +−++  

3. Conclusion 

3.1 Two Lemmas  
In order to get the likelihood estimates of all parameters in model (2) and the population 

average causal effect, we give the following two lemmas, of which lemma3.1 is shown at [10]. 
First, suppose X is the matrix of order nm× , )(xf is the real-valued function of matrix X , 

x
xf

∂
∂ )(

 indicate real-valued function )(xf settling partial derivation for each element of 

matrix X . Thus the following lemmas are valid: 
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Of which A  and B  are two matrixes that can make matrix calculation with X , ( )tr X  
means the trace of matrix X . 

Lemma 3.2 If model (2) is valid, when the covariant matrix and the random error matrix 
are independent of each other, then  
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Proof: First to prove tX and '
tt XX

M are independent. 
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Which 1 is the column vector of 1×tn . 

We can do the vector straight operations to matrix tX , then ⊗Σ= xXVecCov ))(( I
tn , 

also, as for tX and each at the element ijm in '
tt XX

M  

follow tX =
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Of which⊗ indicates the Kronecker product of matrix, ijE  indicates matrix of order 

kk ×  with （i,j）th is 1, and the rest is 0. Now we can draw the following conclusion by making 
use of the characteristic of multidimensional normal random variant and the Kronecker product 
of the matrix:  
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Thus we can prove ijm and tX are independent, and it’s valid to any i，j=1，……，k. so we 
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),( ttt eXZ = ，in the same way , and by mutual independence of tX and te , we can prove 

tX and '
tt Xe

M are also independent of each other. 

Lemma3.2 is proved！ 
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3.2 Estimate of Parameter 
Theorem 3.1 Suppose model（2）is valid, we can get the maximum likelihood estimates of 

all the parameter: 
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We can get tttt xy βα −= .  And the score function of tβ  is as follows:  
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Simplified as         0)(
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Fit tβ into above formula of tα , we set txxxytt xMMy
tttt
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In the same way, we can get the maximum likelihood estimates of the other three 
parameters. 

Theorem3.1 is proved！ 
In fact, as for the multidimensional structural regression model with the response variants 

as shown in model (2), we can see from the above demonstration that the maximum likelihood 
estimates of parameter tα and tβ do not depend on the selection of the covariant matrix and 
random error matrix. Moreover, we can also see that if we want to estimate the parameter that 
measure relationship between the covariant and the jth（j=1,……，nt）response variable, we 
should only note the jth response variable. i.e. the model(2) can be divided into p  one 
dimensional models, which is evident in Jinhua’s paper(2000).  
3.3 Population Average Causal Effect  

Definition3.1 provides the covariant X, if the assumption of Strongly Ignorable condition 
(1) is fulfilled, then treatment E=1 to E=0 average causal effect ATE  is  

))()(()()( 0101 xXYEYEEYEYEATE x =−=−=  
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Theorem3.2 suppose model (2) is valid, and treatment assignment variant E is strongly 
ignorable, then 

(1) The maximum likelihood estimator of population average treatment effect ATE is 

ATE = )(
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(2) ATE is consistent unbiased estimator of ATE. 
(3) With the case of the large sample, ETA ˆ is close to normal distribution N（ATE, Γ）. 
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Proof: (1) with model (2), if treatment assignment variant E is strongly ignorable, then the 
population average treatment effect  ATE= xμββαα )()( 0101 −+−  

Based on theorem 3.1 and the invariance of maximum likelihood estimator, we can know 
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(2) Consistency: we know based on the model (2) 

ttttt eXY ++= βα , t=0,1 
Again based on theorem3.1, we get 
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Based on the law of large numbers and the nature of the random variant order converging by 
probability, we can know  
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So far, again based on the nature of the random variant order converging by probability, we 

get PATE ATE⎯⎯→ , i.e. ATE  is consistent estimate of the population average treatment 
effect ATE. 

Unbiased：Through the demonstration of the consistency, we know  
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Therefore  xtttYE μβα +=)(  , so based on lemma3.2, we set  
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So based on the Central Limited Theorem, we know ~ ( , )ATE AN ATE Γ . 
Theorem 3.2 is proved！ 
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