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Abstract In the study of epidemiology aetiology, we usually cannot measure exposed effect relative to an
individual, but under some assumptions, we approximately replace the exposed effect by estimator of population
average causal effect. A multidimensional structural regression model for causal inference is established to
estimate the population average treatment effect under strongly ignorable treatment assignment. Under the
normal distribution, the maximum likelihood estimator for population average treatment effect is proved to be
consistent, unbiased and asymptotically normal.
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1. Introduction

The objective of epidemiology study is to search aetiology, and to measure its causal effect
in the light of quantity, thereby prevent from the occurrence of disease™. The case -control study,
which attempts to find a contrasted or exposed group which can be compared with the treated or
exposed one, is the common method that we employ in the research of epidemiology aetiology.
Except the difference of being exposed and unexposed, the ideal treated group and the contrasted
group are expected to share the rest of the other features, which serves as the guiding principle in
the epidemiology research®®®. The dummy truth model laid a theoretical foundation for us to
demonstrate this principle!”. Let U be the study population, and denote a generic individual in

Uby ueU . Avariable E is defined on each ueU sothat E(u)=1 if u is exposed
to the casual agent of interest and E(u)=0 if u is not so exposed. Y,(u) and
Y, (u) indicate the diseased status of U as in the exposed and non-exposed cases respectively.
Thus we can define the exposed causal effect of the individual u as Y,(u)—Y,(u).As we

know, in any real epdidemilogic study, one does not observe Y, (u)andY, (u)simultaneously.

Therefore the casual effect of the exposure to the individual is not attainable. However, in some
circumstances, we can get the population average causal effect, which can be defined

as E(Y,(u)-Y,(u)), while E(-) denotes expection or population average (over U ). Under the
circumstances of random tests, for the fact that the independence of the exposed E and other
variants, the result should be E 1L (Y, Yo), which indicates that the exposed E is independent
of the random Vector (Y;, Yo) . Thus the population average causal effect is shown as
E(Y, -Y,)=E(Y,)-E(Y,)= E(Y1|E =1)- E(YO|E =0) .In other words, the causal effect

can be estimated by the difference of the exposed pogulation average diseased condition the
non-exposed population average diseased condition®. The epidemiology, however, is an
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observatory science in nature, so the above formula is not to be established which necessitates
the assumption of the state of being ignorable®®! .

Definition 1.1 Given the covariant X , the exposed E is called being strongly ignorable. If
Q) Yy, Yo AL E|X , 1.e. the observed covariant X is given, the response

variant is independent of the exposed E. Q)
(2 0<Pr(E= e|X) <1, i.e. for each and every X, they may receive various treatment.

When the E is strongly ignorable, by getting the matching-differencing-averaging
between the exposed and non-exposed groups, we can get the unbiased estimate of population
average causal effect”). But the above method is complicated in calculation and the additional
sparse-data problems, excess covariant, though few, may arise. In addition, the method of
ranking the individuals with the estimated propensity score is an advisable way to solve the
problem, but the calculation is still very complicated 811 Under strongly ignorable treatment
assignment, a structural regression model for causal inference is established to estimates the
population average treatment effect. They are the series of results achieved. with the response
variant being one dimensional. The paper will discuss the inference problem with
multi-dimensional response variants.

2. Multidimensional Structural Regression Model

Definition 2.1 In Condition of Strongly Ignorable Treatment Assignment, denote
multidimensional Structural Regression model as follows:

Ytj =, +ﬂtxtj + €
Xy ~ N(u,,Z,).8; =~ N(O,V,), X, isindependent of e,

Here t=0,1 means two treatment; Y, is the random vector of order px1,indicated the

)

response variant of the j™ observation for the t"

treatment; X,; is the covariant vector of order
kx1;e,is the random error vector of order px1;e, is the parameter vector of order
px1; S, is the parameter matrix of order pPxK; u, is the parameter vector of order
k x1;The covariant matrix = IV, of X, and e, are both positive definite.

Under model (2)

th _ Hy A Xti _ z“x Z><ﬂt
E(Ytj j_[at +ﬂt/ux] ’ Al _COV(YU' ]_(lgtzx IBtZXIBt +VtJ

We can easily find |A1| = |ZX| . [\/t| ;because X, and V, are both positive definite, we can

know |ZX| # O,[\/t| #0: so |A[| # 0 ;therefore A "is valid, and we denote it as B, .again
based on the principle of block matrix inversion, we can get

B= (le + ﬂtlvtilﬂt - /Btlvtlj

Vtilﬂt Vtil
X..
So ( U]~ N [ lux ],A[
Ytj at +ﬂt:ux
Where: t=0, 1 ; j=1, ------ , Nt

We also get observation logarithm likelihood function of the sample (Xﬂ- . yt,-) with the
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capacity n¢ (t=0, 1; j=1, -e--- , Nt)
X4 —H
—2InL=>Y"n,In B b
z |At| tzo:JZ_;[yq —Q — ﬂt/ux] t(ytj_at_ﬂtluxj
Furthermore,
~2InL= Zn (Inz, |+In[\/|)+ZZ(quX X5 — 2%, 2, 4,
t=0 j=1
+/uxzx :ux + thﬂtvt /Bt tj _2thﬂtvt_lytj (3)

+ 2thj ﬂt‘vt_lat + Yt‘th_l Yi — ZYthVt_lat + at‘vt_lat)

3. Conclusion

3.1 Two Lemmas
In order to get the likelihood estimates of all parameters in model (2) and the population
average causal effect, we give the following two lemmas, of which lemma3.1 is shown at [10].

First, suppose X is the matrix of order mxn, f(X)is the real-valued function of matrix X ,
of (x)
OX

matrix X . Thus the following lemmas are valid:
otr(AXB) _AB

indicate real-valued function f(X) settling partial derivation for each element of

Lemma3.1 (1)

atr(X AXB)
oX

(2> = AXB + A XB'

. 8In|X| INEN
oxX

Of which A and B are two matrixes that can make matrix calculation with X , tr(X)

means the trace of matrix X .
Lemma 3.2 If model (2) is valid, when the covariant matrix and the random error matrix
are independent of each other, then

- 1 h
X, == X,
n, j=1
and
:_Z(Xq X )(Xq - t) ’ e‘xl = Z(eq —§ )(th - t)
t j=1 t =1
are independent of each other, where &€, :—Z:etj :

t j=1
Proof: First to prove )Tt and M « x are independent.
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X t11 X ti2 X t1k

X X o X
Let Xt _ t21 22 t2k

X tn,1 X tn 2 X tnk

— 1.
Set X, =—X,1 also
n

1 .01, 1 .
M, x =—(X,——X;11) (X, ——11 XD
nt t t
1. 1 .
==X,(1, ——11") X,
n, Con
Which 1 is the column vector of n, x1.

We can do the vector straight operations to matrix X, then Cov(Vec(X)) =X, ®1 ,

also, as for X, and each at the element m;in M .
Mt

follow >?t=i (k®1) Vec(X,)

t

m, =VeC(><t)'[%(Eij +E;)®0, _ni 11')]Vec(X,)
t

Of which® indicates the Kronecker product of matrix, E; indicates matrix of order

kxk with Ci,j>™is 1, and the rest is 0. Now we can draw the following conclusion by making
use of the characteristic of multidimensional normal random variant and the Kronecker product
of the matrix:

1 ®1) (2, ®1,) [%(Eij +Eij')®(|n‘—ni11')]

nt t
1 : 1 . 1 .
:[EZX(EIJ+EIJ)]®[n_1 (lnt—n—ll ) ]:O
t t
Thus we can prove m;; and )Tt are independent, and it’s valid to any i, j=1, «----- , K. so we

o 1l 1 - TN
have proved X, =n—z Xy andMX[xl. :—Z(th = X )(X; = X,) are independent of

t j=1 t j=1
each other.
€ € etlp
€ € - €y
Suppose €, = t ' we
etntl etnI 2 e etn‘ p

Z, =(X,,&,)in the same way , and by mutual independence of X,ande, , we can prove
)Tt andM __ .are also independent of each other.

Lemma3.2 is proved!
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3.2 Estimate of Parameter
Theorem 3.1 Suppose model (2) is valid, we can get the maximum likelihood estimates of
all the parameter:

Nt

5 A 1 <
-M Vi (M tht) l ﬂt thtv (M thé) l M = z th !

5 7,
N, +N; 5o =1
n 1 1 ~ R A .
Zx ZZ(XU ILlX)(th /‘x) V = Z(ytj &, _ﬂtxtj)(ytj - _:thtj)
Ny +N; 503 N =
of which ¥, = ZytJ .M, Z(yIJ Y)(X; —%) : The form of
t j=1 t j=1
X;andM . is shown in lemma3.2.
Proof: First, we get the score function of ¢, :
o(-2InL) & 0 C o, Ny Ny
a—at = ;a(zxtjﬂtvt lat - 2ytjvt lOlt + atvt lat)

—Z[— 2tr(xg BV, at) — 2 tr(qu a,)+ aa tr(aV, ' a,)]

a, a, t
= Z (Z\/tilﬂt Xy — 2Vt71at) =0
j=1

We canget o, =Y, — B, X,. And the score function of /3, is as follows:

o(-2InL) & _
M:Z(ZVt LBixgXg — VY Xy + 2V e X ) =0
aﬂt j=L
Simplified as Z (B Xy Xt'j — Yy Xt'j +a, thj) =0
j=1

Fit /3, into above formula of ¢, weset &, =Y, - M v M )X,
tht ot

In the same way, we can get the maximum likelihood estimates of the other three
parameters.

Theorem3.1 is proved !

In fact, as for the multidimensional structural regression model with the response variants
as shown in model (2), we can see from the above demonstration that the maximum likelihood
estimates of parameter ¢, and 3, do not depend on the selection of the covariant matrix and

random error matrix. Moreover, we can also see that if we want to estimate the parameter that
measure relationship between the covariant and the j (j=1,----- , Ny response variable, we
should only note the jth response variable. i.e. the model(2) can be divided into p one
dimensional models, which is evident in Jinhua’s paper(2000).
3.3 Population Average Causal Effect

Definition3.1 provides the covariant X, if the assumption of Strongly Ignorable condition
(1) is fulfilled, then treatment E=1 to E=0 average causal effect ATE s

ATE = E(Y,) - E(Y,) = E, (E(Y,) - E(Y0)|X = X)
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=E (E(V,JE=1X =x)—E(Y,[E=0,X =X))

= Ex(al +131X_ao _ﬂox) = (al _ao) + (/31 _ﬂo)ﬂx
Theorem3.2 suppose model (2) is valid, and treatment assignment variant E is strongly

ignorable, then
(1) The maximum likelihood estimator of population average treatment effect ATE is

ATE =Y, ¥, - 0P (0 x)
Ny, +n;
(2) ﬁ is consistent unbiased estimator of ATE.
(3) With the case of the large sample, ATE is close to normal distribution N (ATE, T') .
r é\i+\i+ (:Bl _ﬂo)zx(ﬂl _:Bo)'
n, n n, +n
Proof: (1) with model (2), if treatment assignment variant E is strongly ignorable, then the
population average treatment effect ATE=(a; — ;) + (5, — Bo) 1y
Based on theorem 3.1 and the invariance of maximum likelihood estimator, we can know

Of which

e nAng e o
ATE = (@, —ao) + (B = fo)it, =Y, =Yy ————(X; = X,)
Ny +n;
(2) Consistency: we know based on the model (2)
Y, =a,+ [ X, +€,t=0,1
Again based on theorem3.1, we get
=M, M, =5 +M M )7

Based on the law of large numbers and the nature of the random variant order converging by
probability, we can know

P P
M —o%, M —250

Then B, —F— f,
In the same way, X, ——> 1, ,Y, ——>at, + S,
So far, again based on the nature of the random variant order converging by probability, we

get KT\E—P>ATE , I.e. EI'\E is consistent estimate of the population average treatment
effect ATE.
Unbiased: Through the demonstration of the consistency, we know

B3 (e —8)(X, - X) 1M )

n =
whereupon E() = EQA, +[.+3"(6; =80, - XV 1M, )}
A+ EAEL D (6 )0, ~ XY IM, )X, = %)

=5 + Ex(o|xt = Xt) =5
Therefore E(Y,) = a, + B4, ,so based on lemma3.2, we set
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E(ATE)=E(,-V,) - ECL Woye (3 %)

0 1

=(ay —ao) + (B, — By, = ATE
(3) Asymptotically normality: Based on above demonstration, we know

E(ATE) = ATE
Also because of ~ ATE ~ Y, -Y,) - M(X -X,)

n,+n
( ) _ ( ) _
= [y + VA~ Po) by 1"'91]_[050 DoV P) b= by X 5+8]
Ny +N, Ny +n,
— 1 _ 1
Moreover Var(X,)=—2, , Var(g)=—V,
nt nt
Therefore
n — - _ n o1
Var(, + BB g oy N (5 pys (- ) LV,
N, +N, (n, +n,) n,
(B, - P ) n o1
Var(a NolP = Fo) X +6)=—2 _ - > - +—V
( ot n, +n, 0 o) (no +n1)2 (/81 :Bo) x(ﬂl /80) n, 0
—— 1 1 1 CA
So Var(ATE) = _Vl +_Vo +n—(ﬂ1 _ﬂo)zx (ﬂl _ﬂo) =I
1 0 0 1

So based on the Central Limited Theorem, we know ATE ~ AN (ATE,T).
Theorem 3.2 is proved !
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