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Annotation 

The outbreak of infectious diseases is a global public health threat for the international 

community. Modelling the propagation of epidemics in a society is one of the important fields in 

epidemiology science. It is essential to know the number of infected cases for estimating and 

controlling the spread of disease in the affected countries. In this study, we used complex 

network theory to model the spread mechanism of epidemic disease in social networks. We 

modeled a social complex network by graph theory. Individuals are considered as nodes and 

acquaintances between them are considered as links. Disease virus can transmit along the links 

between nodes (people) according to different situations.  In this work, we proposed a dynamic 

model for simulating the outbreak of infectious disease on a social network based on the 

susceptible, exposed, infected and recovered (SEIR) dynamical categories. It has been tried to 

study the heterogeneity on the network by considering two key factors in the epidemic 

propagation: 1) The communications weights between individuals in the network 2) different 

body resistances of people based on age. The proposed dynamic model was applied on a real 

social network which was constructed in our previous research. We compared the proposed 

model with two different dynamic models. Finally, the simulations were compared with the 

reported data of infected cases of SARS outbreak in Hong Kong in 2003. The results indicated 

some similarity between our proposed model and the real reported data. Based on the results, it 

could be concluded that considering communications weights and body resistances of people 

captures the dynamic of disease spread in a proper way. 

 

Key words: Social network, Infectious disease, Heterogeneity, Body resistance, Communications 

weights. 

 

 

1  Introduction 

 

Complex network theory could help to understand the spread mechanism of epidemic disease in 

social networks [1, 2]. Graph theory is a powerful tool for modeling complex networks [3-6]. In 

graph theory, individuals are considered as nodes and acquaintances between individuals are 

considered as links [7]. Virus transmission can occur along the existing links according to 

different situations. Some studies indicated that human interactions are important for the spread 

of infectious disease [8]. In the real-word, social networks links strengths aren’t equal and some 

interactions have a high probability of infection transmission than others, i.e. the weight of links 

shows the amount of communications between individuals [7]. 

Prevalence of infectious diseases such as Influenza, Meningitis, Pertussis, Yellow fever and 

etc., since the beginning of history has been a major concern of humanity. Some of them are 
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widely spread in the last decade: Severe Acute Respiratory Syndrome (SARS) in 2002, 

Methicillin-resistant Staphylococcus aureus (MRSA) in 2005 and Ebola in 2014.  

Several types of research have studied the spread of infectious disease in social networks [9-

13]. Some of them, considered the complex network approach in their researches. Christian L. 

Althaus presented mathematical modeling that was appropriate for estimate the outbreak of 

Ebola in West Africa in 2014. He applied SEIR model in the simulations [14]. Abdulrahman et 

al. presented and analyzed a model for controlling the spread of Ebola Virus Disease (EVD) in a 

population by SLIR dynamic model. They defined 12 parameters in their model such as rate of 

public enlightenment, enhanced personal hygiene due to public enlightenment, number of 

quarantined individuals and availability of isolation centers. Their simulations showed that 

improved personal hygiene and quarantining of infectious individuals are enough to control the 

spread of EVD [15]. Small and Tse modeled transmission of SARS in Hong Kong with complex 

small world network. They used SEIR dynamic model. They supposed different probabilities of 

transition between the states of disease in the network. In their model, random nodes are isolated 

in order to control the spread of infection [16]. Colizza et al. used real airline networks data for 

their study because they believed that people’s transportations are causes of SARS disease 

propagation. They considered the population of each city is classified into seven different 

compartments, and hospitalized as well as infectious individuals are able to transmit the infection. 

They concluded that their models are fit for the forecast and analysis of emerging disease 

spreading at the global level [17].  

Some scientists have attempted to produce their database through questionnaires [18]. 

Previously, we recorded the communications between 100 persons during one week and 

constructed a sample of a social network consisting human communications. It was shown that 

the constructed social encounters network has a small-world topology. In the next step, the 

common cold outbreak was modeled with SIR dynamic model [1]. In this study, we used our 

previous social network for modeling SARS propagation by SEIR model.  

In a disease spread network, there are some sources of heterogeneity. For example, individuals’ 

characteristics against the disease and the level of interaction between people are some bases of 

inhomogeneity. In this paper, we tried to apply this heterogeneity factors in the simulations. For 

this purpose, we proposed a dynamic model with two important features: 1) communications 

levels between individuals which is reflected in the connections’ weights of the network 2) 

different body resistances based on ages of people which is used as different thresholds for each 

node (people). Our suggested model considers cumulative weights of all links between each 

node and its infected neighbors. We named this model as Cumulative Weight model (CW). This 

model was compared with two different dynamics. The first one is Abramson and Kuperman’s 

model (AK) that it is based on the number of infected neighbors for each node [19]. This model 

doesn’t consider the amount of communication between persons. The second model is Rajabi 

Vishkaie et al. model (R) that it’s based on the largest connection weight between one node and 

its infected neighbors [1]. At the end, the simulation results of these models were compared with 

reported data of infected cases of SARS outbreak in Hong Kong in 2003 [20]. 

  

 

2 Methods 

 

Dataset: Previously, for data gathering, we used the questionnaire distribution method in a small 

social network. In order to construct the network structure, 15 participants were asked in the 

questionnaires to record their encounters in a week. Moreover, they were asked to record their 

contact time weekly. Based on the level of contact between the persons, we assigned different 

amounts for edge weight in integer values from 0 to 9: more time of weekly contacts receives 

more scores. 
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The questionnaires were distributed among the author’s acquaintances. These participants 

were asked to distribute the questionnaires between their own acquaintances (exactly those 

people that the participants mentioned in their own questionnaires). In this way, the network was 

expanded. All the participants were asked to record their encounters with their acquaintances; 

also, we requested participants to record the encounters between their acquaintances. There were 

15 participants. The number of all people that they recorded was 100. The produced network 

(database network) had 326 links between persons [1]. In this study, since we used our previous 

database, the run time must be 7 days but it isn’t long enough to see the propagation of disease. 

Hence, the run time must be a multiple of 7. Therefore, the run time was chosen 98 days. (We 

considered the run time long enough to see the changes.) 

 

2.1. Basic definitions in disease transmission 

The dynamic of the disease spread governed by SEIR model (that ‘S’ stands for susceptible, ’E’ 

shows exposed persons, ‘I’ shows Infected person, and ‘R’ indicates recovered or deceased 

person). It has reported that SARS has incubation period between 2 to 7 days (or longer) [21]. In 

our model, we supposed the incubation period is 7 days ( ). This means that when the 

SARS’s virus goes inside a person body (s)he goes to exposed state (E) while (s)he doesn’t have 

disease symptoms in this period (first week). After this incubation period, the person goes to 

infected state (I) which has disease symptoms such as fever, cough etc. Here, we assumed the 

symptoms period is about 7 days.  Since CDC (Centers for Disease Control and Prevention) 

recommends that persons with SARS limit their interactions outside the home until 10 days after 

their respiratory symptoms have gotten better [22], we considered infection period ( ) as 17 

(10+7) days which each infected person could carry the virus. After the infected period (s)he 

goes to recovered state (R) in which (s)he can’t transmit the infection anymore (See Fig.1).  

 

 
Fig.1 Schematic of state transition by SEIR dynamic model for SARS disease, this dynamic 

model has four state for a society that has infectious disease:  S (Susceptible), E (exposed), I 

(Infected) and R (Recovered) 

 

      In our network, we assumed that at the start time of the simulations, SARS viruses infected 

1% of the population and before this time, nobody is sick.  

We defined two time-based vectors: 

 
Where State(t) is a vector that indicates the conditions of each node (individuals) and N is the 

number of network’s nodes.  

We also defined probability vector as: 

 
Where (t) is a vector that I ndicates the likelihood of getting illness for the node i at time t. 

Generally, if the interaction between two people increases, the probability of getting illness ( (t)) 

will increase, too. 

The states of nodes in time step t+1 (State (t+1)) will change according to: 

(t+1) =     0 (S)          ;      

                                                         1 (E)         ;      

                                                         2 (I) 

                                                         3 (R) 

http://www.cdc.gov/
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      One of the important factors in the outbreak of epidemic disease is the probability of virus 

transmission from each infected nodes to its neighbor nodes (q). We assumed that q is between 0 

and 1 with a normal distribution. Another factor in propagation is the threshold (th). We 

considered it as body resistance against the disease. If a person has more body resistance, (s)he 

will have a higher threshold. In this study, at first, in some simulations we considered th as a 

fixed parameter between 0 and 1 to all the individuals for obtaining results in different situations. 

Since the disease mortality depends on age [23], so body resistance against the virus may be 

different according to the people’ age. Hence, in some simulations, we assigned different th to 

the network nodes based on the ages. 

 

2.2. Transmission Dynamics  

We applied three different models for the dynamic of the disease spread: 

1) AK model. This model is proposed by Abramson et al. and it was used for modeling 

infectious disease [19]. 

 
This model has expressed based on the number of the infected neighbors. Where 

 is the number of the infected neighbors for the node i at time t, and q is the 

probability of transmission from each infected neighbor to node i and it is a random quantity 

between 0 and 1. (t)  is the probability of becoming ill for node i at time t. In simulations if (t) 

is more than th, node i will go to the E state. (th is the body resistance against the disease for 

each node.) 

2) R model. This model is proposed by Rajabi et al. and it was used for modeling common 

cold outbreak [1]. 

                                                         

Where  is the 

weight of the link between the node i and one of its infected neighbors. If the node i has several 

infected neighbors, simulations will check all of the links and if it get a connection which has a 

(t) more than th, the contagion transmits to the node i and it will go to the E state. (th is the 

body resistance against the disease for each node.) In fact, one dangerous connection (a link that 

its weight is more than probability *10) is sufficient to transmit the infection and the other 

connections will be ignored. 

3) CW model. The amount of interactions between persons (w) and the number of infected 

neighbors have the main roles in disease spread. As the number of infected neighbors increase, 

the probability of getting illness will be increased too. Also, the probability of transmission from 

each infected neighbor to a susceptible node (q) is significant. In order to consider these factors 

and the heterogeneities on the network, we changed Eq. (4) (AK model) to Eq. (6). This equation 

comprised cumulative weights of links to each node and its infected neighbors: 

 
Where (t) is the probability of becoming ill for i node at time t.   is the sum 

of the edges weights between the node i and its infected neighbors at time t. If (t) is more than 

th, node i will go to the E state. (th is the body resistance against the disease for each node.) 

 

 

3 Results 

 

The diagrams of the susceptible, exposed, infected and recovered persons for three models is 

illustrated in Fig.2. In these three diagrams, the total number of susceptible, exposed, infected 

and recovered persons is equal to 100 (number of network’s vertices) at each time.  For all 3 
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dynamics, it was indicated that the number of exposed people is 1 from the first day until 7
th

 day. 

During this period, the number of infected people is 0. 

 

 
Fig.2   Number of susceptible, exposed, infected and recovered persons for (a) AK model (Eq. 

(4)) with mean of the q=0.4 and th=0.5 (b) R model (Eq. (5)) with th=0.1 (c) CW model (Eq. (6)) 

with mean of the q=0.4 and th=0.5 

 

The results of simulation for AK model with the mean of q=0.4 and th=0.5 are shown in 

Fig.2.a. As it is shown in this figure, the number of infected persons is increased from 7
th

 day to 

40 days from the beginning of the simulation, and then it will be decreased till the 46
th

 day. After 

that, it will be increased till 48
th

 day and then it will be decreased till the 77
th

 day. The maximum 

number of infected persons is 55 which is reached in the 48
th

 day. The number of susceptible 

persons becomes 0 at the 52
nd

 day and it will be remained 0 until the end of run time. Therefore, 

all the people (100 persons in the social network) became sick in AK model. 

Simulation results for R model with th=0.1 are illustrated in Fig.2.b. As it is shown in this 

diagram, the number of infected persons is increased from 7
th 

day till 32
nd

 day of simulation 

cycle and then it will be decreased till the 49th day. The maximum of the infected subject is 24 

in the 32
nd

 day. The number of susceptible individuals remained in 75 from 25
th

 day till the end 

of simulation cycle. In this model, 25 persons in the social network became infected. 

The results of implementation for CW model with the mean of q=0.4 and th=0.5 are 

indicated in Fig.2.c. As it is shown in this figure, the number of infected people is increased from 

7
th

 day till 40
th

 day, and then it will be decreased till 41
st
 day quickly. Again it will increase till 

42
nd

 day, after that it will be decreased till the 62
th

 day. The maximum number of infected people 

is 81 which is reached in the 40
th

 day of simulation cycle. The number of susceptible people 

became 2 in the 38
th

 day and it will remain in 2 until the end of the simulation, i.e.in CW model 

98 persons became sick. 

With giving different quantities to the q and th for each dynamic model, the number of 

susceptible people will change. The results are shown in Fig.3. 
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Fig.3  (a) Number of susceptible persons for (a) AK model (Eq. (4)) when th<q : th=0.2 & q=0.4 

and when th>q : th=0.8 & q=0.4 (b) R model (Eq. (5)) when th<0.5 : th=0.2 and when th>0.5 : 

th=0.8 (c) CW model (Eq. (6)) when th<q : th=0.2 & q=0.4 and when th>q : th=0.8 & q=0.4 

 

In this Figure when th q in AK model any node won’t be infected although in CW model 26 

persons became ill. Also, when th q in AK and CW model after 34 days from beginning of 

simulation number of susceptible people became 0. It means, in this case, all the susceptible 

individuals will be sick (see Fig.3.a and Fig.3.c). In Fig.3.b for R model when th=0 all the people 

in the network will be infected, since the number of susceptible people becomes 0 at 33
rd

 day. In 

addition, when 0 th 0.5 only 25 persons became infected and it remained 25 from 25
th

 day till 

the end of the simulation. Moreover, when th 0.5 any person won’t be infected. 

In the real world, old people and kids have lower body resistance against the disease. In order 

to have a more plausible model, we consider different body resistances (th) in our simulations. 

We assign different quantities to the th based on the persons’ ages in the network. Old people 

and kids were given the lower th and younger people were given higher th. The simulation 

results for three models in which th quantities are assigned based on persons’ ages is shown in 

Fig4. 

The diagram of the number of susceptible, exposed, infected and recovered people for AK 

model in which th quantities are based on individuals ages is shown in Fig.4.a. As you see the 

number of infected individuals is increased from 7
th

 day till 40
th

 day, and then it will be 

decreased till the 69
th

 day. The maximum number of infected individuals is 75 which is reached 

in the 40
th

 day of simulation cycle. The number of susceptible individuals became 0 in the 45
th

 

day and it will remain in 0 until the end of the simulation. Therefore, all the people in this social 

network became sick. 

For R model as it is shown in Fig.4.b, the number of infected individuals is increased from 7
th

 

day till 56
th

 day of simulation cycle and then it will be decreased till the 65
th

 day. The maximum 

of the number of infected individuals is 8 from the 40
th

 day till 48
th

 day. The number of 

susceptible individuals remained in 89 from 41
st
 day till the end of run time. Thus, in this model, 

just 11 persons in the social network became ill. 

The simulation results for CW model in which th quantities are assigned based on ages and 

with the mean of q=0.7 is shown in Fig.4.c. As it is shown in this figure, the number of infected 

people is increased from 7
th

 day till 40
th

 day, and then it will be decreased till the 44
th

 day. Again 

it is increased till 48
th

 day and after that, it will be decreased till the 70
th

 day of the simulation 

period. The maximum number of infected people is 73 which is reached in the 40
th

 day of 

simulation cycle. The number of susceptible individuals became 1 in the 46
th

 day and it will 

remain in 1 until the end of the simulation. So, 99 persons became infected. 
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Fig.4  Number of susceptible, exposed, infected and recovered persons giving th quantity based 

on age for (a) AK model (Eq. (4)) with mean of the q=0.7 (b) R model (Eq. (5))  (c) CW model 

(Eq.(6)) with mean of the q=0.7 

 

In order to have a better comparison with real data from SARS infection data for Hong Kong 

since 15 February 2003 [20], the number of infected people in Fig.4 for each model is depicted 

in Fig.5. 

 
Fig.5 Number of infected persons (a) AK model (Eq. (4)) with mean of q=0.7 and giving th 

quantity based on age    (b) R model (Eq. (5)) and giving th quantity based on age (c) CW mode l 

(Eq. (6)) with mean of q=0.7 giving th quantity based on age (d) Daily reported SARS infection 

data for Hong Kong since 15 February 2003 

 

      All these diagrams have the same trend of propagation of disease. AK and CW model have 

higher amplitude for the number of infected people. In addition CW model has a higher slope 

than AK and R model. 

 

 

4 Discussion 
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In this study, we examined three different dynamic models for simulating the outbreak of an 

infectious disease (here the SARS was modeled) on a social network. In all the simulations, at 

the beginning of the disease spread, 1% of people will receive disease virus, (in this study the 

number of nodes is 100 persons) therefore just one node will go to exposed status. According to 

Fig.2, in the first 7 days, there are no changes in the number of infected people. In fact, the 

number of infected people depends on the changing status of the first exposed person in the 

network. The incubation period is supposed 7 days, and the contagion couldn’t transmit from the 

first exposed person to others in this period.  

The AK model (Eq. (4)) considers these factors: the number of infected neighbors 

 and the probability of infection transmission from an infected person to its 

susceptible neighbors (q). This probability depends on the transmission rate.  

In the transmission of epidemic diseases, another important factor is the weights of 

communications between persons [24, 25]. There are different strategies to assign a weight to a 

link based on the amount of communication between two nodes [26, 27]. Previously, we 

allocated different amounts for links weights in integer values from 0 to 10 based on the level of 

communication between the people and we applied this factor (w) in R model (Eq. (5)) [1].  

According to R model, having an infected neighbor with strong communication weight is enough 

to become sick. In our data, most of the links have the weight equal to 1. For these links, the 

probability of becoming sick is equal to 0.1 (Eq. (5)) and it is not more than th (th= 0.1). So this 

dynamic doesn’t let the communication links with weight 1 to transmit the infection. This is the 

reason for the R model’s result wherein a few people have been ill (see Fig.2.b). In the real-word 

social networks, the communications between individuals aren’t equal. In order to consider 

heterogeneity on the network, we changed Eq. (4) (AK model) to Eq. (6) (CW model). In the 

proposed model the communication weights of all the infected neighbors are considered. The 

diagram trend of infected people in the CW model is similar to the AK because both of them 

consider q. In both of these models, almost all the people became infected. Besides, the CW 

model shows more fluctuations in disease propagation than the AK and R model. It may be as a 

result of considering the summation of communication weights.  

With giving different amounts to the q and th the below results were achieved from 

simulations (see Fig.3). According to Fig.3.a in AK model we observe: 

 If th ≥ q: any node can’t be infected. 

If th < q: all nodes will be infected. 

These former statements can be obtained from the following equations: 

 
At the beginning of the disease spread just one node will be sick. So some nodes have just 

one infected neighbor and the remaining ones does not have any infected neighbors. So we have 

 or  

 → =1, 1>1-q > 1-th →th> 1-

  →th >  

→ =1-q > 1-th →th> 1-   

→th >  
Therefore, node i doesn’t become infected. It means that if th ≥ q at the beginning of the 

spread of disease, the infection does not transmit from node i to any node. 

In R model, we observe that (see Fig.3.b): 

If th ≥ 0.5: no node will be infected. 

If th < 0.5: some persons will be infected. 

If th = 0: all the nodes will be infected. 

In this model as th decreases, the probability of becoming infected will increase. In our data, 

the weights of links are between 0 and 10. In the beginning, there is only one infected node 

which its maximum weight of connected links is 5. According to Eq. (5) 
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( ), if th ≥ 0.5, the infection can’t transmit from first infected node to its 

neighbors. 

In CW model, we observe that (see Fig.3.c): 

      If th ≥ q: some persons will be infected. 

If th < q: all the nodes will be infected. 

In an overview, when th≥ q in AK model no one became sick, but in CW model some 

persons became sick. As CW model considers the weight of links and so it is more impressible 

than AK model.  

In addition to aforementioned factors, the characteristics of individuals are not the same and 

people may have different body resistance against the disease, i.e. each person may have a 

particular threshold of becoming sick (th). For example, infection risks may be related to age.  

Previously Hethcote suggested that in realistic infectious disease models it would be beneficial to 

include the age of individuals [28]. Here we allocated different quantities for the resistance body 

from 0 to 1 based on the persons’ age (see Fig.4 and Fig.5).  

For the R model, the number of infected individuals in Fig.4 are fewer than it in Fig.2, since 

in our network data most of the people are young and they have high th (compare Fig.2 with 

Fig.4). And as mentioned before, the R model depends on th very much.  

Comparing the number of infected persons in our simulated models with real data suggests 

that the AK and the CW showed more similarity to real result (see Fig.5). However, the CW 

results have more fluctuations similar to real data which is as a result of considering both q and 

w. 

 

 

5 Conclusions and Future Prospect 

 

Modeling transmission of infectious diseases in a society is one the most important field in 

epidemiology science. Here, we have attempted to model the transmission of SARS disease in a 

small population with three different models. Based on our results, weights of communications 

between individuals and the thresholds of body resistances of people are important factors for 

disease spread. The CW model which has all these factors is more similar to the reported data of 

infected cases of SARS outbreak in Hong Kong in 2003 [20]. Based on these results it may be 

concluded that the CW captures the dynamic of disease spread in a proper way.  

As suggestions for the future prospect, it will be useful to model the vaccination effect of the 

person who has more connections with other people in a society, since in other studies it has 

expressed that the prevalence of the disease depends on the degree distribution [2]. Also, it has 

shown that quarantining infected persons can reduce the infectious in a society [16]. Considering 

this state in simulated models will be interesting. 

We believe the model can be applied to another contagious diseases such as Ebola, influenza, 

AIDS and etc., because these diseases have some similar features. For example, Ebola and SARS 

have the analogous incubation period. 
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